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Abstract. An algorithm for the maximum clique problem on arbitrary undirected graphs is 
described. The algorithm presumes, as has been proved, that vertices from an independent set 
cannot be included into the same maximum clique. The independent sets are obtained from a 
heuristic vertex-colouring, where each set constitutes a colour class. The colour classes are then 
used to prune branches of the maximum clique search tree. Computational results show that the 
algorithm performs better than those published earlier, showing a substantial improvement with 
dense graphs. Moreover, the new algorithm is easy to implement. 
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1. INTRODUCTION

Let ),( EVG =  be an undirected graph, where V  is the set of vertices and E  
is the set of edges. A clique is a complete subgraph of ,G  i.e. its vertices are 
pairwise adjacent. The maximum clique problem is a problem of finding the 
maximum complete subgraph of ,G  i.e. a set of vertices from G  that are 
pairwise adjacent. An independent set is a set of vertices that are pairwise 
nonadjacent. A graph-colouring problem is defined to be assignment of colour to 
graph’s vertices so that no pair of adjacent vertices will share identical colours. 
All of these problems are computationally equivalent, in other words, each of 
them can be transformed to any other. 

These problems are NP-hard on general graphs [1]; no polynomial time 
algorithms are expected to be found. Great interest is being shown in developing 
a fast exact algorithm for instances with a reasonable number of vertices, since it 
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can be used in several important practical applications. Examples are efficient 
register allocation [2], on-line bin-stretching [3], scheduling of parallel jobs [4–6], 
and overcoming failures in distributed computing [7–9]. All of the problems 
mentioned originate from the programming theory: “Linearity tests” and 
“Probabilistically checkable proofs” from the programming logic [10], “Problem 
of finding the optimum replacement” in the program construction [10], and other 
sources. 

Many papers have been published since the early 1970s, presenting an 
algorithm for the maximum clique problem. A very simple effective algorithm 
was proposed by Carraghan and Pardalos [11]. This algorithm was used as a 
benchmark in the Second DIMACS Implementation Challenge [12], since it is 
reported to be the fastest one. We propose here a new algorithm that refines the 
Carraghan and Pardalos algorithm. Initially, the new algorithm was designed to 
be optimal on dense graphs, however, as a rule, it works better than other 
algorithms. The following section contains a description of the new algorithm. 

 
 

2. DESCRIPTION  OF  THE  ALGORITHM 
 
First, we will find a vertex-colouring with the help of any heuristic algorithm, 

for example, in a greedy manner. We determine colour classes one by one as long 
as uncoloured vertices exist. The vertices are re-sorted in the order they are added 
into colour classes. This order affects the performance of the algorithm in finding 
the maximum clique and is therefore very important. 

 

Definition 1. A colour class is called existing on a subgraph pG  if any vertex 
from this colour class belongs to the subgraph .pG  

 

Definition 2. The degree of a subgraph pG  equals the number of colour classes 
existing on that subgraph. 

 

A notation of the depth and the pruning formula are crucial to the 
understanding of the algorithm. Basically, at depth 1 we have all vertices, i.e. 

.1 GG ≡  We will expand all vertices of a subgraph so that a vertex is deleted 
from the subgraph after it is expanded. Suppose we expand vertex .1v  At depth 2, 
we consider all vertices adjacent to 1v  among the vertices at the previous depth, 
i.e. belonging to .1G  These vertices form a subgraph .2G  At depth 3, we 
consider all vertices (that are at depth 2) adjacent to the vertex expanded at 
depth 2, etc. 

Let us say that dG  is a subgraph of G  at depth ,d  which contains the 
following vertices: ).,,( ,1, mddd vvV …=  Let 1,dv  be the vertex we are currently 
expanding at depth .d  Then a subgraph at depth 1+d  is 

 

),,( 11 EVG dd ++
=  

 

where :),,( ,11,11 kddd vvV
+++

= …  did Vvi ∈∀
+ ,1  and 1, ,1( , ) .d i dv v E

+
∈  
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The pruning formula is as follows: If ,)(1 CBCGDegreed d ≤+−  where 
CBC  is the size of the current best clique, then we prune, since the size of the 
largest possible clique (formed by expanding any vertex of )dG  would be less 
than or equal to .CBC  If we are at depth 1 and this inequality holds, then we 
stop; we have found the maximum clique. 

The re-sorting of vertices during vertex-colouring can be used in the Degree  
function calculation to speed up the algorithm. It means that instead of 
calculating the degree of a subgraph each time at a depth, we will calculate it 
only the first time and later will just adjust it by the following rule: if the next 
vertex to be expanded at this depth is in the same colour class as the previous 
one, then the degree remains the same, otherwise it should be decreased by 1 
(there are no more vertices from the previous vertex colour class). 
 
Algorithm for the maximum clique problem 

 

CBC  – current best (maximum) clique 
d  – depth 

dG  – subgraph of G  formed by vertices existing at depth d  
 
Step 0.  Heuristic vertex-colouring: Find a vertex-colouring and reorder 

vertices so that the first vertices belong to the last found colour class, 
then come vertices of the last colour class but one, etc. – the last vertices 
should belong to the first colour class. Note: It is advisable to use a 
special array to solve the order of vertices to avoid changing adjacency 
matrix during reordering of vertices. 

Step 1.  Initialization: .1=d  
Step 2.  Control: If the current depth may contain a larger clique than already 

found: 
 if |,|)(1 CBCGDegreed d ≤+−  then go to step 5. 

Step 3.  Expand vertex: Get the next vertex to expand. If all vertices have been 
expanded or there are no vertices, then check if the current clique is the 
largest one. If yes, then save it and go to step 5. 

Step 4.  The next depth: Form a new depth by selecting all remaining vertices 
that are connected to the vertex being expanded at the current depth; 

;1+= dd  
go to step 2. 

Step 5.  Step back: 
 ;1−= dd  

 delete the expanded vertex from the analysis at this depth; 
 if ,0=d  then go to end, otherwise go to step 2. 

End: Return the maximum clique. 
 
Example. Consider the graph shown below and steps of the algorithm shown in 
Table 1. We determine colour classes one by one in a greedy manner as long as 
uncoloured vertices exist.  This  trivial  algorithm on finding vertex-colouring gives  
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an acceptable result on average. The vertices are also re-sorted in an order they are 
added into colour classes. Thus, vertex-colouring gives the following result: 
 
colour class }9,5,2,1{1= , 
colour class }7,6,4,3{2 = , 
colour class };8{3 =  
the order of vertices is the following: }.1,2,5,9,3,4,6,7,8{  

 
 

Table 1. Example of algorithm work. CBC – current best clique 
 

Depth Vertices Algorithm process 

Depth 1 8, 7, 6, 4, 3, 9, 5, 2, 1 The grey vertex vd,i (v1,1) to be expanded 

Depth 2 7, 3, 9, 5, 2 The grey vertex vd,i (v2,1) to be expanded 

Depth 3 9, 5, 2 The grey vertex cannot be expanded, so CBC is {8,7,9}, 
size = 3 

Depth 3 9, 5, 2 We prune, since d – 1 + Degree = 2 + 1 = 3 ≤ 3 (size of 
CBC). Degree = 1, since remaining vertices are 5 and 2. 
All of them belong to colour class 1. Thus, the number of 
existing colour classes is 1 

Depth 2 7, 3, 9, 5, 2 We prune, since d – 1 + Degree = 1 + 2 = 3 ≤ 3 (size of 
CBC). Degree = 2, since remaining vertices (3,9,5,2) 
belong to colour classes 1 and 2 

Depth 1 8, 7, 6, 4, 3, 9, 5, 2, 1 We prune, since d – 1 + Degree = 0 + 3 = 3 ≤ 3 (size of 
CBC). Degree = 3, since remaining vertices belong to 
colour classes 1, 2, and 3. Depth is 1, therefore we stop 

The maximum clique is {8,7,9}, size = 3. 
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3. COMPUTATIONAL  RESULTS  AND  DISCUSSION 
 

This section describes the results showing the efficiency of the new algorithm. 
As we mentioned earlier, a very simple and effective algorithm for the maximum 
algorithm problem proposed by Carraghan and Pardalos [11] was used as a 
benchmark in the Second DIMACS Implementation Challenge [12]. Besides, use of 
that algorithm as a benchmark is advised in one of DIMACS annual reports [13]. 
Therefore, we compared that algorithm with the new one. Moreover, the algorithm 
described in the present paper is nothing more than the Carraghan and Pardalos 
algorithm [11] (we will call it the base algorithm) with the concept of pruning by 
independent sets (colour classes) introduced. In addition, we have chosen an 
algorithm proposed by Östergård [14] to be used in the comparison, since it is 
reported to be faster than the Carraghan and Pardalos algorithm [11]. Moreover, it is 
another modification of the Carraghan and Pardalos algorithm [11]. The fact that 
Östergård’s algorithm and the new one are just slight modifications of the base 
algorithm, allows us to assume that worse cases of those algorithms are practically 
the same as worse cases of the base algorithm. If this is true, then comparison of 
those algorithms in worse cases cannot give a result different from that obtained by 
comparison at random graphs. This assumption has been proved practically, on the 
basis of thousands of experiments we have performed with different random and 
DIMACS graphs. However, our theoretical proof is postponed to further research, 
since we believe that random graphs are good enough for an initial try of the new 
algorithm. This allows us to concentrate initially on random graphs. 

Our results are presented as a ratio of time spent by algorithms to find the 
maximum clique, so the same results can be reproduced on any platform/ 
computer, etc. The algorithms compared were programmed using the same 
programming language and the same programming technique (since the new and 
Östergård [14] algorithms are just modifications of the base algorithm). The greedy 
algorithm was used to find a vertex-colouring. 

We will first look at random graphs. For each entry, 100 graphs were generated 
and used as an input for each algorithm (Table 2). It is easy to see that both 
algorithms are faster than the base algorithm, but the new one is certainly faster 
than the Östergård [14] algorithm. The greatest speed difference is reached on dense 
graphs, where the new algorithm is 50 times faster than the base algorithm and  
23–24 times faster than the Östergård [14] algorithm. The reason for that lies in the 
fact that the new pruning technique still works at those densities, while the pruning 
techniques of other algorithms practically do not prune the branches of the 
maximum clique search tree. 

According to the first step of the algorithm, finding an efficient vertex-
colouring can be treated as a separate problem. This problem is an NP-hard task; 
therefore we had to use a heuristic. A heuristic algorithm is an algorithm which 
1.  does not guarantee the best result, but finds a result that is sufficiently close to 

the best one; 
2.  is faster than an exact algorithm. In our case we use a polynomial heuristic – 

the result is found in a polynomial time. 
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Table 2. Benchmark results at random graphs 
 

Number of 
vertices 

Edge density, % 
PO New 

1000 0.1 1.0   1.0 
  800 0.2 1.0   1.2 
  500 0.3 1.0   1.4 
  500 0.4 1.1   1.6 
  300 0.5 1.2   1.8 
  200 0.6 1.2   2.0 
  100 0.7 1.4   5.0 
  100 0.8 1.8 11.0 
  100 0.9 2.2 50.1 

————————––––––––––––– 
PO – time needed to find the maximum clique by the Carraghan and Pardalos [11] algorithm 
divided by time needed to find the maximum clique by the Östergård [14] algorithm. 
New – time needed to find the maximum clique by the Carraghan and Pardalos [11] algorithm 
divided by time needed to find the maximum clique by the new algorithm. 
For example, 11.0 in the column New means that the Carraghan and Pardalos [11] algorithm 
requires 11-fold more time to find the maximum clique than the new algorithm. 
 
 

The vertex-colouring step affects the overall result in the following ways: 
1.  the closer the number of colour classes is to the size of the maximum clique, 

the faster the maximum clique will be found because of more effective 
pruning; 

2.  the more time we spend on vertex-colouring, the slower our algorithm works 
in general (since the vertex-colouring subroutine is included into the main 
algorithm and its time should be taken into account). 
Moreover, the algorithm can evaluate without changing core steps, by 

inventing a new and more effective heuristic algorithm for the vertex-colouring. 
The results obtained by the heuristic algorithm used to find a vertex-colouring 
applied in the present work are given in Table 3. 
 
 

Table 3. Number of colour classes by a greedy vertex-colouring 
 

Number of
vertices 

Edge 
density, %

Average size of the 
maximum clique 

Number of 
colour classes 

Number of colour classes 
containing only 1 vertex 

100 0.10   3.88   7.16   0.40 
100 0.20   5.08 10.36   0.48 
100 0.30   6.52 13.88   0.64 
100 0.40   8.24 17.20   0.92 
100 0.50 10.44 20.76   1.12 
100 0.60 13.60 24.80   1.56 
100 0.70 18.00 30.00   1.76 
100 0.80 24.04 37.24   3.16 
100 0.90 34.36 46.08   4.80 
100 0.99 69.56 71.20 42.48 
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It is obvious that effective results of the new algorithm were not reached on 
the best splitting of vertices into colour classes – the number of colour classes is 
approximately 25–50% larger than the size of the maximum clique. This 
difference can be explained by the fact that a quite easy/rough heuristic was used 
for the vertex-colouring. 

 
 

4. CONCLUSION 
 
This paper describes a new algorithm for finding the maximum clique on 

arbitrary undirected graphs. The algorithm was initially designed to be optimal 
on dense graphs, however, it performs better at all densities than the algorithms 
published earlier. To show the efficiency of our algorithm, we compared it with 
an algorithm advised to be used as a benchmark algorithm for finding the 
maximum clique [12] and with an algorithm that is considered to be the fastest at 
the moment [14]. The greatest difference in speed of finding the maximum clique 
is reached on dense graphs. The reason is that the new pruning technique works 
effectively, while other algorithms degenerate the exhaustive search for the 
maximum clique at such densities. Moreover, the new algorithm is easy to 
implement. 

Another advantage of the new algorithm is its ability to concatenate an exact 
and a heuristic algorithm within the scope of one algorithm, making the heuristic 
algorithm an important part of the exact one (usually heuristics are used to set 
boundaries and then the maximum clique is searched from scratch; furthermore, 
as a rule, those boundaries quickly lose topicality). An open problem at the 
moment is improving the performance of the algorithm by finding a better 
method for vertex-colouring than the greedy way: to have less colour classes at a 
reasonably short time (so that the general speed of the algorithm is not 
decreased). 
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Optimeerimise  probleemid:  täpne  algoritm  suurima  kliki  
leidmiseks  suure  tihedusega  graafidel 

 
Deniss Kumlander 

 
On käsitletud suurima kliki leidmise probleemi rakenduslike algoritmide 

vaatenurgast. Kõige raskem juhtum selle probleemi lahendamiseks on suure 
tihedusega graafid. Töös on välja pakutud algoritm, mis leiab suurima kliki suure 
tihedusega graafidel kuni 50 korda kiiremini kui hetke parimad. Uue algoritmi 
konstrueerimisel on aluseks võetud hetkel kõige kiirem, Carraghani ja Pardalosi 
algoritm. Seejuures on arvestatud fakti, et sõltumatu hulga tipud ei või osaleda 
formeeruvas suurimas klikis. See annab võimaluse hinnata täpsemini formeeruva 
kliki potentsiaalset suurust ja oluliselt kiiremini otsustada, kas formeeruv klikk 
saab tulla suurim või mitte. Artiklis on esitatud algoritmi töö tulemused ja arut-
elud nende üle. 

 


