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Abstract. The emissive power and radiative flux were calculated in a two-dimensional,
absorbing–emitting, finite grey atmosphere subjected to a strip of collimated incident radiation.
In order to find a solution to this problem, we had to use the solution to the similar problem with
collimated cosine varying incident radiation, which has been found in our previous papers by
approximating the kernel of the integral equation for the emissive power by a sum of exponents.
This allowed us to find all the parameters for both external and internal radiation fields. The
main point of the approach, already used by Breig and Crosbie (J. Quant. Spectrosc. Radiat.
Transfer, 1973,14, 189–209) for determining only the external radiation field, consists in
expressing the solution for the case in question as a superposition of solutions to the case
of collimated cosine varying incidence. This brought along infinite integrals which were
converted to an alternating series of finite integrals, while the integration was simplified by
separating an integrable part of the integrand. For speeding up the convergence of these series
we used the Euler transformation.
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1. INTRODUCTION

This paper can be considered as a follow-up to a series of papers by the authors
(Viik [ 1,2], Viik and Vurm [3]). This series considers the radiative transfer in an
atmosphere subjected to cosine varying collimated radiation and cosine varying
diffuse radiation. The atmosphere is modelled by an optically finite, plane-parallel,
absorbing-emitting, grey medium in radiative equilibrium. It is essentially a two-
dimensional problem in the sense of the illumination, i.e. the incident radiation on
the upper boundary of the atmosphere is not homogeneous but a function of one
geometrical (or optical) coordinate.
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This series is a generalization of the respective papers by Breig and Crosbie
[4−8] who have found solutions to similar problems. Their approach allowed of
finding only the external radiation field to such an atmosphere, while we were able
to determine both the external and internal radiation fields. In their paper Breig
and Crosbie [4], dealing with the problems considered in the present article, have
presented exact numerical results for the emissive power (in other words, the source
function) and radiative flux at the boundary of the atmosphere described above.
Their study is based on their previous papers [5−8], where a similar problem is
solved, but only for the collimated and diffuse cosine varying incident radiation.
Using the ingenious change of the coordinates by Smith [9], Breig and Crosbie
were able to reduce their problem to a respective one-dimensional problem, which
they solved for the external radiation field.

To determine also the internal radiation field, we exploited the kernel
approximation method elaborated by Viik et al. [10] for one-dimensional radiative
transfer. The essence of this method is that after having approximated the integral
in the integral equation for the source function by a Gauss sum, we can solve the
equation exactly, obtaining the solution as a sum of exponents. This means that
we are able to find all the characteristics of the radiation field, since the intensities,
fluxes, etc. are expressed as integrals over the source function multiplied by some
simple weight function.

Now, having found a solution for the case with collimated cosine illumination
[1,2], we can proceed to solve more involved problems, like that in [3], or the present
problem. We admit that the present model of the radiative transfer is oversimplified.
However, one of the possible applications may be in modelling the radiative transfer
in the infrared region in broken clouds. At the same time real models are much
more complicated and the radiation field in them may be found only by exploiting
sophisticated numerical schemes. The proven fact in practice is that in this case it
is always good to have a more or less exact solution for some simple case in order
to check the results.

2. SOLUTION FOR THE COLLIMATED STRIP MODEL:
THE EMISSIVE POWER

We are looking for the radiation field in an optically finite two-dimensional,
plane-parallel, absorbing–emitting (non-scattering), grey atmosphere subjected to
collimated radiation of constant magnitude incident on a finite strip (Fig. 1).
This problem may be solved if we know the solution to a similar problem
where the incident radiation is strictly collimated over the whole boundary. This
mathematically rather complicated problem was simplified by Smith [9] who
defined a set of variables which helped to reduce the two-dimensional problem
in hand to a respective one-dimensional problem.
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Fig. 1.A cross-section of the uniform collimated strip model. The collimated beam is incident
on a strip with the optical width2τa. Here the angle of incidence is0o for simplicity. All the
characteristics of the radiation field are independent of theτx coordinate.

First we consider the boundary conditions. For the problem we are seeking the
solution to we have

I+
0 (τy) = I+

w (τy)δ(µ− µ0)δ(φ− φ0), (1)

where

I+
w (τy) =


0 τy < −τa

I0 −τa ≤ τy ≤ τa

0 τy > τa

. (2)

Hereτa is the optical half-width of the strip,φ is the azimuth angle, andµ = cos θ,
whereθ is the polar angle.

The optical depthsτx, τy, and τz form a rectangular right-hand co-ordinate
system while the optical depthτz is measured downward from the upper boundary
of the atmosphere. In the following we consider thatφ0 = 0, i.e. the incident
radiation lies in planes that are perpendicular to they, z plane.

The solution for the emissive power of the problem with collimated incidence
can be found by solving the following integral equation [8]

4S(τy, τz; τ0) = I+
w (τy) exp(−τz/µ0)

+
2
π

∫ ∞

1

∫ ∞

−∞

∫ τ0

0
K0

[
t
(
(τz − τ ′z)

2 + (τy − τ ′y)
2
)1/2]

S(τ ′y, τ
′
z; τ0) dτ ′z dτ ′y dt,

(3)
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whereS is the emissive power,I+
w (τy) is the intensity incident on the boundary

of the atmosphere,µ0 = cos θ0 andθ0 is the angle between the direction of the
incident collimated radiation and the inward normal to the boundary. The kernel of
the equationK0 is the modified Bessel function [11]

K0(s) =
∫ ∞

0
cos(s sinh t) dt. (4)

It is required again that the atmosphere be in radiative equilibrium, i.e. there
are no other sources of radiation besides the incident flux at the boundary of the
atmosphere. Then the emissive powerS is connected with the temperatureT in the
atmosphere by the following relation

S(τy, τz, τ0) = σT 4(τy, τz; τ0), (5)

whereσ is the Stefan–Boltzmann constant.
Next we expand the intensity of the incident radiation in the Fourier series [1]

I+
w (τy) =

∫ ∞

−∞
g(β) exp(iβτy) dβ, (6)

where

g(β) =
1
2π

∫ ∞

−∞
I+
w (τy) exp(−iβτy) dτy. (7)

From Eqs. (2) and (7) we obtain

g(β) =
I0

πβ
sin(βτa). (8)

Substituting this into Eq. (6), we obtain an integral expression for the incident
intensity:

I+
w (τy) =

I0

π

∫ ∞

−∞

sin(βτa)
β

exp(iβτy) dβ. (9)

This result we use in Eq. (3), obtaining the following integral equation:

4S(τy, τz; τ0) =
I0

π

∫ ∞

−∞

sin(βτa)
β

exp(−τz/µ0 + iβτy) dβ

+
2
π

∫ ∞

1

∫ ∞

−∞

∫ τ0

0
K0

[
t
(
(τz − τ ′z)

2 + (τy − τ ′y)
2
)1/2]

S(τ ′y, τ
′
z; τ0) dτ ′z dτ ′y dt.

(10)

Multiplying the equation for the cosine varying collimated boundary condition [6],

210



4Scc(τy, τz; τ0) = I0 exp(iβτy − τz/µ0)

+
2
π

∫ ∞

1

∫ ∞

−∞

∫ τ0

0
K0

[
t
(
(τz − τ ′z)

2 + (τy − τ ′y)
2
)1/2]

Scc(τ ′y, τ
′
z; τ0) dτ ′z dτ ′y dt,

(11)

by sin(βτa)dβ/πβ, integrating from−∞ to ∞, and comparing the resultant
expression with Eq. (10), we obtain an expression for the emissive power in an
atmosphere illuminated stripwise by a collimated beam

S(τy, τz; τ0) =
1
π

∫ ∞

−∞

sin(βτa)
β

Scc(τy, τz; τ0) dβ, (12)

where the subscript “cc” means “cosine varying collimated”.
For simplicity we henceforth drop the subscript0 for µ0 in formulas.
In the case of cosine varying collimated incident radiation we can define the

dimensionless emissive power by the relation

4
I0

Scc(τy, τz; τ0) = Bcc(τz, µ; τ0) exp(iβτy). (13)

Taking the real part of this expression and inserting it into Eq. (12), we obtain the
dimensionless emissive power for the collimated strip model

B(τy, τz, µ; τ0) =
2
π

∫ ∞

0
Bcc(τz, µ; τ0)

sin(βτa) cos(βτy)
β

dβ, (14)

where

B(τy, τz, µ; τ0) =
4
I0

S(τy, τz; τ0) (15)

in analogy with the case of cosine varying boundary condition.
This means that we have simplified the problem in hand. To find the solution

for the emissive power in an atmosphere which is illuminated stripwise by a
collimated beam, we have to find the solution to the problem where an atmosphere
is illuminated by a cosine varying collimated radiation [1].

3. SOLUTION FOR THE COLLIMATED STRIP MODEL:
THE RADIATIVE FLUX

In order to obtain the formula for the radiative flux for the collimated strip
model, we start from the collimated boundary condition in the form used in
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[8]. First we need the formula for the inward radiative flux of the case with the
collimated boundary condition [8]

qc(τy, τz, µ; τ0) =
∫ 2π

0

∫ π/2

0
I+
0 (τy) exp(−τz/µ) cos θ sin θ dθ dφ

+
2
π

∫ ∞

−∞

∫ τ0

0

∫ ∞

1

∫ ∞

1
Sc(τy + η, τ ′z; τ0) sign(τz − τ ′z)|τz − τ ′z|

×K0[xy((τz − τ ′z)
2 + η2)1/2] x dx dy dτ ′z dη, (16)

where the subscript “c” means “collimated”, and the formula of the radiative flux
for the cosine varying collimated strip model in the form [8]

qcc(τy, τz, µ; τ0) = I0 µ exp(iβτy − τz/µ)

+
2
π

∫ ∞

−∞

∫ τ0

0

∫ ∞

1

∫ ∞

1
Scc(τy + η, τ ′z; τ0) sign(τz − τ ′z)|τz − τz|

×K0[xy((τz − τ ′z)
2 + η2)1/2] x dx dy dτ ′z dη. (17)

Next we substitute the Fourier integral representation ofI+
0 , Eq. (9), into Eq. (16)

to obtain

q(τy, τz, µ; τ0) =
I0

π
µ

∫ ∞

−∞

sin(βτa)
β

exp(iβτy − τz/µ)dβ

+
2
π

∫ ∞

−∞

∫ τ0

0

∫ ∞

1

∫ ∞

1
S(τy + η, τ ′z; τ0) sign(τz − τ ′z)|τz − τz|

×K0[xy((τz − τ ′z)
2 + η2)1/2] x dx dy dτ ′z dη. (18)

As before, we now multiply Eq. (17) bysin(βτa)/πβ and integrate from−∞ to
∞, which gives∫ ∞

−∞

sin(βτa)
πβ

qcc(τy, τz, µ; τ0) =
I0

π
µ

∫ ∞

−∞

sin(βτa)
β

exp(iβτy − τz/µ)dβ

+
2
π

∫ ∞

−∞

∫ τ0

0

∫ ∞

1

∫ ∞

1

[∫ ∞

−∞

sin(βτa)
πβ

Scc(τy + η, τ ′z; τ0) dβ

]
× sign(τz − τ ′z)|τz − τz|K0[xy((τz − τ ′z)

2 + η2)1/2] x dx dy dτ ′z dη. (19)

Next we compare Eqs. (18) and (19). Since the expression in square brackets is the
emissive power (12), we find the inward radiative flux in an atmosphere illuminated
by a collimated strip

q(τy, τz, µ; τ0) =
1
π

∫ ∞

−∞

sin(βτa)
β

qcc(τy, τz, µ; τ0) dβ. (20)
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Defining the dimensionless flux for the cosine varying incidence by

qcc(τy, τz; τ0) = I0 Qcc(τz, µ; τ0) cos(βτy), (21)

we obtain the dimensionless flux for the collimated strip model

Q(τy, τz, µ; τ0) =
2
π

∫ ∞

0

sin(βτa) cos(βτy)
β

Qcc(τz, µ; τ0) dβ, (22)

where

Q(τy, τz, µ; τ0) =
1
I0

q(τy, τz; τ0). (23)

Accordingly, the relation between dimensionless fluxes is

Q(τy, τz, µ; τ0) =
2
π

∫ ∞

0

sin(βτa) cos(βτy)
β

Qcc(τz, µ; τ0) dβ. (24)

For numerical calculations we need the formula for the fluxQcc(τz, µ; τ0). From
[5] we have

Qcc(τz, µ; τ0)

= exp(−τz/µ) µ +
1
2

∫ τ0

0
Bβ(τz, µ; τ0) sign(τz − τ ′z) E2(|τz − τ ′z|, β) dτ ′z,

(25)

which in the limitβ →∞ reduces to

lim
β→∞

Qcc(τz, µ; τ0) = exp(−τz/µ) µ. (26)

In Eq. (25) we have made use of the generalized exponential integral of the second
order [5]

E2(τ, β) =
∫ p

0

exp(−|τ |/t)
(1− β2t2)3/2

dt

t
, (27)

wherep = (1 + β2)−1/2.

4. TRANSFORMATION OF SOLUTIONS

The integrals presented in Eqs. (14) and (24) raise great difficulties since the
integrands include an oscillating function. Because of the slowly varying non-
oscillating part of the integrand we cannot use the Filon method [11]. The method
based on the FFT and given in [11] does not yield accurate results either. To
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overcome these difficulties, we chose to follow the method by Breig and Crosbie [4]
who divided the range of integration into small subranges where one may use
simple but exact methods of numerical integration.

Equation (14) can be put in a form more suitable for our purposes

B(τy, τz, µ; τ0) =
1
π

∫ ∞

0
Bβ(τz, µ; τ0)[sinβ(τa + τy) + sin β(τa − τy)]

dβ

β
.

(28)

For numerical computations we divide the oscillating integrand into regions and
use the Gaussian quadrature formula to calculate the contributions of each of these
regions separately. We do so up to an acceptably large value ofβ and consider the
rest of the contributions negligible. To speed up the convergence of the integral, we
force the numerator of the integrand to zero for largeβ. To do so, we observe that
whenβ approaches infinity,Bβ converges to a certain value dependent on the rest
of its arguments. We define a new function

P (β, τz, µ; τ0) = Bβ(τz, µ; τ0)− lim
β→∞

Bβ(τz, µ; τ0). (29)

Substituting this into Eq. (28) gives

B(τy, τz, µ; τ0) =
1
π

∫ ∞

0
[P (β, τz, µ; τ0)

+ lim
β→∞

Bβ(τz, µ; τ0)][sinβ(τa + τy) + sin β(τa − τy)]
dβ

β
.

(30)

Using the integral
∫∞
0 sinx dx/x = π/2, we obtain a somewhat simplified form

of Eq. (30)

B(τy, τz, µ; τ0) = lim
β→∞

Bβ(τz, µ; τ0)

+
1
π

∫ ∞

0
P (β, τz, µ; τ0)[sinβ(τa + τy) + sin β(τa − τy)]

dβ

β
.

(31)

Equation (31) holds ifτy is within the boundaries of the strip, otherwise we are left
only with the second term of the right-hand side of Eq. (31). We introduce a new
variable of integration,x = β(τa ± τy), and as a result Eq. (31) transforms into

B(τy,τz, µ; τ0) = lim
β→∞

Bβ(τz, µ; τ0)

+
1
π

∫ ∞

0

[
P

(
x

τa + τy
, τz, µ; τ0

)
+ P

(
x

τa − τy
, τz, µ; τ0

)]
sinx

x
dx.

(32)
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Next we divide the range of integration into finite intervals as follows:∫ ∞

0

[
P

(
x

τa + τy
, τz, µ; τ0

)
+ P

(
x

τa − τy
, τz, µ; τ0

)]
sinx

x
dx

=
∞∑

k=0

∫ (k+1)π

x=kπ

[
P

(
x

τa + τy
, τz, µ; τ0

)
+ P

(
x

τa − τy
, τz, µ; τ0

)]
sinx

x
dx.

(33)

Inserting Eq. (33) into Eq. (32) and changing the limits of integration, we obtain

B(τy, τz, µ; τ0) = lim
β→∞

Bβ(τz, µ; τ0)

+
1
π

∞∑
k=0

(−1)k

∫ π

0

[
P

(
x + kπ

τa + τy
, τz, µ; τ0

)
+ P

(
x + kπ

τa − τy
, τz, µ; τ0

)]
sinx

x + kπ
dx.

(34)

If τy > τa, Eq. (30) transforms into

B(τy, τz, µ; τ0)

=
1
π

∞∑
k=0

(−1)k

∫ π

0

[
P

(
x + kπ

τa + τy
, τz, µ; τ0

)
− P

(
x + kπ

τy − τa
, τz, µ; τ0

)]
sinx

x + kπ
dx.

(35)

The integrals constitute a slowly converging sign-alternating series, for which
transformations exist for increasing the rate of convergence. One suitable method
is the Euler transform:
∞∑

n=0

(−1)nvn =
1
2
v0 −

1
4
(Dv0) +

1
8
(D2v0) + · · ·+ (−1)j

2j+1
(Djv0) + · · · , (36)

whereDj+1vn = Djvn+1 −Djvn andD0vn = vn.
As can be expected, the emissive power has a discontinuity at the boundary

of the strip that diminishes exponentially with increasing optical depths. It can be
calculated by taking the limitsτz → τ+

a andτz → τ−a of Eq. (31) and subtracting.
We get

L1 = lim
β→∞

Bβ(τz, µ; τ0)

+ lim
τy→τ−a

1
π

∫ ∞

0
P (β, τz, µ; τ0)[sinβ(τa + τy) + sin β(τa − τy)]

dβ

β

= lim
β→∞

Bβ(τz, µ; τ0)

+ lim
τy→τa

1
π

∫ ∞

0
P (β, τz, µ; τ0)[sinβ(τa + τy) + sin β|τa − τy|]

dβ

β
(37)
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and

L2 = lim
τy→τ+

a

1
π

∫ ∞

0
P (β, τz, µ; τ0)[sinβ(τa + τy) + sin β(τa − τy)]

dβ

β

= lim
τy→τa

1
π

∫ ∞

0
P (β, τz, µ; τ0)[sinβ(τa + τy)− sinβ|τa − τy|]

dβ

β
. (38)

Subtracting, we have

L1 − L2 = lim
β→∞

Bβ(τz, µ; τ0) + lim
τy→τa

2
π

∫ ∞

0
P (β, τz, µ; τ0) sinβ|τa − τy|

dβ

β
.

(39)

Since the integrand in Eq. (39) is nonsingular in the range of integration, we
can approach the limitτy → τa under the integral sign and conclude that the
discontinuity is determined by

L1 − L2 = lim
β→∞

Bβ(τz, µ; τ0). (40)

The dimensionless emissive powerBβ obeys the equation

Bβ(τz, µ; τ0) = exp(−τz/µ) +
1
2

∫ τ0

0
E1(|τz − τ ′z|, β) Bβ(τ ′z, µ; τ0) dτ ′z, (41)

where the generalized exponential integral of the first order is defined as

E1(τz, β) =
∫ ∞

1

exp(−τz(t2 + β2)1/2)
(t2 + β2)1/2

dt. (42)

In the limit β → ∞ the generalized exponential integral goes to zero and the
dimensionless emissive power is simply

lim
β→∞

Bβ(τz, µ; τ0) = exp(−τz/µ). (43)

We see that the discontinuity at the boundary of the strip depends only on the angle
of incidence and optical depth and does not depend on the optical thickness of the
medium.

5. NUMERICAL RESULTS

The dimensionless source function was computed for valuesτ0 = 1, τa = 1 and
for normal incidence (µ0 = 1). Figure 2 shows the variation of the dimensionless
source function withτy for different optical depthsτz. The jump of the source
function is caused by the finite optical width of the illuminated strip.

Figure 3 shows the run of the dimensionless radiativez-flux with the optical
width across the illuminated strip for different optical depths. Far from the edge of
the strip the flux converges to zero. As an interesting fact we may point out that
the radiative flux atτz = 0 changes sign at the strip edge. This feature quickly
disappears when the optical depth increases.
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The maxima of the dimensionless source function are given in Fig. 4 as a
function of optical widthτy at different angles of incidence. Very clearly the
maxima tend to appear at greater optical depths when we move away from the strip,
converging at the optical depthτz = 0.5, i.e. at the middle level of the atmosphere.
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Fig. 2. The dimensionless source function as a 
function of τy at different optical depths� τz. The 
optical thickness of the atmosphere is τ0 = 1, the 
cosine of the incident angle is 1.0, and the 
optical half-width of the strip is τa = 1. 

  Fig. 3. Same as Fig. 2, only for the dimension-
  less radiative flux. 

 

 

Fig. 4. The maxima of the dimensionless 
emissive power as a function of τy for different 
angles of incidence. The optical thickness of the 
atmosphere is τ0 = 1 and the optical half-width 
of the strip is τa = 1.  

Fig. 5. The optical depth at which the
dimensionless radiation flux is zero, as a func-
tion of τy for different angles of incidence. The
optical thickness of the atmosphere is τ0 = 1 and
the the optical half-width of the strip is τa = 1. 

 
 
 
 
 
 



Figure 5 shows the optical depths where the radiation flux is zero for some
angles of incidence as a function ofτy. These optical depths are smaller if the
angle of incidence is larger and approaches the valueτ0/2 if we are moving away
from the strip. Far from the strip the radiation field is symmetric with respect to the
planeτz = τ0/2 and the radiation seems to forget whether the incident radiation
came through the boundaryτz = 0 or through the boundaryτz = τ0.

The impact of the optical width of the strip on the dimensionless emissive
power at a certain optical depthτz as a function of the relationτy/τa is given in
Fig. 6. The broader the strip, the steeper is the slope of the dimensionless emissive
power both in and outside the strip. If the optical width of the strip is less than0.1,
the dimensionless emissive power is almost independent ofτy. However, the jump
at τy = τa remains.

It is interesting to point out that the emergent dimensionless flux in the centre of
the strip has a minimum while the emissive power has a maximum. This minimum
disappears when we observe the flux at a certain optical depthτz.

The run of the difference between the fluxes at the centre and at the edge of
a strip is given in Fig. 7. Forτ0 = 1.0 this difference is larger for broader strips
and the minimum itself disappears for all observed strip widths approximately at
τz ≈ 0.4.

Figure 8 shows the dependence of the dimensionless flux on the optical depth
τz atτy = 0, i.e. at the centre of the strip, for different widths of the strip. With the
broadening of the strip this dependence gets weaker and weaker, reaching almost
complete independence atτa = 10.0.
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Fig. 6. Variation of the dimensionless source 
function at the optical depth τz = 0.5 with τy/τa 
for the normal incidence (µ0 = 1.0). 

Fig. 7. The difference of the dimensionless fluxes
at τy = 0 and at τy = τa as a function of the optical
depth τz. The optical thickness of the atmosphere
is τ0 = 1 and the cosine of the incident angle is
1.0. 

 



6. CONCLUSION

The approximation of the solution of the integral equation for the dimensionless
emissive power in a plane-parallel, absorbing–emitting, optically finite atmosphere
subjected to cosine varying collimated incident radiation, and the subsequent use
of the superposition principle allows us to find the complete radiation field both
inside and outside the atmosphere illuminated by a collimated strip of radiation.
This approach is powerful enough to solve a more general problem with a constant
temperature strip at the outer boundary of a similar atmosphere.
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Fig. 8. The dimensionless flux as a function of τz at different optical half-widths of the strip τa. The 
optical thickness of the atmosphere is τ0 = 1 and the cosine of the incident angle is 1.0. 
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Emissioonivõime ja kiirgusvoog atmosfääris, mille
välispinna lõpliku laiusega triibule langeb

paralleelne kiirtekimp

Indrek Vurm ja Tõnu Viik

On vaadeldud kiirguslevi optiliselt lõpliku paksusega kahemõõtmelises tasa-
paralleelses mittehajutavas, kuid neelavas ja kiirgavas atmosfääris, mille välis-
pinna lõpmata pikale, kuid lõpliku laiusega triibule langeb paralleelne kiirtekimp.
Nagu eelmisteski artiklites [1−3] oletame siin, et atmosfäär on hall ning ta on
kiirguslikus ja lokaalses termodünaamilises tasakaalus. Ka praegusel juhul saab
kiirguslevi võrrandi taandada integraalvõrrandiks, mille omakorda saab muutujate
eraldamise teel taandada suhteliselt lihtsaks integraalvõrrandiks ühemõõtmelise
keskkonna kohta. Saab näidata, et niisugusel puhul on emissioonivõimet kirjeldava
integraalvõrrandi lahend lihtsama ülesande – ühtlaselt paralleelse kiirtekimbuga
valgustatud välispinnaga atmosfääri juhu – lahendite superpositsioon. See toob
kaasa tugevalt ostsilleeriva integrandiga integraalid, mida saab taandada suhteliselt
halvasti koonduvaks vahelduvate märkidega reaks, mille koonduvust õnnestub
Euleri võttega kiirendada.

Ulatuslikud numbrilised arvutused võimaldavad visualiseerida mõningate
kiirgusvälja olulisemate funktsioonide, nagu seda on emissioonivõime ja kiirgus-
voog, käitumist sõltuvalt atmosfääri parameetrite muutumisest.
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