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Abstract. Memory in financial time series is a well-known phenomenon. Long-term self-affine 
memory leads to fractional Brownian function and is characterized by the Hurst exponent H. This 
study aims to clarify the role of the Hurst exponent in describing financial markets. Hurst 
exponents were found for time series of Baltic and international stock exchange indices using the 
longest available period, from the beginning of the Baltic markets in 1996 up to August 2002. The 
Hurst exponents found varied from market to market. No considerable correlation was observed 
between the markets with similar Hurst exponents, but they did have similarities in economic 
situation. Therefore, the scaling analysis reveals hidden similarities between the markets, which 
open new possibilities in securities analysis. 
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1. INTRODUCTION

Regular Brownian motion, having a century-long history of research (cf. [1,2]), 
is typically considered as random walk in financial industry. It refers to a 
stochastic process where the increments in time are identically and independently 
distributed random variables. Regular Brownian motion has the following 
property of self-affine scaling: 

∆B = kT 

H,      H = 1/2. (1) 

Equation (1) can be tested empirically using simple techniques. It appears that for 
time series from numerous fields of nature, science, and also financial markets, the 
exponent is not 0.5. The first to pay attention to the values of this scaling exponent 
was British hydrologist H. E. Hurst who measured water flows in the Nile River. 
He studied a 847-year (see [3] and references therein) period and found that larger-
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than-average water flows were followed by larger larger-than-average water flows, 
and vice versa, lower-than-average flows were followed by lower lower-than-
average flows. It seemed to him a cycle, but it was nonperiodic. He developed his 
own method and found the scaling exponent for the Nile River, H = 0.91. 

Fractional Brownian motion is a generalization of regular Brownian motion 
suggested by B. B. Mandelbrot and others (see [4] and references therein). The 
basic principle is that increments in time depend on previous increments. If the 
process is turning back to the previous state, then H < 0.5; this property is called 
antipersistance [5]. If the process tends to move away, then H > 0.5; this property 
is called persistance. If H = 0.5, the process has no memory; it is a regular 
Brownian motion. Financial time series have often been described by fractional 
Brownian motion (for a good review see [6]). Fractional Brownian motion is 
characterized by the formula 

 

∆B = kT 

H,     H ≠ 0,                                              (2) 
 

where H is the Hurst exponent. 
In the case of the financial time series, it is convenient to use the term “trend”. 

If investors can see a strong trend (no matter up or down), more likely H > 0.5. If 
the market is “swinging” up and down, then it is likely that H < 0.5. 

The Hurst exponent can be measured for different periods. If H remains the 
same for all periods, it is said to have unifractal or simply fractal structure. If H 
changes intermittently in time, it is called multifractal. Stock markets are 
believed to obey a multifractal behaviour [4,7,8]. Multifractality and its 
applications are theoretically covered by many authors [9–11]. However, a proper 
multifractal analysis needs very long time series. In most cases, the time series 
are so short that calculation of multifractal spectra is, in effect, meaningless. This 
is why we have opted for a simplified approach and calculated integral Hurst 
exponents for fixed periods of time. Although such an integral exponent is far 
from being a perfect measure for intermittently fluctuating financial data, it still 
does provide an additional insight, as compared with the traditional “linear” 
measures (e.g. volatility). 

There are two questions to answer: 
1. What are the integral Hurst exponents for different stock markets? 
2. To what degree do they fluctuate in time? 
For this analysis, data of recent 5–6 years were used for different time series. 

Such a choice was dictated by the length of the history of the Baltic stock 
exchanges. Also, H was found for the S&P500 index, using 50-year data for 
determining the long-term Hurst exponent. 

 
 

2. MEASURING  THE  HURST  EXPONENT 
 
Here the analysis of stock market time series is based on the following rules: 
1. Daily closings were used for calculations. 
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2. Trading days were used as time increments (i.e. weekends were ignored, 
Friday and Monday closings were considered sequential). 

3. Exactly the first 1300 data points were used for each time series when 
measuring the short-term Hurst exponent, and 12 500 when measuring the long-
term Hurst exponent. 

We define V(t) as the value of an index at time t; n is the total number of data 
points. Further, we calculate the quantity DB(T) = <|V(t + T) – V(t)|>, for 
T = [1, 2, …, (k – 1)(1 + 1%), …, n/5]. This algorithm gives us 169 data points 
while analysing the short-term scaling, and 382 data points for the long-term 
analysis.  

The Hurst exponent was calculated according to the definition (2), using the 
least-squares fit between ln DB(T) and ln T (see Fig. 1). This method was applied 
to the following time series: 

(1) Morgan Stanley Capital Index (MSCI) World – MSCI leading stock 
market indicator covering 23 developed markets; 

(2) MSCI Europe – key indicator for European stock markets; 
(3) MSCI North America (NA) – MSCI American index covering the US and 

Canada; 
(4) Standard & Poors’ 500 (S&P500) – key American index and one of the 

world’s most widely used index; covers 70% of US market capitalization; 
(5) MSCI Emerging Markets Free (EMF) – MSCI proxy to developing world; 

the index covers 26 countries all over the Globe; 
(6) MSCI EMF Asia – MSCI Asian index covering nine countries; 
(7) MSCI Emerging Markets (EM) Eastern Europe (EE) – covers four Eastern 

European countries, including Russia; 
(8) Talse – Tallinn Stock Exchange Index; 
(9) Rici – Riga Stock Exchange Index; 
(10) Litin – Vilnius Stock Exchange Index. 
All the indices are in US dollars except for Talse (in Estonian Kroons), Rici 

(Latvian Lats), and Litin (Lithuanian Lits). 
Financial time series are single realizations of intermittently fluctuacting 

nonstationary time-series, which makes calculation of exact uncertainties of the 
scaling exponents impossible. However, rough estimates of the uncertainties 
have been obtained as follows. The least-squares fitted trendline was found as 
described above, except that the slope h was not optimized, i.e. it was considered 
as a fixed parameter. Further, the sum of squared residuals r(h) was calculated as 
a function of h. The error estimate was found as e = (H′ – H), where H is the 
least-squares fitted value of the slope, and H′ satisfies the condition r(H′) = 
2r(H). The results of calculations are shown in Table 1. 

As can be seen from the table, the long-term behaviour of the S&P500 index 
corresponds to H = 0.64, which is in good agreement with the results of previous 
studies (cf. [3]). However, for short time periods, all the developed market indices 
showed almost no persistance (or even weak antipersistance) with H ~ 0.5. This 
fact  is  not  very  surprising  because H ~ 0.55 was  previously  measured  for  the  



 201

y = 0.6544x + 1.0223

0

1

2

3

4

5

0 1 2 3 4 5 6

ln T

ln
 D

B
(T

)

 
Fig. 1. Calculation of the Hurst exponent: the case of Talse. H is found as the slope of the fitted 
trendline. 

 
 

30-year period of 1968–98 for the Deutsche Aktienindex (DAX) [12] and the São 
Paulo Stock Exchange (Bovespa) [13] Index. 

Developing markets generally (MSCI EMF), MSCI EM EE, Litin, and 
specifically MSCI EMF Asia, had the lower-than-average value of H ~ 0.6, which 
is still significantly higher than the results for the developed world indices. The 
highest persistance was observed for Tallinn and Riga exchanges, the H-values of 
which (0.65–0.68) were even higher than the long-term Hurst exponent of the 
S&P500 index. Other authors have found for similar periods H = 0.63 for Taiwan 
[14] and H = 0.91 for Bombay Stock Exchange Index [15]. The developments of 
all these markets are presented in Fig. 2. 

 

 
Table 1. Hurst exponents (H) for ten markets. For abbreviations see p. 200 

 

Name of time series Period measured H Error 

MSCI World 29 Aug 97–02 Sep 02 0.535 0.014 
MSCI Europe 29 Aug 97–02 Sep 02 0.484 0.003 
MSCI NA 29 Aug 97–03 Sep 02 0.501 0.011 
S&P500 03 Jun 96–30 Aug 02 0.542 0.018 
MSCI EMF 29 Aug 97–02 Sep 02 0.601 0.007 
MSCI EM EE 29 Aug 97–03 Sep 02 0.568 0.008 
MSCI EMF Asia 29 Aug 97–03 Sep 02 0.607 0.005 
Talse 03 Jun 96–03 Sep 02 0.654 0.010 
Rici 02 Apr 96–03 Sep 02 0.687 0.013 
Litin 07 Apr 97–02 Sep 02 0.577 0.020 

S&P500 03 Sep 52–03 Sep 02 0.643 0.015 
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Fig. 2. All ten covered market indices are indexed to 100 as of 29 August 1997. For abbreviations 
see p. 200. 

 
 
As can be seen, all the four developed market indices were quite volatile, 

resembling a regular Brownian motion. Emerging market indices are, despite a 
serious drop in the beginning, much more persistant in their movements. Their 
fractional Brownian nature becomes recognizable in a rescaled graph (Fig. 3). 
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Fig. 3. Emerging market indices are indexed to 100 as of 28 August 1998. For abbreviations see  
p. 200. 
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3. HURST  EXPONENTS  AND  STANDARD  STATISTICS 
 
The results of the previous section lead to the following questions: 
(1) Can we be sure that the similarity of certain Hurst exponent values is not 

merely related to a high correlation between the indices? Indeed, it could be quite 
natural to presume that markets that have the same tendency to remember, or the 
same level of persistance, are moving closely. To answer that question, 
correlations were calculated for all of the indices mentioned above. 

(2) Is it possible that the similarity of certain Hurst exponent values is related 
to similar volatility? Financial markets have periods of high and low volatility, so 
standard deviation of price indices is not constant. We already know (see 
Table 1) that for the recent period of the developed market indices, the value of 
the exponent H is significantly lower than in the case of long-term S&P500 time 
series. In order to determine the possible relationship between H and standard 
deviation, standard deviations of daily returns (in financial texts usually referred 
to as volatility) were calculated. 

As seen from Table 2, the correlations between Tallinn and Riga Stock 
Exchanges are weak, although the Hurst exponent values are similar. The situation 
is the same with Litin and MSCI EM EE indices. These results indicate that 
classical mean–variance security analysis (that is done mostly by using correlations 
and standard deviations) has to be re-evaluated. 

By comparing the standard deviations (volatility) and Hurst exponents we can 
see that in the developed markets case higher H corresponds to lower volatility. It 
means that when market is very volatile, then it tends to behave more randomly 
than in the case of a more stable market.  

 
Table 2. Correlations and standard deviations. All figures are percentages. For abbreviations see 
p. 200. 
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MSCI World 100          1.00 
MSCI Europe 75 100         1.23 
S&P500 88 42 100          1.32* 
MSCI NA 89 42 100 100       1.30 
MSCI EMF 60 53 41 41 100      1.24 
MSCI EMF Asia 27 26 9 9 77 100     1.61 
MSCI EM EE 43 50 23 24 62 39 100    2.23 
TALSE 11 13 3 4 18 21 20 100   2.23 
Rici – 1 – 2 – 1 0 4 6 4 15 100  1.56 
Litin 0 4 – 5 – 5 9 11 9 14 16 100 1.48 
———————— 
* The value was calculated for the short-term case. Standard deviation for the 50-year time series was 

0.90%. 
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In the case of emerging markets, the situation is opposite: higher volatility 
corresponds to a higher value of H. In other words, higher volatility leads to a 
stronger persistant memory. Such a behaviour can be explained by the market 
participants’ tendency to overreact to sharp moves. 

Why do emerging markets behave unlike developed markets? This pheno-
menon deserves further studies; a possible explanation is the following. In stock 
markets, short-term moves are described by psychology of crowd behaviour [16]. 
In developed markets, investors have seen drops and rises of indices and they 
behave more rationally: when the index is down, they are entering the market to 
buy; when the index is up, they are selling. This balances the market, but creates 
a short-term randomness in prices, which leads to a lower H. 

In emerging markets, local investors are not experienced with financial 
markets and they behave more unpredictably. They can buy when prices are 
rising and create bubbles, or they can sell when prices are dropping, and create 
crashes. Additional volatility can be ascribed to typical weaknesses of such 
markets: lack of investors, dependence on foreign interest, etc. From the 
economic point of view, the high H of such markets is achieved by the interplay 
of two scenarios: on one hand, there is much headroom for economic growth, on 
the other hand, there is increased risk of major failures (e.g. due to political 
instability). 

 
 

4. CONCLUSIONS 
 
Hurst exponents were found for ten financial time series by using the period 

of 1996–2002 and for the 50-year long time series of the S&P500 index. The 
results confirmed the presence of long-term memory in this kind of time series. 
Different periods chosen confirm that H is not constant but a changing variable 
(more detailed multifractal analysis has been rejected due to too short time-
series). Surprisingly, in the case of developed markets, short-term H results 
showed almost no persistance in memory. 

The Hurst exponent was also found to vary from market to market. Although 
the markets with a similar Hurst exponent showed no considerable correlation, 
they did have similarities in the economic situation. This opens new possibilities 
in securities analysis: similar trends can be found from other characteristics than 
employed by the classical mean–variance theory. 

By comparing Hurst exponents and standard deviations it appeared that for 
developed markets a higher volatility corresponded to a lower value of H. For 
developing markets the relationship turned to be vice versa: a higher volatility 
meant also a higher memory. This phenomenon can be explained in simple terms. 
However, to construct a quantitatively motivated model, further analysis is 
needed. 
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Hursti  astmenäitaja  olulisus  finantsaegridade  
kirjeldamisel 

 
Robert Kitt 

 
Mälu on finantsturgudel teada-tuntud nähtus. Pikaajaline eneseafiinne mälu 

viitab murrulisele Browni liikumisele, mida kirjeldab Hursti astmenäitaja H. 
Käesoleva artikli eesmärk oli näidata Hursti astmenäitaja olulisust finantsturgude 



 206

kirjeldamisel. Eesmärgi saavutamiseks tehti empiiriliselt kindlaks Balti ja teiste 
finantsturgude Hursti astmenäitaja, kasutades 1996.–2002. aasta aegridu, mis olid 
ühtlasi pikimad võimalikud aegread. Tulemused näitasid tugeva mälu olemasolu 
(H ~ 0,66–0,69) Tallinna ja Riia turgudel. See oli kooskõlas rahvusvaheliste 
arenenud turgude pikaajalisema (1952–2002) käitumisega, kuid erines oluliselt 
lühema perioodi Hursti astmenäitajatest (H ~ 0,5). Oleks loogiline arvata, et sar-
nase Hursti astmenäitajaga turud liiguvad tugevas korrelatsioonis. Paraku näitas 
analüüs, et korrelatsioonikoefitsiendid sarnaste Hursti astmenäitajatega turgude 
vahel olid tihti nõrgad. Seega annab skaleerimine uusi võimalusi finantsturgude 
paremaks kirjeldamiseks. Lisaks korrelatsiooni tugevusele mõõdeti ka Hursti 
astmenäitaja sõltuvust volatiilsusest. Leiti, et arenenud turgudel eksisteerib nega-
tiivne seos: suuremale volatiilsusele vastab juhuslikum käitumine (ehk madalam 
H). Küll aga ei kehti see tähelepanek arenevate turgude kohta. Seda on võimalik 
küllalt lihtsalt seletada, kuid kvantitatiivse mudeli jaoks on vaja lisaanalüüsi. 

 


