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Abstract. The emissive power and radiative flux were calculated in a two-dimensiol
absorbing—emitting, finite grey atmosphere subjected to a strip of collimated incident radia
In order to find a solution to this problem, we had to use the solution to the similar problem
collimated cosine varying incident radiation, which has been found in our previous papel
approximating the kernel of the integral equation for the emissive power by a sum of expon
This allowed us to find all the parameters for both external and internal radiation fields.
main point of the approach, already used by Breig and Crosbie (J. Quant. Spectrosc. R,
Transfer, 197314, 189-209) for determining only the external radiation field, consists
expressing the solution for the case in question as a superposition of solutions to the
of collimated cosine varying incidence. This brought along infinite integrals which w
converted to an alternating series of finite integrals, while the integration was simplifiec
separating an integrable part of the integrand. For speeding up the convergence of these
we used the Euler transformation.
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1. INTRODUCTION

This paper can be considered as a follow-up to a series of papers by the at
(Viik [ 12], Viik and Vurm [*]). This series considers the radiative transfer in
atmosphere subjected to cosine varying collimated radiation and cosine val
diffuse radiation. The atmosphere is modelled by an optically finite, plane-para
absorbing-emitting, grey medium in radiative equilibrium. It is essentially a tw
dimensional problem in the sense of the illumination, i.e. the incident radiatior
the upper boundary of the atmosphere is not homogeneous but a function o
geometrical (or optical) coordinate.
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This series is a generalization of the respective papers by Breig and Crc
[4~®] who have found solutions to similar problems. Their approach allowed
finding only the external radiation field to such an atmosphere, while we were i
to determine both the external and internal radiation fields. In their paper B
and Crosbieq], dealing with the problems considered in the present article, h:
presented exact numerical results for the emissive power (in other words, the st
function) and radiative flux at the boundary of the atmosphere described ak
Their study is based on their previous papéers’], where a similar problem is
solved, but only for the collimated and diffuse cosine varying incident radiati
Using the ingenious change of the coordinates by SniithHreig and Crosbie
were able to reduce their problem to a respective one-dimensional problem, w
they solved for the external radiation field.

To determine also the internal radiation field, we exploited the ker
approximation method elaborated by Viik et al][for one-dimensional radiative
transfer. The essence of this method is that after having approximated the int
in the integral equation for the source function by a Gauss sum, we can solve
equation exactly, obtaining the solution as a sum of exponents. This means
we are able to find all the characteristics of the radiation field, since the intensi
fluxes, etc. are expressed as integrals over the source function multiplied by ¢
simple weight function.

Now, having found a solution for the case with collimated cosine illuminati
[12], we can proceed to solve more involved problems, like that]jrof the present
problem. We admit that the present model of the radiative transfer is oversimplit
However, one of the possible applications may be in modelling the radiative trar
in the infrared region in broken clouds. At the same time real models are m
more complicated and the radiation field in them may be found only by exploit
sophisticated numerical schemes. The proven fact in practice is that in this ce
is always good to have a more or less exact solution for some simple case in (
to check the results.

2. SOLUTION FOR THE COLLIMATED STRIP MODEL:
THE EMISSIVE POWER

We are looking for the radiation field in an optically finite two-dimensione
plane-parallel, absorbing—emitting (non-scattering), grey atmosphere subject
collimated radiation of constant magnitude incident on a finite strip (Fig.
This problem may be solved if we know the solution to a similar proble
where the incident radiation is strictly collimated over the whole boundary. T
mathematically rather complicated problem was simplified by Sn#ithwho
defined a set of variables which helped to reduce the two-dimensional prot
in hand to a respective one-dimensional problem.
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Fig. 1. A cross-section of the uniform collimated strip model. The collimated beam is incid
on a strip with the optical widtR7,. Here the angle of incidence @ for simplicity. All the
characteristics of the radiation field are independent oftheoordinate.

First we consider the boundary conditions. For the problem we are seeking
solution to we have

I (1y) = I (1) 8 (1 — 110)6(¢ — o), (1)
where
0 Ty < —Tq
INr) =< Io —Ta<7y<74 . )
0 Ty > Ta

Herer, is the optical half-width of the strip) is the azimuth angle, and= cos @,
wheref is the polar angle.

The optical depths, 7,, and 7, form a rectangular right-hand co-ordinat
system while the optical depth is measured downward from the upper bounda
of the atmosphere. In the following we consider thigt= 0, i.e. the incident
radiation lies in planes that are perpendicular togtheplane.

The solution for the emissive power of the problem with collimated incider
can be found by solving the following integral equatiéh [

45 (1y, 72370) = L5 (1y) exp(—72/po)

92 0o oo 0
+ 7r/1 /—oo/(] K [t((TZ — )%+ (ry — 74)2)1/2} S(Té,T;;To) dr. dTZ/I dt,
(3)
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where S is the emissive powet,] (,) is the intensity incident on the boundan
of the atmosphereyy = cosfy and¥, is the angle between the direction of th
incident collimated radiation and the inward normal to the boundary. The kerne
the equationk is the modified Bessel function]]

Ky(s) = /OOO cos(ssinht) dt. (4)

It is required again that the atmosphere be in radiative equilibrium, i.e. tF
are no other sources of radiation besides the incident flux at the boundary o
atmosphere. Then the emissive powds connected with the temperatufan the
atmosphere by the following relation

S(Ty>7-277-0) :ETZL(TyaTZ;TO)a (5)

whereg is the Stefan—Boltzmann constant.
Next we expand the intensity of the incident radiation in the Fourier séfjies |

1) = [ a@exslion,) ds, ©)
where
90 = o | 1) ex(-im,) dr, @
From Egs. (2) and (7) we obtain
o(3) = % sin(ms). ®)

Substituting this into Eq. (6), we obtain an integral expression for the incid
intensity:

i) =2 [~ 2 epion,) as, ©

This result we use in Eq. (3), obtaining the following integral equation:

45(1y, 723 70) = IO/ Sin(ﬂﬂTa) exp(—72/po + iB1y) df

™ —0o0
goooo 0 L \2 L \2)1/2 ro, I g
+ - Ky [t((Tz )+ (7y —7y) ) ] S(ry,72;70) dr, T, dt.
1 —o0 JO
(10)
Multiplying the equation for the cosine varying collimated boundary conditigin [
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4Scc<Ty7 Tz TO) = Iy eXp('iﬁTy - Tz/MO)

2 o8] oo T0
A N A G R A R ERCR SR

™ J1 —o0 J0
(11)

by sin(s7,)ds/73, integrating from—oo to co, and comparing the resultant
expression with Eq. (10), we obtain an expression for the emissive power ir
atmosphere illuminated stripwise by a collimated beam

1/”811“(5%)

S(Tya7z§7'0) = - 3

where the subscript “cc” means “cosine varying collimated”.

For simplicity we henceforth drop the subscrigior o in formulas.

In the case of cosine varying collimated incident radiation we can define
dimensionless emissive power by the relation

Sec (Ty, Tz TO) dgs, (12)

4

TOSCC(Tvaz;TO) = Bcc(7—27//f;7-0) eXp(iﬁTy)' (13)

Taking the real part of this expression and inserting it into Eq. (12), we obtain
dimensionless emissive power for the collimated strip model

2 [ sin(fB7,) cos( ST,
Blryersim) = 2 [ Balruoin) (Ora) cos(BT) g5 (14
™ Jo B
where
4
B(7y, Tz, 13 10) = —S(7y, 725 70) (15)

Iy

in analogy with the case of cosine varying boundary condition.

This means that we have simplified the problem in hand. To find the solut
for the emissive power in an atmosphere which is illuminated stripwise by
collimated beam, we have to find the solution to the problem where an atmosp
is illuminated by a cosine varying collimated radiatidh [

3. SOLUTION FOR THE COLLIMATED STRIP MODEL:
THE RADIATIVE FLUX

In order to obtain the formula for the radiative flux for the collimated stri
model, we start from the collimated boundary condition in the form used
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[®]. First we need the formula for the inward radiative flux of the case with t
collimated boundary conditio]

27
qc(Ty, Tz, 113 T0) / / i (1y) exp(—7:/ ) cos Osin 6 d do
+= / / / / SC(Ty + 1, 7’,;3 o) sign(r, — 7—;)|7—z - T;|
T J—00J0 1 1
x Kolwy((r. — 72)° +1°)"?| & da dy d’. dn, (16)

where the subscript “c” means “collimated”, and the formula of the radiative fl
for the cosine varying collimated strip model in the forfh [

ch(Tya Tzy 5 7'0) = Iy NeXp(lﬂTy - Tz/M)

2 o0 To 00 00
A A A Sl
—00 JO 1 .

x Kolzy((1, — T;)Q + 772)1/2] x dx dy drl dn. (17)

Next we substitute the Fourier integral representatiofjofEq. (9), into Eq. (16)
to obtain

I o si a .
ot reim) = 2o [~ ST expipr, — 7. /)
/ / / / S(ry +mn, 75 10) sign(r, — 72) |72 — 72
x Kolzy((1, — 70)% + 772)1/2] x dx dy drl dn. (18)

As before, we now multiply Eq. (17) byin(87,)/73 and integrate from-oo to
o0, which gives

00 ot : I > & a .
/oo SlnfrﬁﬁT )qcc(Ty,Tz,M; T0) = ?O “/oo Sm(gT ) exp(ifity — 7. /p)df

/ /// [/ZblnﬁTa)SCC(Ty+77,T;;T0)d,8

x sign(7, — 1) — 7| Ko[zy((12 — 7';)2 + 772)1/2} x dx dy drl dn. (19)

Next we compare Egs. (18) and (19). Since the expression in square brackets
emissive power (12), we find the inward radiative flux in an atmosphere illuming
by a collimated strip

1 [°° sin(B7,
q(Ty, Tz, i 10) = W/ (ﬁ) Gec(Ty, T2, 113 T0) dP3. (20)
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Defining the dimensionless flux for the cosine varying incidence by

qCC(Ty?TZ;TO) = I QCC(TZ’/‘L;TO) COS(/BTy)> (21)

we obtain the dimensionless flux for the collimated strip model

Qryrepim) = 2 [ G e i) s, (22)
where
1
Q(TyaTmM;TO) = TO Q(TnyZQTO)' (23)

Accordingly, the relation between dimensionless fluxes is

Q(Tya Tz K3 7’0) _ g /OOO Sin(ﬂTa)ﬁCOS(ﬁTy)

T
For numerical calculations we need the formula for the tux(7., p; 70). From
[°] we have

Qee (7-27 22 7_0) dg. (24)

Qcc(Tz, M?TO)

1 [ .
—exp(=rofu) 5 [ Bp(ras ) sign(r. — 70 a(lr. — 71,3) dr’,
0

(25)
which in the limit3 — oo reduces to
Bh—>n<30 Qcc(Tza 5 TO) = eXp(_Tz/:U’) M- (26)

In Eq. (25) we have made use of the generalized exponential integral of the se
order []

P exp(—|7|/t) dt
e = [ Gt @)

wherep = (1 + 32)~1/2,

4. TRANSFORMATION OF SOLUTIONS

The integrals presented in Egs. (14) and (24) raise great difficulties since
integrands include an oscillating function. Because of the slowly varying n
oscillating part of the integrand we cannot use the Filon methdd The method
based on the FFT and given in'] does not yield accurate results either. T
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overcome these difficulties, we chose to follow the method by Breig and Crd$bit
who divided the range of integration into small subranges where one may
simple but exact methods of numerical integration.

Equation (14) can be put in a form more suitable for our purposes

B(1y, 72, 15 70) = 1/0 Bg (72, p; 10)[sin B(7q + 7y) + sin B(1q — 7y)] dﬁﬁ

' (28)

For numerical computations we divide the oscillating integrand into regions .
use the Gaussian quadrature formula to calculate the contributions of each of
regions separately. We do so up to an acceptably large val@odl consider the
rest of the contributions negligible. To speed up the convergence of the integra
force the numerator of the integrand to zero for lafigélo do so, we observe that
when 3 approaches infinity33 converges to a certain value dependent on the r
of its arguments. We define a new function

P(B, 7., u;70) = Bg(72, 113 70) —Bli_{I;OBB(mu; 0)- (29)

Substituting this into Eq. (28) gives

1 o0
B(Tvazv.u; 7—0) :7T/ [P(Bsznu; 7-0)
0

*ﬁﬂﬁdwmmMmﬂm+@wmmmm—@nf.
(30)

Using the integrayoOO sinx dx/x = 7/2, we obtain a somewhat simplified form
of Eq. (30)

B(Tvaznu;TO) = lim Bﬁ(Tzvu;TO)
B—00
i

g
(31)

+1/mﬂﬁmmmﬁmﬂm+m+mwm—@ﬂ
T Jo

Equation (31) holds if, is within the boundaries of the strip, otherwise we are le
only with the second term of the right-hand side of Eq. (31). We introduce a r
variable of integrationy = (7, £+ 7,), and as a result Eq. (31) transforms into

B(7y, 72, p;70) = lim Bg(72, i; 70)
B—o0

1 [ i
+ / [P <$,Tz,ﬂ§ 7’0) + P (quzuM;TO>:| 2 .
T Jo Ta+ Ty Ta — Ty T

(32)
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Next we divide the range of integration into finite intervals as follows:

(o] .
/ |:P <x77—2’7,u’; TO) +P <$7TZ7M;TO>:| SR dx
0 Ta + Ty Ta — Ty i

o0 (k+1)m :
S (i) ()| 2
o=k Ta+ Ty Ta — Ty x

k=0
(33)
Inserting Eqg. (33) into Eqg. (32) and changing the limits of integration, we obtain

B(Ty,TZ,M; 7—0) = lim B,@(Tzaluv TO)
B—00

1 & e [T x + km x4 km sin x
+ T §: ( ) /O |: <7_a_'_7_y77—27.ua7—0> + <7_ _r y Tzy M3 70 I+ kr x

k=0 a Y
(34)

If 7, > 74, Eq. (30) transforms into

B(Tya Tzy U3 7—0)

1 & m k k i
:Z<_1)k/ I:P (maTZuu/;TO) _P(maTZ7ﬂ;7—0):| e dx
™ 0 Ta + Ty Ty — Ta x4 km

(35)

The integrals constitute a slowly converging sign-alternating series, for whic
transformations exist for increasing the rate of convergence. One suitable mett
is the Euler transform:

1 1 (—1)7

S (1) = g — (Dwo) + é(D%o) bt (D) 4, (36)

n=0
whereDIty,, = Div, 1 — Div, andD%,, = v,.

As can be expected, the emissive power has a discontinuity at the bound:
of the strip that diminishes exponentially with increasing optical depths. It can
calculated by taking the limits, — 7, andr, — 7, of Eq. (31) and subtracting.
We get

Ly = lim Bg(z, p1;70)
p—o0

1 [ d
+ lim 7T/ P(B, 72, w;70)[sin B(74 + 1) + sin f(7q — 7)] 5
Ty—Ta 0
:ﬁlim Bg (T2, 13 10)
1 ™ . : dg
+ lim - P(B, Tz, p; 10)[sin B(7a + 7y) + sin G714 — 7] 7 (37)
Ty—Ta 0
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and

1 [ d
Ly = lim / P(B, T, p; 70)[sin B(7q + 1) + sin B(1, — 7)] —B
Ty—>7'(j— ™ Jo B
= lim / P(B, 72, p;10)[sin B(14 + 7y) — sin |7, — 7] ﬁﬁ (38)
Ty—Ta T
Subtracting, we have
ag
Li—Ly= hm Bg(’i'z,,u,’l'o)—‘r lim / P(B, 7y, p; 10) sin Bl1, — T, ]F
Ty—Ta T
(39)

Since the integrand in Eq. (39) is nonsingular in the range of integration,
can approach the limit, — 7, under the integral sign and conclude that tr
discontinuity is determined by

Ly — Ly = lim Bg(7,, p; 10). (40)
B—o0
The dimensionless emissive poweg obeys the equation

1 [
By(ras i) = expl(—7o/) + 5 [ €1(17= = 71,0) Barlopim) drl, (41
0

where the generalized exponential integral of the first order is defined as
[T e+ 6212
&1(7z, B) —/1 CENEIRE dt. (42)
In the limit 5 — oo the generalized exponential integral goes to zero and
dimensionless emissive power is simply

ﬁh—{go Bﬁ(TZ7 3 TO) = eXp(_Tz/:U’)' (43)

We see that the discontinuity at the boundary of the strip depends only on the ¢
of incidence and optical depth and does not depend on the optical thickness ¢
medium.

5. NUMERICAL RESULTS

The dimensionless source function was computed for vaiues1, 7, = 1 and
for normal incidencei{y = 1). Figure 2 shows the variation of the dimensionle:
source function withr, for different optical depths.,. The jump of the source
function is caused by the finite optical width of the illuminated strip.

Figure 3 shows the run of the dimensionless radiatifix with the optical
width across the illuminated strip for different optical depths. Far from the edge
the strip the flux converges to zero. As an interesting fact we may point out
the radiative flux at, = 0 changes sign at the strip edge. This feature quick
disappears when the optical depth increases.
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Fig. 2. The dimensionless source function as a Fig. 3. Same as Fig. 2, only for the dimension-
function of 7 at different optical depths z,. The less radiative flux.

optical thickness of the atmosphere is 7 = 1, the

cosine of the incident angle is 1.0, and the

optical half-width of the strip is 7, = 1.

,LLO=1.0
po=1.0

0.5

5
=]
S
N 0.5
G
3
£
m

0 1 2 3 4 5 "0 1 2 3 4 5
y

Fig. 4. The maxima of the dimensionless Fig. 5. The optical depth at which the
emissive power as a function of 7, for different ~dimensionless radiation flux is zero, as a func-
angles of incidence. The optical thickness of the  tion of 7, for different angles of incidence. The
atmosphere is 7y = 1 and the optical half-width  optical thickness of the atmosphere is 7 = 1 and
of the strip is 7, = 1. the the optical half-width of the strip is 7, = 1.

The maxima of the dimensionless source function are given in Fig. ¢
function of optical widthr, at different angles of incidence. Very clearly
maxima tend to appear at greater optical depths when we move away from tt
converging at the optical depth = 0.5, i.e. at the middle level of the atmospht
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Figure 5 shows the optical depths where the radiation flux is zero for
angles of incidence as a function of. These optical depths are smaller if
angle of incidence is larger and approaches the vajy2 if we are moving awa
from the strip. Far from the strip the radiation field is symmetric with respect
planer, = 79/2 and the radiation seems to forget whether the incident rad
came through the boundary = 0 or through the boundary, = 7.

The impact of the optical width of the strip on the dimensionless em
power at a certain optical depth as a function of the relation, /7, is given ir
Fig. 6. The broader the strip, the steeper is the slope of the dimensionless €
power both in and outside the strip. If the optical width of the strip is lesshig
the dimensionless emissive power is almost independent ¢iowever, the jum
atr, = 7, remains.

Itis interesting to point out that the emergent dimensionless flux in the ce
the strip has a minimum while the emissive power has a maximum. This mir
disappears when we observe the flux at a certain optical depth

The run of the difference between the fluxes at the centre and at the ¢
a strip is given in Fig. 7. Fory = 1.0 this difference is larger for broader str
and the minimum itself disappears for all observed strip widths approxima
T, ~ 0.4.

Figure 8 shows the dependence of the dimensionless flux on the optica
T, att, = 0, i.e. at the centre of the strip, for different widths of the strip. Witt
broadening of the strip this dependence gets weaker and weaker, reaching
complete independenceat= 10.0.

1,210
14 T [
) 7=1.0 5
,,,,,,,,,,,, 05 . <
) SN 1o=1.0 <
R
N Tz=0'5 k\'
—_ !
S 1.0 ”
h >
3 0.1 5
T P
K08 Z
g € 005
m 06 §
&
T i
& m
) S 0.15
0.0 "
0.0 0.5 1.0 1.5 2.0 0.0 0.2 04 o " :
/T, -

Fig. 6. Variation of the dimensionless source Fig. 7. The difference of the dimensionless fluxes
function at the optical depth 7, = 0.5 with /7, at 7, =0 and at 7, = 7, as a function of the optical

for the normal incidence (4= 1.0). depth 7,. The optical thickness of the atmosphere
is 7 = 1 and the cosine of the incident angle is
1.0.
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09 7,=0.1
7'0:140
=1.0
0.8 Ho
~ 0.5
<
g o7 1.0
< 10.0
l\;’
06
0.5
0.4
0.0 0.2 0.4 0.6 0.8 1.0

Tz

Fig. 8. The dimensionless flux as a function of z, at different optical half-widths of the strip z,. The
optical thickness of the atmosphere is 7y = 1 and the cosine of the incident angle is 1.0.

6. CONCLUSION

The approximation of the solution of the integral equation for the dimensic
emissive power in a plane-parallel, absorbing—emitting, optically finite atmos
subjected to cosine varying collimated incident radiation, and the subsequ
of the superposition principle allows us to find the complete radiation field
inside and outside the atmosphere illuminated by a collimated strip of rad
This approach is powerful enough to solve a more general problem with a c«
temperature strip at the outer boundary of a similar atmosphere.
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Emissioonivdime ja kiirgusvoog atmosfaaris, mille
valispinna |0pliku laiusega triibule langeb
paralleelne kiirtekimp

Indrek Vurm ja Tonu Viik

On vaadeldud kiirguslevi optiliselt 16pliku paksusega kahemddtmelises t:
paralleelses mittehajutavas, kuid neelavas ja kiirgavas atmosfaaris, mille v
pinna I6pmata pikale, kuid I6pliku laiusega triibule langeb paralleelne kiirtekin
Nagu eelmisteski artiklites'{3] oletame siin, et atmosfaar on hall ning ta o
kiirguslikus ja lokaalses termodiinaamilises tasakaalus. Ka praegusel juhul
kiirguslevi vérrandi taandada integraalv@rrandiks, mille omakorda saab muutt
eraldamise teel taandada suhteliselt lihtsaks integraalvorrandiks Ghemaotn
keskkonna kohta. Saab naidata, et niisugusel puhul on emissioonivéimet kirjel
integraalvorrandi lahend lihntsama Ulesande — Uhtlaselt paralleelse kiirtekimt
valgustatud valispinnaga atmosfaari juhu — lahendite superpositsioon. See
kaasa tugevalt ostsilleeriva integrandiga integraalid, mida saab taandada suht
halvasti koonduvaks vahelduvate markidega reaks, mille koonduvust dnne
Euleri vottega kiirendada.

Ulatuslikud numbrilised arvutused v@imaldavad visualiseerida moning
kiirgusvalja olulisemate funktsioonide, nagu seda on emissioonivdime ja kiirc
voog, kaitumist sbltuvalt atmosfaéari parameetrite muutumisest.
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