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Abstract. In this paper finite functions as one of the simplest information processing models are 
analysed. The notion of partition is applied in analysing these functions with its quantitative 
evaluation based on the notion of extropy as an inherent measure of its complexity. Finite functions 
are represented by partition pairs serving as their homomorphic images. The treatise develops 
further the classical work of Hartmanis and Stearns [Algebraic Structure Theory of Sequential 
Machines. Prentice-Hall, Englewood Cliffs, New York, 1966] on finite automata that can be 
interpreted as a special case of finite functions. The results allow us to evaluate the informational 
properties of finite functions. 
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1. INRTRODUCTION

Some of the most fundamental notions of modern science and everyday life 
are energy and, of course, information. Whatever we undertake to accomplish, it 
is linked in one way or another to energy and information. Every information 
process is accompanied with energy use and every non-destructive energy 
process is guided by some information. These notions have become so familiar to 
us that we refer to them in our everyday language use as consumable substances, 
though they both serve as properties of material objects. In spite of the fact that 
information and energy characterize rather different properties of a substance, 
they are both linked through the notion of extropy1, which gives a quantitative 

1  Instead of the rather widespread notion of negentropy we use the term extropy as neg en means 
in Greek not into which is equivalent to out, or ex in Greek. 
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evaluation of the quality of various energy carries and characterizes the structural 
complexity of material objects. It is not energy as such that we need to sustain 
our living conditions but its extropy, as extropy is just the parameter that makes 
energy so indispensable for us. It is very important to understand that the extropy 
we get through the energy use is not consumed as such but it is converted into the 
extropy of structural complexity of the objects created within this process. The 
conversion of extropy of one kind into another is the core of all ecological 
development processes. The more effective this conversion process is, the more 
sustainable is the development process under consideration. 

A probabilistic approach to the communication process is usually the one used 
to explain the notion of information. However, there is an algebraic approach to 
the notion of information as well, forming a foundation for the structural 
complexity evaluation of various objects. Already von Neumann and Morgen-
stern [1] pointed out that the notion of partition on a finite set can be interpreted 
as information, measuring the structural complexity of an object represented by 
this partition. As a matter of fact, partial information about structural complexity 
of various objects is given to us by some homomorphic image of it, and as a 
homomorphic image of a set is a partition on this set, makes partitions the most 
elementary representatives of information. 

This point of view on the partition as an algebraic equivalent for the notion  
of information was developed further in the classical work of Hartmanis  
and Stearns [2] in their qualitative structural theory of finite state machines.  
This approach allows us to make all our conclusions on the basis of the 
corresponding lattice of partitions. But the more complicated is this lattice, the 
greater is the share of partitions in it, which are not related by the order relation. 
Therefore it is rather important to develop further the notion of partition as an 
equivalent for information, providing it, with a quantitative extropic measure, 
derived entirely through an axiomatic approach from the algebraic properties of 
the partition [3]. The extropy weighed partition in the role of information 
broadens considerably the analysing power of the structural complexity theory of 
various finite objects, lining all partitions and partition pairs up into fully ordered 
sets. 

In this paper we are going to analyse finite functions as one of the simplest 
information processing models and apply the notion of partition as a measure in 
evaluating the information processing properties of these functions. The results 
of the paper develop further the classical work of Hartmanis and Stearns [2], 
which serves as the partial case of finite functions represented by two variable 
retrospective functions. The defined partition pair, representing a finite function, 
reflects the inner informational qualities of this function supplementing the 
partition pair defined in [2]. 
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2. BASIC  PROPERTIES  OF  PARTITIONS 
 
Let us define a partition ( )i Xπ  on a finite set 1 2{ , , ..., }mX x x x=  as a class of 

its subsets (blocks of the partition) 
( )(1) (2) ( ){ , , ..., , ..., },
mi

i i i iB B B Bα  satisfying the 
following conditions: 
(i)  ( )

1
;im

iB Xα

α =

=∪  
(ii) for any arbitrary ( ) ( ), ( )i i iB B Xα β

π∈  we have ( ) ( ) .i iB Bα β
=∅∩  

A block ( ) ( )B Xα
π∈  consisting of elements 1 2, , ..., mx x x X

α α α
∈  will be 

denoted by 1 2, , ..., .mx x x
α α α

 Extreme partitions are a zero partition (denoted by 
0 ),X  having in each block no more than one element and a unit partition 
(denoted by 1 ),X  having only one block. If for any arbitrary ( )

i iB α
π∈  there 

exists ( )
j jB β

π∈  such that ( ) ( ) ,i jB Bα β
⊆  then we will denote it by ( )i Xπ ≤  

( ).j Xπ  It is not hard to show that if ( ) ( )i jX Xπ π≤  and ( ) ( ),j iX Xπ π≤  then 
( ) ( ).i jX Xπ π=  We define for any arbitrary ( )i Xπ  and ( )j Xπ  operations 

( ) ( ) ( ) ( )
Df

{ | }i j i j i i j jB B B Bα β α β
π π π π⋅ = ∈ ∧ ∈∩  and 

Df
{ | , }.i j k k i jπ π π π π π+ = Π ≥  

The restriction of a partition ( )Xπ  onto X X′ ⊂  will be denoted by 
( ) ( )

Df
( ) { | }.X B X Bα α

π π′= ∈∩  With respect to the operations of multiplication 
“ ⋅ ” and addition “+” defined above, all possible partitions on X  will build up a 
semimodular lattice [4], which will be denoted by ( ).XL  For any subset X X′ ⊆  
we will define its weight ( )Xq X ′  as a ratio 

Df
( ) || || || ||Xq X X X′ ′=  (as a rule, the 

subscript next to q  will be omitted). Partitions ( )i Xπ ′  and ( )j Xπ ′′  will be 
called equivalent (the corresponding denotation is ( ) ( ))i jX Xτ τ′ ′′≡  iff there 
exists a bijection : i jϕ π π→  such that for any ( )

i iB α

π∈  we have ( )( )X iq B α

′

=  
( )( ( )).X iq B α

ϕ
′′

 We are going to call a partition ( )i Xπ  quasi-independent with 
respect to ( )j Xπ  (denoted by )i jπ πT  iff for any i jB π π∈ +  and ( )

j jB α

τ∈  
with ( )

jB Bα

⊂  the condition ( )( ) ( )i i jB B α

π π≡  is satisfied. The reflectivity of 
quasi-independence follows directly from its definition (i.e. ( )( )).i i iπ π π∀ T  A 
partition ( )i Xπ  is called independent with respect to a partition ( )k Xπ  (denoted 
by )i kπ π†  iff for any ( )

k kB β
π∈  we have ( )( ) ( ).i i kX B β

π π≡  For any arbitrary 
partitions ( )i Xπ ′  and ( )k Xπ ′′  we define their Cartesian product ( )i Xπ ′ ⊗  

( ) ( ) ( ) ( )
Df

( ) ( ) { | }.k i k i i k kX X X B B B Bα β α β
π π π′′ ′ ′′= × = × ∈ ∧ ∈π  From this definition 
it directly follows that ( ) 1 ( ), 1 ( ) ( );i X i X k kX X X Xπ π π π

′′ ′

′ ′ ′′ ′′⊗ ≡ ⊗ ≡  
( ( ) 1 ) (1 ( )) 1 ;i X X k X XX Xπ π

′′ ′ ′ ′′×
′ ′′⊗ + ⊗ =  ( ( ) 1 ) (1 ( ))i X X kX Xπ π

′′ ′

′ ′′⊗ ⊗†  and 
( ) ( ) ( ( ) 1 ) (1 ( )).i k i X X kX X X Xπ π π π

′′ ′

′ ′′ ′ ′′⊗ = ⊗ ⋅ ⊗  It is not hard to prove  
 

Lemma 1. For any given partitions ( ),i Xπ ′  ( ),i Xπ ′′  and ( )k Xπ ′′′  we have: 
(i) ( ) ( ( ) ( )) ( ( ) ( ( )) ( );i j k i j kX X X X X Xπ π π π π π′ ′′ ′′′ ′ ′′ ′′′⊗ ⊗ = ⊗ ⊗  
(ii) ( ) ( ) ( ) ( );i k k iX X X Xπ π π π′ ′′ ′′ ′⊗ = ⊗  
(iii) ≤′′×⊗⇒′′≤′′∧≤ )'()()()'()'( 112121 XXXXXX kikkii ππππππ  
        );'(22 XXki

′′×⊗ππ  
(iv) 1 1 2 2 1 2 1 2( ( ) ( )) ( ( ) ( )) ( )( ) ( )( );i k i k i i k kX X X X X Xπ π π π π π π π′ ′′ ′ ′′ ′ ′′⊗ ⋅ ⊗ = ⋅ ⊗ ⋅  
(v) 1 1 2 2 1 2( ( ) ( )) ( ( ) ( )) ( )( )i k i k i iX X X X Xπ π π π π π′ ′′ ′ ′′ ′⊗ + ⊗ = + ⊗  
       );)(( 21 Xkk

′′+ππ  
(vi) under the conditions ( )iX X ′⊂  and ( )kX X ′′⊂  we have 
       ( ) ( ) ( ) ( )( ) ( ) ( ).i k i k

i k i kX X X Xπ π π π⊗ × = ⊗  
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Let us assume now that the real-value extropy function H  for partitions 
satisfies the following axioms, reflecting the intuitive properties of partition in 
the role of informational measure of the basic set: 
(A1)  from ( ) ( )i jX Xπ π′ ′′≡  it follows that ( ) ( );i jH Hπ π=  
(A2)  if ( ) ( ),i jX Xπ π≥  then ( ) ( );i jH Hπ π≤  
(A3) ( ( )) ( ( )) ( ) ( ),i j i j i jH X H X H Hπ π π π π π+ ≥ ⋅ + +  where the equality is 
         achieved in case .i jπ πT  

In [3] it is shown that for any partition ( )i Xπ  its extropy up to an arbitrary 
positive constant equals ( ) ( )

1( ) ( ) ln ( ).im
i i iH B q Bα α

α
π

=

= −Σ  For any ( )i Xπ  and 
( )j Xπ  the following conditions are equivalent [3]: 

(i) ;i jπ πT  
(ii) ;j iπ πT  
(iii) ( ) ( ) ( ) ( );i j i j i jH H H Hπ π π π π π+ = ⋅ + +  
(iv)  for any ,i jB π π∈ +  ( )

i iB α

π∈  and ( )
j jB β

π∈  with ( ) ( ),i jB B Bα β
⊂  we have 

       ( ) ( ) ( ) ( )( ) ( ) ( ).B i j B i B jq B B q B q Bα β α β
=∩  

It is not hard to prove that for any partitions ( )i Xπ ′  and ( )k Xπ ′′  we have  
 

( ( ) ( )) ( ( )) ( ( )).i k i kH X X H X H Xπ π π π′ ′′ ′ ′′⊗ = +  
 
Lemma 2. For any arbitrary partitions , ( )i k Xπ π ∈L  on a finite set X  the 
equivalence ( ) ( )i k i kH Hπ π π π≡ ⇔ =  holds. 
 
Proof. As by definition ( ) ( ),i k i kH Hπ π π π≡ ⇒ =  it is sufficient to show that 

( ) ( ) .i k i kH Hπ π π π= ⇒ ≡  Indeed, denoting by ( ) ( ) ( )
Df

( ) || || r
ri i in B B bω
αα α

α=
= =Π  and 

1

( ) ( ) ( )
Df

( ) || || p
k k kpn B B bω

ββ β

β== =Π  the decomposition of powers of the corresponding 
blocks into initial numbers ( )r

ib  and ( ) ,p
kb  and considering the fact that each 

natural number has a unique decomposition into initial numbers, we have 
 

( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ln ( ) ( ) ln ( )
i km m

i k i i k kH H q B q B q B q Bα α β β

α β

π π

= =

= ⇒− = −∑ ∑                           

 
( ) ( )

1 1

( ) ( )

( ) ( )

1 1

i k
i k

n B n B
m m

r p
i k

r p

b b

α β

ω ωα β

α α β β= = = =

   
⇒ =      

   
∏ ∏ ∏ ∏                                     

 

( )( )

1 1

, ,
( )( )( ) ( )

, 1, , 1,

( ) ( ) .
i k

i k

m m
n Bn Br p

i k i k
r p

b b
ω ω βα

α β

α α β β

π π

〈 〉

= 〈 〉=〈 〉

⇒ = ⇒ ≡∏ ∏            � 

 

The distance between partitions iπ  and kπ  is defined as 
Df

( , )i kD π π =  
2 ( ) ( ) ( ).i k i kH H Hπ π π π⋅ − −  

 
Lemma 3 [5]. The distance D  satisfies the axioms of the abstract mathematical 
notion of distance, i.e. for any arbitrary partitions ,hπ  ,iπ  and :kπ  
(i) ( , ) 0;i iD π π =  
(ii) ( , ) ( , ) 0;i k k iD Dπ π π π= ≥  
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(iii) ( , ) ( , ) ( , )h i i k h kD D Dπ π π π π π+ ≥  with the equality holding in case 
        .h i kπ π π≤ ≤  
 

It is not hard to see that if ,i kπ π†  then ( , ) ( ).i k i kD Hπ π π π= ⋅  
 
 

3. QUANTITATIVE  EVALUATION  OF  FINITE  FUNCTIONS 
 
Let us have a collection of finite sets (1) (2) ( ) ( ){ , , ..., , ..., }nX X X Xα

=X  with 
each ( )

1 2{ , , ..., },nX x x x
α α α

α

=  a finite set 1 2{ , , ..., }mY y y y=  with || ||,m ≤ X  
and an n-variable finite function ( ) :F Y→X X  with 

Df
=X  

(1) (2) ( ) ( )... ... nX X X Xα

× × × × ×  so that ( )( )( ( ) ).i k k iy Y x F x y∀ ∈ ∃ ∈ =X  Iff 
,Y ∈X  the function ( )F X  will be called retrospective. The function F  induces 

on the set X  a partition ( )Fπ X  in which 
Df

( , )( ( )i k i k Fx x x x π∀ ∈ ≡ ⇔X  
( ) ( )).i kF x F x=  We will define on X  a set of partitions ( )L X  with each 

( )i ∈L Xπ  given as (1) (2) ( )
1 2Df

( ) = ( ) ( ) ... ( ).n
i i i inX X Xπ π π⊗ ⊗ ⊗Xπ  A partition 

( )i Xπ  will be called F-regular iff there exists no ( ) ( )k i>X Xπ π  such that 
.k F i Fπ π+ = +π π  

The roughness of a function ( )F X  is defined as 
Df

( ) (0 )R F H= −
X

 
( ( )).FH π X  It is obvious that the value for ( )R F  is always positive and is  

equal to zero iff ( )F X  is a one-to-one function. The roughness ( )R F  
characterizes the losses in an information flow governed by the function F   
and serves as a quantitative evaluation of its informational properties. A  
function  : ( )i if ′ Xπ

( )F
→
X

( )i Yπ  with ( ) ( )i′ ∈X L Xπ  induced by ( ),F X   
where ( )( ( ))iB α

′∀ ∈ Xπ  ( ) ( )({ ( ) | } ( ))i iF x x B f Bα α

∈ ⊂    will   be   called  a  con-
function of ( ).F X  The extreme confunctions are the zero confunction (denoted 
by 0 ),F  defined on zero partitions, and the unit confunction (denoted by 1 ),F  
defined on unit partitions. Confunctions represent homomorphic images of the 
function ( )F X  and convey partial information about its properties. The set of  
all confunctions of F  will be donated by ( ).FL  It is easy to see that for each 
confunction 

( )
: ( )i i F

f ′ →
X

Xπ ( )i Yπ  there exists a subset ′⊂X X  with 
|| || || ||Y′ =X  such that ( ) ( ).i iYπ ′ ′≡ Xπ  Each confunction 

( )
: ( )i i F

f ′ →
X

Xπ  
( )i Yπ  is characterized by a partition pair 

Df
( ) ( ), ( )F i iP f π′ ′′= 〈 〉X Xπ  (in the follow-

ing we will omit, as a rule, the subscript next to ,P  using the denotation 

Df
( )i ip f′ ′=π  and 

Df
( ) ),i ip f π′′ ′′=  where ( ) ( ) 1 ( )

Df
( ) { | ( );i B B F Bα α β

π
−

′′ = =X  ( )B β
∈  

( )}.i Yπ  From the definition of the partition pair for a confunction it follows that 
(0 ) 0 ,F F FP π= 〈 〉

X
 and (1 ) 1 ,1 .F F YP = 〈 〉

X
 Confunctions , ( )i kf f F∈L  will be 

called equivalent (denoted by )i kf f≡  iff ( ) ( )i k′ ′≡X Xπ π  and ( ) ( ).i kY Yπ π≡  It 
is easy to see that if ,i kf f≡  then ( ) ( ).F i F kP f P f≡  A partition pair 

( ), ( )i kπ〈 〉X Xπ  is called normal iff ( ) ( ).i kπ≤X Xπ  It is easy to see that any 
arbitrary normal partition pair represents a confunction, but it is important to 
emphasize that this confunction might be a representative for quite a few 
different finite functions. We will define a relation of order among confunctions, 
denoting i kf f≤  iff for their corresponding partition pairs ( )iP f  and ( )kP f  the 
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inequality ( ) ( )i kP f P f≤  holds. It is obvious that for any kf  always 
1 0 .F k Ff≥ ≥  Now we are going to define one more order relation for 
confunctions, defined as 

Df
( ) ( ) ( ) ( ).i k i k i kf f p f p f p f p f′ ′ ′′ ′′⇔ ≥ ∧ ≤�  It is easy to 

prove 
 

Lemma 4. 
(i) If i jf f�  and ,h kf f�  then i h j kf f f f⋅ ⋅�  and ;i h j kf f f f+ +�  
(ii) if ,i kf f�  then ( ) ( ).i kR f R f≤  

 
A confunction if  is called regular [semiregular] iff there does not exist any 

other confunction kf  such that k if f�� [ ( ) ( )].k ip f p f′ ′≥  
 

Theorem 1. For any semiregular confunction f  we have ( )p f′′ = ( ) .fp f π′ +  
 

Proof. From the functionality property of confunctions we get that 
( ) ( ) .fp f p f π′′ ′≥ +  The definition of regularity gives us that ( )p f′′  is the 

smallest partition satisfying the above inequality and as it is not difficult to see 
that ( ), ( ) fp f p f π′ ′〈 + 〉  represents a confunction, ( ) ( ) .fp f p f π′′ ′= +              � 

 
Corollary. If a partition ( )i Xπ  is F-regular, then partition pair ,i i Fπ〈 + 〉π π  
represents a regular confunction. 

 
We are going to define now the operations of multiplication and addition for 

the confunctions of ( )F X  as follows: for any confunctions 
( )

: ( ) ( )i i iF
f Yπ′ →

X
Xπ  

and 
( )

: ( ) ( )k k kF
f Yπ′ →

X
Xπ  their multiplication Df ( )

( )( )i k i k F
f f ′ ′⋅ = ⋅ →

X
Xπ π  

( )( )i k Yπ π⋅   and  addition Df ( )
( )( ) ( )( ).i k i k i kF

f f Yπ π′ ′+ = + → +
X

Xπ π  It is easy  
to prove that  

 
Lemma 5. For any , ( )i kf f F∈L  we have ( )i k i jp f fπ π′′ ′′ ′′⋅ = ⋅  and i kπ π′′ ′′+ =  

( ).i jp f f′′ +  
 

Theorem 2. For any confunctions , , ( )i j kf f f F∈L  the following relations hold: 
(i) ( );i kf f F⋅ ∈L  
(ii) ( );i kf f F+ ∈L  
(iii) i i if f f⋅ =  and ;i i if f f+ =  
(iv) i k k if f f f⋅ = ⋅  and ;i k k if f f f+ = +  
(v) ( ) ( )i j k i j kf f f f f f⋅ ⋅ = ⋅ ⋅  and ( ) ( );i j k i j kf f f f f f+ + = + +  
(vi) ( )i i k if f f f⋅ + =  and ( ) .i i k if f f f+ ⋅ =  

 
Proof. 
(i) From the definition of confunction we get for 

( )
: ( ) ( )i i iF

f Yπ′ →
X

Xπ   
and 

( )
: ( ) ( )k k kF

f Yπ′ →
X

Xπ  that ( ) ( )( ( ))({ ( ) | }i i iB F x x Bα α

′∀ ∈ ∈ ⊂Xπ  
( )( ))f B α  and ( ) ( ) ( )( ( ))({ ( ) | } ( )).k k kB F x x B f Bβ β β

′∀ ∈ ∈ ⊂Xπ  Thus  
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( )( ( ))i kB γ
′ ′∀ ∈ ⋅ Xπ π

( ) ( ) ( ) ( ) ( )( )( )(( )i kB B B B Bα β γ α β
′ ′∃ ∈ ∃ ∈ = ∧∩π π  

( )({ ( ) | }i iF x x B γ
∈ ⊂

( )( ( )f B α  ( )( ))))f B β
∩  and therefore i kf f⋅  is a 

 confunction as ( ) ( )( ) ( )f B f Bα β
∈∩  ( ).i k Yπ π⋅  

(ii)  Let now ( ) .i kB γ
′ ′∈ +π π  It means that there should exist 

( 1) ( 2) ( ), , ..., mB B Bλ λ λ
⊂X  such that for any h  with 1 h m< ≤  we have 

( ) ( ( 1))h hB Bλ λ −

≠∅∩  and, depending on h  being odd or even, ( )hB λ  
 belongs respectively either to i′π  or .k′π  From the definition of 
 confunction it directly follows that for each ( )hB λ  we have 

( ) ( ){ ( ) | } ( )h h
i iF x x B f Bλ λ

∈ ⊂  and, considering that for any 
( ) ( ),B Bα β

⊂X  always ( ) ( ){ ( ) | }i iF x x B Bα β
∈ ⊂∩  ( ) ( )( ) ( ),f B f Bα β

∩  
 it is easy to draw the conclusion that i kf f+  is a confunction. 

(iii)–(vi)  Follow directly from the partition properties.                                        � 
 

On the basis of Theorem 2 the set of all confunctions ( )FL  is a lattice.  
The roughness of a confunction ( )if F∈L  is defined as Df( ) ( , ).i i iR f D π′ ′′= π  It is 
easy to see that ( ) ( ( )) ( ( )).i i iR f H H π′ ′′= −X Xπ  Roughness reflects the 
resistance to the information flow governed by this function. It is not hard to see 
that ( , )( ( ) ( )).i k i k i kf f f f R f R f∀ ⇒ ≤�  
 
Theorem 3. For any confunctions if  and kf  with i kf f≤  we have 

 

( )

( ) ( )

( )

( ) ( ) ( ( )).
kk

i k i k
B p f

R f q B R f B
α

α α

′∈

= ∑  

 
 

Proof. Follows directly from the equality ( ) ( )i kH Hπ π= +  
))(()( )()(

)(
αα

π

π
α kikB

BHBq
kk ∈

Σ  for i kπ π≤  [6].                                                          � 
 

In addition to the traditional operations of multiplication and addition  
for partition pairs, we are going to define one more operation Dfi kf f =�  

( )
( )( ) ( )( ),i k i kF

Yπ π′ ′⋅ → +
X

Xπ π  which proves to be useful for defining the  
notion of distance between confunctions. 

It is easy to show that the operation “� ” has the following properties: 
 
Lemma 6. For any , , , ( )i j h kf f f f F∈L  we have: 
(i)   i k k if f f f=� �  and ( ) ( );i j k i j kf f f f f f=� � � �  
(ii) if i jf f≤  and ,h kf f≤  then ;i h j kf f f f≤� �  
(iii) if i jf f�  and ,h kf f�  then .i h j kf f f f� ��  
 

The distance between confunctions is defined as Df( , )i kD f f = 2 ( )i kR f f −�  
( ) ( ).i kR f R f−  The interpretation of the distance lies in the fact that it measures 

the share of common output information of the confunctions relative to the total 
input information. 

 
Theorem 4. Distance D  for confunctions satisfies the axioms of distance, i.e. for 
any confunctions ,if  ,jf  and :kf  
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(i) ( , ) 0;i iD f f =  
(ii) ( , ) ( , ) 0;i k k iD f f D f f= ≥  
(iii) ( , ) ( , ) ( , )i j j k i kD f f D f f D f f+ ≥  with the equality holding in case 
       .i j kf f f≤ ≤  

 
Proof. 
(i) Obvious. 
(ii) Follows directly from the fact that for any if  and kf  we have 
       `( ) ( ), ( ).i k i kR f f R f R f≥�  
(iii) On the basis of the definition of distance for confunctions we get 

 

( , ) ( , ) ( , )

2 ( ) 2 ( ) 2 ( ) ( ) 2 ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )
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Indeed, if ,i j kf f f≤ ≤  then 
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Confunctions 

( )
: ( ) ( )i i iF

f Yπ′ ′′→
X

Xπ  and 
( )

: ( ) ( )k k kF
f Yπ′ ′′→

X
Xπ  are called 

independent (denoted by )i kf f†  iff ( ) ( ) ( ).i k i kR f R f R f f+ = ⋅  The bond for 
confunctions if  and kf  is defined as Df( , ) ( ) ( ) ( ).i k i k i kf f R f R f R f f= + − ⋅B  The 
bond characterizes the informational link between confunctions. On the basis of 
Lemma 2 [7] we have for any arbitrary if  and kf  of ( )F X  that ( , ) 0i kf f ≥B  
and in case i kf f†  the equality ( , ) 0i kf f =B  holds. 
 
Theorem 5. For any arbitrary confunctions if  and kf  the following equality 
holds: ( )( , ) ( )( ( ( )) ( ( )) ( ( )))
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f f q B R f B R f B R f f B
α

α α α α
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= Σ + − ⋅B  with 
.h i kπ π π′′ ′′= +  

 



 75

Proof. Indeed, from the definition of roughness we get that 
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4. APPLICATION 
 
One of the possible choices for applying the above quantitative evaluation of 

finite functions is the mathematical structure theory of finite state machines [2]. 
This in-depth theory gives us insight into the structural complexity of finite state 
machines and provides us with tools to optimize the synthesis problems of the 
machines. From the mathematical point of view this theory is based on partition 
pairs, which are chosen to convey information about the operational properties of 
finite state machines. These partition pairs, defined on the set of machine states, 
represent homomorphic images of the machine interface with the front partition 
serving as an input and the rear partition as output, neglecting the functional 
dependence between the input and output. This mathematical apparatus of 
partition pairs allows decomposing finite state machines into a set of component 
machines, which is equivalent to the initial machine from the operational point of 
view. The characteristic feature of the Hartmanis and Stearns [2] theory of finite 
state machine synthesis is that it is, in fact, an entirely qualitative theory never 
combined with any ambitions to attach some quantitative values to the partitions 
and partition pairs under consideration. Therefore, the theory is an excellent 
introduction to finite state machine synthesis but lacks some vigour concerning 
real life synthesis problems. In recent years the research into synthesis of finite 
state machines [8–11] has taken advantage of the similarity of the so-called 
Shannon entropy formula [12] to provide the partition pairs with a quantitative 
measure for their informational properties, interpreting partition pairs as informa-
tion channels in the formulation of C. Shannon. But, being happy about a chance 
to use a standing solution for the quantitative evaluation of information flows in 
the set of finite state machines, the researchers have overlooked the fact that there 
is quite a remarkable difference between information channels in the formulation 
of C. Shannon and partition pairs representation of finite state machines. Leaving 
out the difference of the former being a process and the latter a fixed hardware 
object, the crucial difference lies in the fact that a channel is a functional 
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dependence, characterized solely by its input and output, but partition pairs 
defined in [2] do not represent a functional dependence and are insufficient for 
complete characterization of finite state machines. The lack of functional 
dependence between partitions in the partition pairs defined in [2] is easily 
recognized in the fact that in these pairs the rear partition can be even smaller 
than the front one. Thus these partition pairs cannot be taken as a homomorphic 
representation of finite state machines without being complemented by the inputs 
of the machines. Therefore, all the quantitative evaluations of the component 
machines on the basis of these partition pairs neglect the complete functional 
dependence of these machines and can serve only as a representation of a 
subclass of machines with the equivalent input-states and output-states. It means 
that the evaluation cannot be accurate enough to fulfil all the expectations of its 
application. The extremely high correlation value (0.995) in [8] reflects only the 
fact that practically identical object models are compared (a class of input-states 
– output-states equivalent component machines is characterized by the surface 
area of its conversion table). 

As to practical application of the approach given above, let us consider 
explicitly a two-variable retrospective function ( , ) : .F X Y X Y X× →  The 
function ( , )F X Y  can be interpreted as a finite semi-automaton given by a triplet 

, ,A S I δ= 〈 〉  [2], where  
(i) S  is a finite nonempty set of states, 
(ii) I  is a finite nonempty set of inputs, 
(iii) : S I Sδ × →  is called the transition function. 

Let a retrospective function : ,F X Y Y
α

× →  where { , , , }X a b c d=  and 
{1,2,3,4,5,6,7,8}Y =  be defined by Table 1. We are going to consider a regular 

confunction ,if  generated by the partition 1 2( ) ( ) ( )i i iX Y X Yπ π′ ′ ′× = ⊗π  with 

1( ) 0i XXπ ′ =  and 2 ( ) {1,2; 3,4,5; 6,7,8}.i Yπ ′ =  As 
 

( ) { 1, 2; 3, 4, 5; 6, 7, 8; 1, 2, 6, 7, 8; 3, 4, 1, 2, 3, 4, 5;

5, 6, 7, 8, 6, 7, 8; 1, 2, 4, 5; 3},

if
X Y a a a a a a a a b b d d d b b d d d d d

b b b b c c c c c c c c

π × =

 

we get for the rear partition ( )i X Yπ ′ ×  in the corresponding partition pair 
,i iπ′ ′′〈 〉π  that 
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Table 1. Retrospective function 
:F X Y Y

α
× →  

 Table 2. Retrospective function 
:F X Y Yβ × →  

X  X Y 

a b c d  

Y 

a b c d 

1 1 4 7 5  1 1 2 7 1 
2 1 4 7 5  2 1 2 8 1 
3 2 5 8 5  3 7 7 5 3 
4 2 5 7 5  4 7 5 6 3 
5 2 6 7 5  5 8 6 6 3 
6 3 6 6 4  6 5 7 4 4 
7 3 6 6 4  7 6 8 4 4 
8 3 6 6 4  8 6 8 4 4 

 
 

It is easy to see that the output partition ( )i Yπ  for the confunction if  is equal to 
{1;2;3;4;5,6;7,8}  and ( ), ( )i iY Yπ π′〈 〉  is an Mm  partition pair according to the 
definition of [2]. 

Let us have now a retrospective function :F X Y Yβ × →  defined by Table 2. 
We are going to consider a regular confunction ( ),kf Fβ∈L  generated by the 
partition 1 2( ) ( ) ( )k k kX Y X Yπ π′ ′ ′× = ⊗π  with 1 1( ) ( )k iX Xπ π′ ′=  and 2 ( )k Yπ ′ =  

2 ( ).i Yπ ′  For the confunction kf  we get that 
 

( ) { 1, 2, 1, 2; 1, 2; 3, 4, 5, 6, 7, 8, 1, 2;

6, 7, 8, 3, 4, 5, 3, 4, 5; 6, 7, 8, 6, 7, 8; 3, 4, 5}

k X Y a a d d b b a a a b b b c c

a a a b b b c c c c c c d d d d d d

π ′′ × =
 

 

and  
 

( ) {1;2;3;4;5,6;7,8}.k Yπ =  
 

As one can see, the partition pairs for these confunctions if  and kf , defined 
in [2], are equal but ( )i X Yπ ′′ ×  is not equivalent to ( )k X Yπ ′′ ×  with 

2log ( ( )) 2.248iH X Yπ ′ × =  and 2log ( ( )) 2.412.kH X Yπ ′ × =  The corresponding 
roughness for these confunctions equals to ( ) 1.09iR f =  and ( ) 0.93.kR f =  It 
shows that the partition pairs defined in [2] do not reflect all inner qualities of the 
finite state machines but serve as a common characteristic for the whole class of 
machines which are equivalent on the basis of their input- and output-states. 
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Lõplike  funktsioonide  ekstroopne  kvantitatiivne  hinnang 
 

Tõnu Lausmaa 
 
On analüüsitud lõplikke funktsioone kui üht infotöötluse lihtsaimat mudelit. 

Nende funktsioonide analüüs põhineb tükelduse mõistel, mille kvantitatiivseks 
hindamiseks kasutatakse ekstroopia mõistet kui tükelduse keerukuse sisemist 
mõõtu. Lõplikud funktsioonid kirjeldatakse tükelduspaaride kui nende funktsioo-
nide homomorfsete kujutiste kaudu. Antud töös on edasi arendatud J. Hartmanise 
ja R. E. Stearnsi [2] klassikalist käsitlust, kus vaadeldakse automaate kui lõplike 
funktsioonide erijuhtu. Saadud tulemused võimaldavad hinnata lõplike funktsioo-
nide informatiivseid omadusi. 

 


