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Abstract. Minimal indices (M-indices) of time-like ruled and time-like hyperruled surfaces in 1
nR

are investigated. Additional results regarding developable, totally developable, and nondevelopable 
ruled surfaces are also given. 
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1. INTRODUCTION

Let 1
nR  be the n-dimensional Minkowski space with the standard metric 

given by 

2 2 2 2
0 1 2 1, ... ,ndx dx dx dx

−

= + + + −

where 0 1 2 1( , , , ..., )nx x x x
−

 is a rectangular system of 1
nR  [1]. Nonzero vectors are 

classified as time-like, space-like or null, respectively, according to whether 

, 0, , 0 or , 0.v v v v v v< > =  

Let 1
nRα ∈  be a curve in Minkowski space. If α�  is the velocity vector of α  and 

, 0,α α >� �  then the curve α  is called a space-like curve [1]. 
Now we give some properties of general submanifolds M  of the Minkowski 

space 1 .nR  Let D  denote the Levi-Civita connection of 1
nR  and let D  denote the 

Levi-Civita connection of .M  For any vector fields ,X Y  on M  we have the 
Gauss equation 

( , ),X XD Y D Y V X Y= + (1)

https://doi.org/10.3176/phys.math.2005.2.03

https://doi.org/10.3176/phys.math.2005.2.03


 88

where V  is the second fundamental form of M  and ,XD Y  ( , )V X Y  are the 
tangential and normal components of ,XD Y  respectively [2]. We also have the 
Weingarten equation giving the tangential and normal components of ,XD ξ  
where ξ  is a normal field of :M  

 

( ) .X XD A X Dξξ ξ⊥= − +  
 

Here Aξ  determines a self-adjoint linear map at each point and D⊥  is a metric 
connection in the normal bundle ( ).Mχ

⊥  We note that, in this paper, Aξ  will be 
used  for the  linear  map and the  corresponding  matrix of the linear map [2]. 

Suppose that X  and Y  are vector fields of ( )Mχ  while ξ  is a normal vector 
field. If a Lorentzian metric tensor of 1

nR  is denoted by , ,  we find 
 

, ( , ), ( ), .XD Y V X Y A X Yξξ ξ= =                           (2) 

 
If 1 2{ , , ..., }n mξ ξ ξ

−

 constitutes an orthonormal base field of the normal bundle 
( ),Mχ

⊥  we get  
 

1

( , ) ( , ) .
n m

j j
j

V X Y V X Y ξ
−

=

=∑  

 

The mean curvature vector H  of M  at the point p  is given by 
 

1

trace
.

dim
j

n m

j
j

A
H

M

ξ
ξ

−

=

=∑                                             (3) 

 
Here, || ||H  is the mean curvature. If H  is equal to zero at each point p  of M, 
then M  is said to be minimal [2]. 

 
 

2. TIME-LIKE  RULED  SURFACES 
 
Let 1 2{ ( ), ( ), ..., ( )}ke t e t e t  be a system of orthonormal vector fields, which are 

defined for each point of a space-like curve α  in the n-dimensional Minkowski 
space 1 .nR  This system spans a k-dimensional subspace of the tangent space 

1
( ( ))nR

T tα  at the point 1( ) .nt Rα ∈  This subspace denoted by ( )kE t  is 
 

1 2( ) Sp{ ( ), ( ), ..., ( )}.k kE t e t e t e t=  
 
We get a (k + 1)-dimensional surface in 1

nR  if the subspace ( )kE t  moves along 
the curve .α  This surface is called a (k + 1)-dimensional time-like ruled surface 
in 1

nR  and we denote it by M  [3]. We call the subspace ( )kE t  and the space-like 
curve α  generating space and the base curve, respectively. A parametrization of 
this ruled surface is given by 
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1 2
1

( , , , ..., ) ( ) ( ).
k

k i i
i

t u u u t u e tφ α
=

= +∑  

 

We get  
 

1

( ) ( ),
k

t i i
i

t u e tφ α
=

= +∑� �  

 

, 1 ,
iu ie i kφ = ≤ ≤  

 

if we take the partial derivatives of .φ  Throughout this paper we assume that the 
system 
 

1 2
1

( ) ( ), ( ), ( ), ..., ( )
k

i i k
i

t u e t e t e t e tα

=

 
+ 

 
∑� �  

 

is linear independent and ( )kE t  is a time-like subspace and the space-like curve 
α  is an orthogonal trajectory of the -k dimensional generating space ( )kE t  
( 1).k ≥  If 2,k n= −  then an (n – 1)-dimensional time-like ruled surface M  is 
called a time-like hyperruled surface with the time-like generating space in the 
Minkowski space 1

nR  [4]. 
Let 0 1{ , , ..., }ke e e  be an orthonormal base of ( ),Mχ  i.e., 0e  is the  

unit tangent vector of the orthogonal trajectories of the generating spaces. 
Suppose that 0 1 1 2 1{ , , ..., , , , ..., }k n ke e e ξ ξ ξ

− −

 is an orthonormal base of ( ).Mχ
⊥  

Then   1 2 1{ , , ..., }n kξ ξ ξ
− −

  is  a  base  of  1( ).nRχ  In  this  case  we  have  
 

0 0 0

1, is space-like
, 1, , 0, , , ,

1, is time-like  
i

i i j i ij i i i
i

e
e e e e e e e e

e
ε δ ε


= = = = = 

−
.     (4) 

 

Therefore, we have the following Weingarten equations: 
 

0

1

1

00 0 0 0
1 1

1

10 0 1 1
1 1

0 0

, 1 1,

, 1 1,

.................................................................................

k

k n k
j j j

e j r r s s
r s

k n k
j j j

e j r r s s
r s

j j
e j k kr r

r

D a e a e b j n

D a e a e b j n

D a e a e

ξ ξ

ξ ξ

ξ

− −

= =

− −

= =

=

= + + ≤ ≤ −

= + + ≤ ≤ −

= +

∑ ∑

∑ ∑

1

1 1

, 1 1.
k n k

j
ks s

s

b j nξ
− −

=

+ ≤ ≤ −∑ ∑

                 (5) 

 

Since the lines are geodesics in 1 ,nR  we have 0.
ie jD e =  If we apply this last 

equation to (1) we get ( , ) 0,i jV e e =  1 , .i j k≤ ≤  Moreover, from (2) and since 
( , ) 0i mV e e =  (1 , ),i m k≤ ≤  we obtain  

 

( , ), ( ), 0, 1 , , 1 1.
j

j
i m j i m imV e e A e e a i m k j n kξξ = = = ≤ ≤ ≤ ≤ − −       (6) 
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Thus, we can obtain the matrix 
j

Aξ  as follows: 
 

00 01 0

1 01

0 ( 1) ( 1)

0 0
.

0 0

j

j j j
k

j

j
k k k k

a a a

a
A

a

ξ

ε

ε
+ × +

 
 
 

= − 
 
  

�

�

� � ��� �

�

                           (7) 

 

By using Eq. (5) we get  
 

0 0 0, , .
i i

j
i i e j j ea D e D eε ξ ξ= = −                                   (8) 

 

From (4), we observe 0 0ieD e e⊥  and 0 .
ie jD e e⊥  In this case 0 ( )

ieD e Mχ
⊥

∈  and 
we get 

 

0 0( , ), 1 .
ie iD e V e e i k= ≤ ≤                                       (9) 

 

If we consider Eq. (8) together with (9), then we reach 
 

1

0 0 0
1

( , ) .
i

n k
j

e i i i j
j

D e V e e aε ξ
− −

=

= = − ∑                                  (10) 

 

In addition, the Riemannian curvature of M  in the two-dimensional direction 
spanned by ie  and 0e  is given by 

 

1
2

0 0 0 0
1

( , ) , ( )
i i

n k
j

i i e e i i
j

K e e D e D e aε ε

− −

=

= = ∑                          (11) 

 

at a point p  of M  [3]. 
Here we call M  m-developable if 

 

0 00 1 1rank[ , , ..., , , ..., ] 2k e e ke e e D e D e k m= −                        (12) 
 

at each point .p M∈  If m  is equal to – 1, then the time-like ruled surface M  is 
called nondevelopable; if m  is equal to 1,k −  then M  is said to be totally 
developable [5]. 

In [3], it has been obtained that the mean curvature vector of the time-like 
ruled surface M  is 
 

0 0

1
( , ).

1
H V e e

k
=

+

 

 

Also, if we consider (3) together with (7), then 
 

1

00
1

1
.

1

n k
j

j
j

H a
k

ξ
− −

=

=

+
∑  
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3. ON  THE  MINIMAL  INDEX  OF  THE  MINIMAL  AND  
NONMINIMAL  (k + 1)-DIMENSIONAL  TIME-LIKE   

RULED  SURFACES 
 
Let 1kS

+
 be the set of all real symmetric matrices in the sense of Lorentzian of 

order ( 1).k +  In this case, for 1,kA S
+

∈  .tA Aε ε=  Here, ε  is a sign matrix. Now 
we define an inner product of any two elements ,A B  in 1kS

+
 by 

 

trace( )
, ,

1

AB
A B

k
=

+

 
 

and we have  
 

2, trace( ) ( 1) .A A A A k= = +  
 

Let m  be a linear map from 1kS
+

 to R  defined as 
 

trace
( ) .

1

A
m A

k
=

+

                                             (13) 

 

The kernel of m  is given by 
 

ker { trace 0}.m A A= =  
 

In addition we write  
 

1 1, ( ), ,k kA I m A A S
+ +

= ∀ ∈  
 

where 1kI
+

 denotes the unit matrix in 1.kS
+

 Let 1 2 1{ , , ..., }n kξ ξ ξ
− −

 be an ortho-
normal  base  field  of ( ).Mχ

⊥   Then  we  can  write  
1

1

n k
j jj

aξ ξ
− −

=

=∑  for  
all ( ).Mξ χ⊥∈  Let the linear map : ( )Mm T p R⊥

→  be defined by 
 

1

1

( ) ( ), ( ),
j

n k

j M
j

m a m A T pξξ ξ
− −

⊥

=

= ∀ ∈∑                           (14) 

 

and 1( ) : ( )p M kT p Sψ ξ ⊥

+
→  be defined by 

 

1

1

( ) , ( ).
j

n k

p j M
j

a A T pξψ ξ ξ
− −

⊥

=

= ∀ ∈∑                              (15) 

 

The dimension of (ker )p mψ  is called the minimal index ( -M index) of the 
generalized time-like ruled surface M  at the point p M∈  and is denoted by [6] 

 

dim (ker ) -indexp m Mψ =  
 

(i.e. the -indexM  is the dimension of the linear space of all 2nd fundamental 
forms with vanishing trace; see [7]). 
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Theorem 1. Let M  be a (k + 1)-dimensional time-like ruled surface in the 
Minkowski space 1

nR  and let 1 2 1{ , , ..., }n kξ ξ ξ
− −

 be the orthonormal base of 
( ).Mχ

⊥  Then 
 

- ,M index k p M≤ ∀ ∈  
 

whether time-like ruled surface M  is minimal or nonminimal. 
 

Proof. First, let us suppose that M  is nonminimal. In this case 0.H ≠  Therefore, 
we can take 1|| .H ξ  So, from Eq. (3) we can see that 

 

1

1

trace

1

A
H

k
ξ
ξ=

+

 

 

and trace 0
r

Aξ =  (2 1).r n k≤ ≤ − −  Taking Eqs. (13) and (14) with this last 
equation, we reach 

 

11( ) trace 0,

( ) trace 0, 2 1.
jj

m A

m A j n k

ξ

ξ

ξ

ξ

= ≠

= = ≤ ≤ − −
 

 

This means that at each point p  of M, ker m  is the subspace of ( )MT p⊥  spanned 
by 2 3 1{ , , ..., }.n kξ ξ ξ

− −

 Thus, from Eq. (15) we obtain 
 

2 3 1
(ker ) Sp{A , A , ,A }.

n kp m
ξ ξ ξ

ψ
− −

= …  

 
Since trace 0

j
Aξ =  (2 1),j n k≤ ≤ − −  the dimension of the vector space spanned 

by symmetric matrices in the sense of Lorentzian in the form of 
j

Aξ  is equal  
to .k  So, 

 

dim (ker ) -index , .p m M k p Mψ = ≤ ∀ ∈  
 

Now let us suppose that M  is minimal. In this case, from Eq. (3) we write 
 

trace 0, 2 1.
j

A j n kξ = ≤ ≤ − −  

 
Following a similar procedure we see that ker m  is a space spanned by the base 
vectors 1 2 1, , ..., ,n kξ ξ ξ

− −

 i.e., ker ( ).Mm T p⊥
=  From this we see that 

 

2 3 1(ker ) Sp{ , , ..., }.p n km A A Aξ ξ ξψ
− −

= =  
 

Since the dimension of the vector space spanned by symmetric matrices in the 
sense of Lorentzian in the form of 

r
Aξ  is equal to ,k  we get 

 

dim (ker ) -index , .p m M k p Mψ = ≤ ∀ ∈  
 

That completes the proof of the theorem.                ~ 
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Therefore, we obtain the following corollary. 
 

Corollary 1. Let M  be a (k + 1)-dimensional time-like ruled surface in 1 .nR  If M 
is minimal, then 

 

dim(ker ) 1,m n k= − −  
 

whereas, if M  is nonminimal, 
 

dim(ker ) 2.m n k= − −  
 

 
Theorem 2. Let M  be a (k + 1)-dimensional nonminimal time-like ruled surface 
in 1 .nR  If M  is m-developable, then 

 

- 1.M index n k≤ − −  
  

 

Proof. If M  is m-developable, from Eq. (12) we write 
 

0 00 1 1rank[ , , ..., , ,..., ] 2 .k e e ke e e D e D e k m= −  
 
This means that 

0e iD e  (1 1)i m≤ ≤ −  is linear dependent with the system of 

0 00 1 1{ , , ..., , , ..., }.k e e ke e e D e D e  In this case we reach 
 

0 0
0 2

.
i

k k

e i s s e t
s t m

D e c e D e
= = +

= +∑ ∑                                     (16) 

 

From Eqs. (4) and (8) it can be easily seen that 
 

0

0

0, , 1 1,

, 0, 1 .

i

j
e j i i i

e i i

D e a j n k

D e e j k

ξ ε= ≤ ≤ − −

= ≤ ≤

 

 
As 

0 0 1 1 2 1{ , , ..., , , , ..., },e i k n kD e e e e ξ ξ ξ
− −

∈  we find from the last two equations 
that 

 

0 0

1

0 0 0
1

, .
n k

j
e i e i i i j

j

D e D e e e aε ξ
− −

=

= − ∑                                (17) 

 

Substituting Eq. (17) into Eq. (16) gives 
 

0 0

1

0 0 0 0
0 2 1 2

, .
i i i

k k n k k
j

e i s t e t t i i j
s t m j t m

D e c e d D e e e d aε ξ
− −

= = + = = +

 
= + −  

 
∑ ∑ ∑ ∑  

 
Comparing Eq. (17) and the last equation yields 
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0 0
2

, 1 1, 1 1
i

k
j j

i i t i i
t m

a d a i m j n kε ε

= +

= ≤ ≤ + ≤ ≤ − −∑  

 

or 
 

2
0 0

2

, 1 1, 1.
i

k
j j
i t i i

t m

a d a i m ε

= +

= ≤ ≤ + =∑                            (18) 

 

Since M  is nonminimal, we can take 1|| .H ξ  Therefore 
 

trace 0 (2 1).
r

A r n kξ = ≤ ≤ − −  
 
Substituting Eq. (18) into the matrix 

r
Aξ  (2 1)r n k≤ ≤ − −  (into Eq. (7)), we find 

 

( ) ( )

( )

1 1

1

1

0 0 00 2
2 2

1 0
2

1 0
2

2 0 2

0

0

0 0 0 0

.
0 0 0 0

0 0 0 0

0 0 0 0

m

j

m

k k
j j j j

t t t t km
t m t m

k
j

t t
t m

k
j

m t t
t m

j
m m

j
k k

d a d a a a

d a

A
d a

a

a

ξ

ε

ε

ε

ε

+

+

+

= + = +

= +

+

= +

+ +

 
 
 
 
 
 
 
 = −
 
 
 
 
 
 
 
  

∑ ∑

∑

∑

� �

� �

� � ��� � � ��� �

� �

� �

� � ��� � � ��� �

� �

 

 
This means that the dimension of the vector space spanned by symmetric 
matrices in the sense of Lorentzian in the form 

r
Aξ  (2 1)r n k≤ ≤ − −  is  

equal to ( 1).k m− +  Furthermore, since M  is nonminimal and 1|| ,H ξ  

2 3 1ker Sp{ , , ..., }n km ξ ξ ξ
− −

=  and 
2 3 1

(ker ) Sp{ , , ..., }.
n kp m A A Aξ ξ ξψ
− −

=  This means 
that 

 

dim (ker ) -index ( 1).p m M k mψ = = − +                   ~ 
 

 
Therefore we have the following corollary. 

 

Corollary 2. Let M  be a (k + 1)-dimensional time-like ruled surface in 1 .nR  If M 
is totally developable, then 

 

- 0, .M index p M= ∀ ∈  
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Theorem 3. Let M  be a time-like hyperruled surface in 1 .nR  M  is minimal and 
- 0M index =  if and only if M  is a hyperplane. 

Proof. First, let us suppose that M  is minimal and -index 0.M =  Let 

0 1 2{ , , ..., }ne e e
−

 be an orthonormal base of ( )Mχ  and ξ  be a unit normal vector 
field of ( ).Mχ

⊥  M  is minimal by hypothesis, so 
 

ker Sp{ }m ξ=  
 

and 
 

(ker ) Sp{ }.p m Aξψ =  
 

Furthermore, since -index 0M =  by hypothesis, we get 0.Aξ =  Therefore, from 
the Weingarten equation 

 

( ) , 0 2,
je j jD A e b i nξξ ξ= − + ≤ ≤ −  

 

we observe that  
 

, 0.
je jD bξ ξ = =  

 

It is obvious that 
 

0, 0 2.
jeD i nξ = ≤ ≤ −  

 

These last two equations show that ξ  is a parallel vector field with respect to M. 
So, M  is a hyperplane in 1 .nR                   ~ 

 
In contrast, let us suppose that M  is a hyperplane. If 0 1 2{ , , ..., }ne e e

−

 is an 
orthonormal base of ( )Mχ  and ξ  is a unit normal vector field of ( ),Mχ⊥  then  

 

0, 0 2.
jeD i nξ = ≤ ≤ −  

 

Comparing the last equation with the Weingarten equation gives  
 

0.Aξ =                                                     (19) 
 

This means that 0,H =  i.e., M  is minimal. Thus  
 

ker Sp{ }m ξ=  
 

and 
 

(ker ) Sp{ }.p m Aξψ =  
 

From the last equation and Eq. (19) we get 
 

-index 0.M =  
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Theorem 4. Let M  be time-like hyperruled surface in 1 .nR  If M  is nonminimal, 
then  
 

- 0, .M index p M= ∀ ∈  
 

In the case when M  is minimal, - 0M index =  exactly when M  is totally 
developable, and - 1M index =  exactly when M  is nondevelopable. 
 
Proof. First we suppose that the time-like hyperruled surface M  is nonminimal. 
Let ξ  be a unit normal vector of M  and suppose that || .H ξ  From Eq. (3)  
we get  
 

trace 0.Aξ ≠  
 

As ( ) trace ,m Aξξ =  ker {0}.m =  Therefore,  
 

(ker ) {0}.p mψ =  
 

This implies that  
 

dim (ker ) -index 0, .p m M p Mψ = = ∀ ∈  
 

Now suppose that the time-like hyperruled surface M  is minimal, i.e., 0.H =  In 
this case, considering ξ  as a unit normal vector surface of M  gives 

 

trace 0.Aξ =  
 

From Eqs. (6) and (14) we get  
 

ker Sp{ }.m ξ=  
 

From the last equation we find  
 

(ker ) Sp{ }, .p m A p Mξψ = ∀ ∈  
 

Here we have two distinct cases: 
(i)  M  is totally developable, 
(ii) M  is nondevelopable. 

Now we look at these cases separately. First we suppose that M  is totally 
developable. In this case, from Eqs. (10)–(12) we obtain 

 

2
0 0( , ) 0, 1 2.i iK e e a i n= = ≤ ≤ −  

 

This means that 0.Aξ =  So,  
 

dim (ker ) -index 0, .p m M p Mψ = = ∀ ∈  
 

Now we suppose that M  is nondevelopable. In this case 0Aξ ≠  and  
 

dim (ker ) -index 1, .p m M p Mψ = = ∀ ∈  
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Ajasarnaselt  lineeritud  pinna  minimaalindeksist   
(M-indeksist) 

 
Murat Tosun, Mehmet A. Gungor ja Soley Ersoy 

 
On käsitletud (k + 1)-mõõtmelisi pindu ja hüperpindu n-mõõtmelises Min-

kowski ruumis, mis on moodustatud k-mõõtmelistest ajasarnastest tasanditest. On 
tõestatud hinnangud nende minimaalindeksite (M-indeksite) jaoks nii minimaal- 
kui ka mitteminimaalpindade puhul. Eraldi leiavad käsitlemist m-tasanduvuse 
(m = k – 1 korral täieliku tasanduvuse) juhud. 

 


