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Abstract. The elastic-plastic stability of an annular plate under uniform radial loads app!
at its edges is considered. Emphasis is laid on the non-axisymmetric buckling forms sinc
assumption of symmetric buckling does not necessarily lead to the lowest critical load.
a constitutive law elastic-plastic relations with linear strain hardening and the Tresca
condition are adopted. The buckling equation is integrated by the Runge—Kutta mel
Numerical results for three types of loading and two versions of the boundary conditions
presented.

Key words: annular plates, non-axisymmetric buckling, elastic-plastic material, Tresca y
condition.

1. INTRODUCTION

Elastic stability of circular and annular plates has been treated by sev
researchers under various loading and boundary conditions. In most of t
papers the buckling forms are assumed to be axisymmetric. In many cases
axisymmetric buckling forms also exist and the assumption of axisymme
buckling may overestimate the stability of the plate. In the case of n
axisymmetric buckling we have to choose such a number of waves which I
to the lowest critical load.

Non-axisymmetric buckling of elastic annular plates was discussed by Yan
[1], who considered a uniformly compressed annulus for 12 different version:
the boundary conditions. The solution is given via elliptic functions. Mansfigld
considered an elastic plate subjected to a uniform radial load along the inner ci
It is assumed that the stresses decay inversely as the square of the distance fr
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centre of the circle. It is shown that if the radial stress is compressive, the buck
mode will have rotational symmetry, but if the radial stress is tensile, the p
buckles into a number of circumferential waves (the hoop stresses are compres
Radwaiska and Waszczyszyd][examined the postbuckling behaviour of annulz
plates. The problem is solved with the aid of the orthogonalization meth
Numerical examples are given for the free inner edge and for the clamped ext
edge; compressive load is applied to the outer edge. In the paper by Kumelj
Kosel ['], stability of annular plates made of rectilinearly orthotropic material
discussed. Noteworthy is also the paper by Kosel and Chen]diedling with the
buckling of an annular plate subjected to two opposite locally acting pressures
supported at two points. To increase the buckling strength of the plate, additi
radial or circular supports can be used. The effect of a circular rigid support"
examined by Laura et al.5]and Lepik [[]. Thermal stability of annular elastic-
plastic plates with application to brake discs is discussed by Fan and Lippfjant

In this paper elastic-plastic buckling of annular plates under uniform rac
loads applied at its edges is analysed. In Section 2 the problem stateme
presented. The prebuckling state is investigated in Section 3. In Sections 4
5 the buckling equations are put together. Numerical calculations for six vers
of loading and boundary conditions, for which non-axisymmetric buckling mic
be expected, are given in Section 6. These results are discussed in Section 7.
final Section 8 some conclusions are drawn.

2. PROBLEM STATEMENT

Let us consider a thin annular plate under uniform forces applied at its e
and acting in the midplane of the plate. These forces invoke a stress state, v
is characterized by radial stress(r*) and by circumferential stress;(*), where
r* is the radial coordinate. We shall denote the radius of the inner edgeahy
the radius of the outer edge byh is the thickness of the plate.

The equation of equilibrium is

do; o — o0y
dr* r*

With the purpose of simplifying subsequent expressions, the followi

notations are introduced:

= 0. (1)

a oy P*
= — Op = — gp = — = .
Y bv r 0_87 Us’ p O'Sh,

(2)

Here P* is strength of the external force,; stands for the yield stress of the
material.
Equation (1) takes the form

TJ; 4+ o0, —09=0, 3)
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where the prime denotes differentiation with respect to the nondimensic
radiusr. In nondimensional form = v andr = 1 represent the inner and oute
edges, respectively.

Below, the following three loading types are considered.

Case A:Along the outer edge a uniform compressive stress is applied so
the boundary conditions atg.(1) = —p, o,(y) = 0.

Case B:Along the inner edge a uniform tensile stress acts; in this case we f
UT(l) =0, 0-7“(’7) = D-

Case C:Uniformly distributed compressive stresses act along the edges an
get the boundary conditions.(1) = o,(v) = —p.

The integrals of Eq. (3) are well known in the case of elastic deformations (:
e.g., Timoshenkad’]); therefore here only the final results are presented.

Case A:

2 2
p Y p TN .
e (1) e (5 E)
Case B:
2 2
Yp (1 7P I
Case C:
or = 09 = —p = const. (6)

It follows from (4)—(6) thatoy < 0 and|o,| < oy for r € [v,1]. This
circumstance creates favourable conditions for non-axisymmetric buckling.

3. PREBUCKLING STRESS STATE

Itis considerably more difficult to integrate Eq. (3) in the plastic case thanin
elastic case. To illustrate this assertion, let us turn to the monograph by II'yu:
[19]. Making use of the deformation theory and the von Mises yield condition,
solved Eq. (3) fore,, = 0, o,, # 0 (plane strain); his solution takes about te
pages. In our paper a plane stress probégm= 0, o0,, = 0 must be solved,
hereby the solution is still more complicated. Evidently we must seek for sc
simplifications.

One possibility is to replace the von Mises yield condition with the Tres
condition. For this purpose we introduce the quantity

Q = max (o], |og|, |or — 09]) @)

If Q < 1, the deformation is elastic, f@p > 1 we get the elastic-plastic case
This yield condition is shown in Fig. 1.

88



O *
ToN ‘A
B A
_ £ (1-4)
C F > Oy
0 1 O-r
E .
D E 0 e,
Fig. 1. Tresca yield condition. Fig. 2. Stress-strain diagram with

linear strain hardening.

For further simplification we assume that the material is linearly stra
hardening (Fig. 2). Ifo; ande; are effective stress and effective strain, the
according to the diagram in Fig. 2 we find

o =05+ E(1—)\)(e; —es). (8)

Introducing the symbob; = o} /o5, we can rewrite Eq. (8) in the non-
dimensional form o
oi=A+ (1 -, 9)
€s
Here A = const is the strain-hardening parameter. The inequalities A < 1
hold; limit cases correspond to the elastic and ideal-plastic material, respective
In the following treatment Cases A, B, and C must be considered separate
Case A.Making use of (4) and (7), we finQ = —oy. Consequently, transition
into the plastic state takes place through the segment DE in Fig. 1. It follows fi
the associated flow rule that

del =0, del) = —doj. (10)

Here el and ¢l are plastic parts of the strains. The quantlfy is defined as
H' = do}/de’, wheree! is the effective plastic strain. In the case of the line:
strain-hardening material it follows from (8) that

1—A

H =E——. 11
: CEN
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Next we integrate Egs. (10) and present the result in nondimensional form

esA
1-A

L =0, e = (og+1). (12)

It is assumed that the strains are divisible into elastic and plastic parts
er=ey+eb, ey =ef+el (13)

The elastic parts are (s the Poisson ratio)

el = es(o, —voy), eg=es(op—voy). (14)

Making use of (12)—(14), we find

oy = A{l ler + (1 — A)eg] — 1/)\},

€s
g = A [1 (erv +e9) (1= \) — )\} , Y

€s

whereAd = (1 — v + \?) 7L
Denoting the nondimensional radial displacement.by «* /b, we have

er =1, eg=u/r. (16)
Replacing (15) and (16) into Eq. (3), we find
r2u” +ru’ — (1 — Nu = —e A1 —v)r. (17)
The general solution of this equation is
u=CPrd + C%r ™ —e,(1—v)r, (A=+V1-N). (18)

HereC?, C¥ are the integration constants. Taking into account (16) and (18),
can rewrite (15) in the form

oy = om’Afle + agr*AflC’g -1,

(19)
g = Pir IO + Bor A ICE — 1,
where
o :?[A—i—u(l—)\)], a2:€é[_A+y(1—A)],
; ; (20)
Br=—(1=N{A+vA), Br=—(1-N)(1-rA)
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Elastic deformations can be treated in a similar way. By doing this we find
the elastic region

1
u = Cfr‘i_cs;,
1 [ Cf Cs
- L _ , 21
7 es <1—V (1+V)r2> (21)

e e
70 = S \1-v (1+wv)r2)

In the present case plastic deformations appear in thezen, o; for r € [, 1]
the deformations are elasti¢js the radius separating these zones.

There are five unknown constants in (19)-(20), C§, C7, C%, and the
radius o (or the corresponding load parameggr To evaluate these constants
we shall satisfy the boundary conditioas(y) = 0, o,(1) = —p, the condition
og(0—) = —1, and the continuity conditions far ando, atr = p. Doing so we
get a system of five equations. To solve this system, it is expedient to pregcri
and calculate from the conditiors,.(1) = —p. The final results can be presente
in the form

-1
1 b A—
o= <@17A 1 oA 1) ’

2
g = -G,

Cf = 50 el V)orle) + Tule)]. 22
C; = oule—)—Cidl,

_ 1[G
po= s l—v 14v)’
whereo, (o—) andu(o—) are evaluated fromil8) and(19);.
As an example the calculations were carried out for: /(i 0.2, p = 0.4
(Fig. 3a, elastic case) and (i{)= 0.2, p = 0.78, o = 0.6 (Fig. 3b, elastic-plastic

case).
Case B.It follows from (5) that

Q = o, — oy.

Consequently, plastic deformations appear if we move through the edge E
Fig. 1.
According to the associated flow rule, we have

1 1
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The integral form of these equations, if we take into account (11), is

e
1-—A

_)\es
1-—A

el = (o —09g—1), €)= (o —0g—1). (23)
For the elastic parts of the strainsand ej, (14) holds. Making use of (13), we
find

1 1

Or = (1-v)(1+K) [es(er—i—Keg)%-/\(l—y) ’ o
1 1

09 = (1-v)(1+K) LS(KeT +eg) — A1 — V)} :

whereK = v + A(1 —v).

a
@ ®
o ag
02 -0.2
1
-0.4
-0.4 S —— 1
06
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- - 2 /
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Fig. 3. Stresses versus radial coordinate: 1, radial stegss2, hoop stressry. The
following versions are considered: (a) CasepA= 0.4, v = 0.2 (elastic); (b) Case A,
p = 0.78, o = 0.6, v = 0.2 (elastic-plastic); (c) Case By = 0.4, v = 0.4 (elastic);
(d) Case Bp = 0.91, o = 0.6, v = 0.4 (elastic-plastic).
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The following way of solution is quite similar to that used in Case A. Therefc
we leave out the details and confine us to the final results.
In the plastic zone € [0, o] we have

1
u = Clr+CY=— desr(Inr —0.5),
r

1, 1=X1 _, Qdeslnr  des(1+A)
sOr - —- - , 25
7 O T BT T oy Tk T (25)
1 1-A1 sl s(1
ooy — or 4 )‘701’_)‘6 nr Aes(1+2)

l-v ' K41r272 1-v  2K+1)°

These results are applicable also in the elastic zore [, 1] if we replace
A —0,CY — Cf, CF — C5. Satisfying the conditions

or(y) =p, 0:(1)=0, or(0+)—0oplot+)=1,

or(0t+) = or(0—), u(ot) = ulo—),

we find
e 1 2 e 1 2
cy = —5639 (1-v), 02:—5639 (1+v),
1
ct = —)\eslng—iesf(l—y), (26)
1
G = —jesd(1+v=2), p=o3).

Numerical calculations fory = 0.4, p = 0.4 (elastic case) and foy =
0.4, 0 =0.6, p=0.91 (elastic-plastic case) are shown in Fig. 3c,d.

Case C Equations (6) hold also in the elastic-plastic case 1 (now the whole
plate is in the plastic state).

It is useful to know the loag., at which first plastic deformations appea
This load can be determined from the conditiop(y) = —1 (Case A) or
or(v) — og(y) = 1 (Case B). Taking into account (4) and (5), we see that in bc
cases

p+ = 0.5(1—+%). (27)

In Case Cpy = 1.

4. VARIATION OF STRAINS AND STRESSES
To derive the bifurcation equation, we must vary the strain and stress state.
strain variations for a point off the middle surface at distaticare (see, e.g.}{],
p. 156):
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L 0%w*
or*2’
L [ 1 o0w* 1 0%w*
o0 = e <a_2302)
1 ow* _ l82w*
r00 or*  r2 00

be, = Ogp — 2

(28)

deg = Ocpg—22° <

Heree,, ¢4, .9 denote the middle surface strains} is the deflection of the
buckled plateg is the polar angle. Next we introduce nondimensional quantit
w = w*/h, z = z*/h and seek nondimensional deflections in the form

w(r,0) =W(r)cosmf (m=0,1,2,3,...). (29)

In view of (28), we find

h 2
e, = (55T—(> 2W" cosmb,

b
M\? (1 2
deog = deg— () (W + W) cosm, (30)
b r 72
M (1, 1 .
0eqg = Oep+2m| =) z|-W — =W | sinmb.
b r r2

To calculate the stress variatiofs,., dog, we must consider Cases A, B, ani
C separately.
Case A.By varying Egs. (15) we find

es00, = s10e, + s9dey,

(31)
es009 = s3de, + s4dey,
where

s1=A, sa=Av(l—X), s3=s2, s4=A(1-N). (32)

Case B.Here we vary (24). Equations (31) hold if we take

1 K

_ - =~ = =s;. (33
Case C.In this caser, = gy = —p and we find ourselves in the cornBrin

Fig. 1. Since here plastic flow is nonunique, a special treatment is necessary
proceed from Egs. (19) of the papéf]} which for our case can be put into the
form (31), where

4-3) o Ar(l-)) -
N I 2 — 93 — N

S1 = 84 = (34)
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and
N=21+v)2(1 =N —-v)+ A

Equations (32)—(34) are valid also in the elastic case if we kake0.

5. BUCKLING EQUATION

To analyse the bifurcation process, we shall start from the equilibrium equat
(see, e.g., (2.162)—(2.165) in the text-bodk]}. For our problem and in our
notations these equations obtain the form

OM,  OM.,
TQT_M’I’_MQ—i_T or + 90 5
oMy M.
TQG_W+2M7*9+T ar ,
(35)
OPw  Oordw)  Ow 1( Ow  0opduw
"\T o2 T or ar ) T r T\ 002 T 90 00
8@7‘ aQG _
+ Qr +r ar W =0.

HereM,, My, M,y are nondimensional moments, which can be calculated fr
the formulae

0.5 0.5 0.5
M, = 4/ dopzdz, My= 4/ dopzdz, My = 4/ dorgzdz, (36)
—05 —0.5 —0.5

andQ),, Qg are nondimensional transverse shear forces.

In the bifurcation theory of elastic-plastic structures a complicated problem i
determine the size and form of the elastic unloading zone. Several discussions
been held about this problem, nevertheless we do not yet have a mathemat
correct solution. Therefore we make use of the Shanley concept, accordir
which unloading at the bifurcation point may be neglected. Such a simplif
approach is favoured by the following facts:

(i) The Shanley concept has been successfully applied by many authors
results obtained are in good accordance with experimental data.

(il) By neglecting the strain reversal we obtain the lower bound for the criti
loads.

Further discussion about the admissibility and expediency of the Shai
concept can be found id}'4].
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Since according to the Shanley concept no unloading takes place, we
integrate (36). Taking into account (29)—(31), we find

1 2
M, = 7% cosmé [le” + 59 <W’ - mW>] ,
T

1"2
, (37)
1
My = _E cosme [53W” + 54 <W’ - m2W>] ,
3 r r
wherey = (h/b)?/es.
Now let us evaluaté/,y. Since before bifurcatiom,.y = 0, it is logical to
assume that the variation of the shear stiesg is elastic and can be calculates
according to the formula

0o = gé@r@ = i

_ 38
Os 2(1+v)es’ (38)
whered is the shear modulus. It follows from (36) that
1 um 1, 1
_ = g W - = ) 39
M, 31+V51nm0 <7‘W TQW) (39)

Next we calculate),., Qy from (35); and (35, and replace the results intc
(35)3. By doing this we find

w4 A3W/// + AQW” + A1W/ + AgW =0, (40)

where

1
Az = (281 + S9 — 53)7,
S1Tr

2 1 120
Ay = — 2 — 4
2 [54 +m <82 + 83 + 1T y)] 52 s

1 1 12 (41)
oL
A= 2m? _
! [84+ " <S2+ 1—|—1/>] s1r3 sy’
2 1 12m?oy
Ay = —m? ( 255 + 254 — m? :
0 m < So + 254 —m~s4 + 1+V> sl o1

In the elastic region, whene> o, we take again = 0.

To integrate (40), we must specify the boundary conditions. The main vers
for this are:

(i) clamped edgé?V = W' = 0;

(i) simply supported edgé’ = M, = 0;

(iii) free edgeM, = 0 andQ; + o} (dw*/dr*) = 0 (in dimensionless form the
last equation i€, + 4pW’ cos m# = 0).
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Since (38) is linear with regard @, the superposition method can be used
solve the boundary value problem. To illustrate the application of this method
us consider a plate with both ends clamped.

The general solution of (40) can be written in the form

W = CiWy + CoWa + C3W3 + Cy Wy, (42)

where Wy, W,, Wi, Wy are particular solutions satisfying the boundai
conditions

Wi(y) =0, Wll(’y) =0, Wlu(’Y) =1, W{”(’Y) =0,
Wa(y) =0, Wé(’y) =0, Wé/(’Y) =0, Wé//(’}/) =1,
Ws(v) =1, Wé(’y) =0, Wé,(f}/) =0, W?/)H(V) =0,
Wa(v) =0, Wi(’y) =1, WZY(’Y) =0, W;i”(’}/) = 0.

The conditiongV (y) = W'(y) = 0 are satisfied it”s = C, = 0. Fulfilling
the conditiong¥V (1) = W'(1) = 0, we get

01W1(1) + CQWQ(l) =0,

(43)
01W1’(1) + CQWQ,(I) =0.
This system has a nontrivial solution if its determinant is zero:
D = Wi (1)W3(1) — Wa(1)Wi(1) = 0. (44)

We can choose one of the coefficients in (43) arbitrarily by taking, for exam
Cy = 1. ThenCy = —W;(1)/W3(1) and according to (42) we find

@)
Wa(1)

W(r) = Wi(r) Wa(r). (45)

Other boundary value problems can be treated in a similar way.

To calculate the critical loads and the deflection shapes, the following -
algorithms are proposed.

Algorithm 1. This algorithm is applicable to plastic buckling in the Cases
and B.

Step 1: Specify the values efandm.

Step 2: Making use of (19)—(21) in Case A and of (24)—(26) in Case B, calcu
the stresses for the prebuckling state.

Step 3: Evaluate the coefficiently, A1, As, Az according to (41).

Step 4: By integrating (40) find the partial solutiding, Ws.

Step 5: Calculate the determinantin (44).
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Step 6: If D # 0, changep and return to Step 1 (making use of linea
interpolation, we shall repeat this step until the condition= 0 is fulfilled with
the prescribed accuracy).

Step 7: Evaluate the critical loadg;.

Step 8: Repeat this procedure for different valuesohind find the value for
which pg, is minimal.

Step 9: Making use of (45) and (29), calculate the functioa w(r, 0).

Algorithm 2. This algorithm holds good for elastic buckling in Cases A and
and for Case C (elastic and plastic buckling). Algorithm 1 remains applicable if
carry out the following changes:

() In Steps 1 and 6, instead of we shall prescribe the load

(i) Steps 2 and 7 will be omitted.

6. NUMERICAL EXAMPLES

In the examples given below calculations were carried out for mate
parametery = 0.3, A = 0.95, e; = 0.004. Equation (40) was integrated using
the Runge—Kutta method with the st&p= 0.01(1 — 7).

Two versions of boundary conditions were considered:

(i) Both ends of the plate are clamped (vers@h+ C1).

(ii) The inner edge is free, the outer edge clamped (vers8ioA- CI).

It should be noted that for elastic deformations and also for Case C the nur
of parameters may be reduced by one if we introduce a new parameter

_12p
“

P (1—1v2). (46)

Now the solutions do not depend upon the relatiph.

The critical values of the parametBrare shown in Tables 1-3, wheye= a/b.
The integenn is the wave number for whick is minimal. The symboP? is the
critical load for axisymmetric buckling. Dashes in the last columns of the tak
indicate that axisymmetric buckling does not take place. It is essential to know
load at which the first plastic deformations appear; it is markeg,byrhe symbol
(b/h). marks the relation at which the load is attained.

For plastic deformations in Cases A and B the coordinaseparating the
elastic and plastic zones depends upon the reldtian Consequently, different
values ofb/h produce different buckling forms. Plastic deformations take place
b/h < (b/h).. Critical loadsp for plastic buckling are listed in Tables 4 and £
where for each value of two typical values ob/h, for which the critical load is
calculated, are taken. Contour plots for the buckling forms are shown in Fig. 4.
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Table 1. Case A, eastic buckling

0
y P, (b/h), P m P
Both edges clamped
0.2 0.48 51.2 55.1 2 69.8
0.4 0.42 69.1 88.2 4 141.8
0.6 0.32 102.8 147.0 8 360.7
0.8 0.16 213.7 318.0 20 1631.7
Outer edge clamped, inner edge free
0.2 0.48 317 211 0 21.1
0.4 0.42 385 27.2 1 -
0.6 0.32 487 331 3 -
0.8 0.16 88.1 54.3 8 -
Table 2. Case B, elastic buckling
0
% P, (b/hy, P m P
Both edges clamped
0.2 0.48 180.8 691.7 4 12819
0.4 0.42 140.3 364.0 6 12080
0.6 0.32 152.0 324.6 10 28310
0.8 0.16 2531 454.0 22 63109
Outer edge clamped, inner edge free
0.2 0.48 141.8 421.6 1 963
0.4 0.42 98.7 178.8 3 580
0.6 0.32 88.6 109.7 5 735
0.8 0.16 116.1 94.2 10 2020
Table 3. Case C, dastic and plastic buckling
0 0
y (b/h), | Py My Py R My R
Both edges clamped
0.2 35.6 55.7 2 62.2 141.2 2 157.7
0.4 47.9 101.0 3 109.2 255.9 3 276.7
0.6 72.1 2287 5 244.7 579.8 5 620.2
0.8 144.3 917.3 11 977.5 2325.8 11 2477.3
Outer edge clamped, inner edge free
0.2 15.8 10.9 0 10.9 14.6 0 14.6
0.4 15.8 10.9 0 10.9 16.3 0 16.5
0.6 20.6 185 0 185 259 0 259
0.8 38.6 65.2 0 65.2 77.6 0 77.6
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Table 4. Case A, plastic buckling

0
y b/h p m P p
Both edges clamped
0.2 50 0.505 2 0.211 0.644
40 0.742 2 0.462 -
0.4 60 0.545 4 0.590 -
50 0.585 5 0.734 -
0.6 80 0.389 9 0.818 -
75 0.395 9 0.862 -
0.8 200 0.188 20 0.841 -
160 0.198 21 0.921 -
Outer edge clamped, inner edge free
0.2 25 0.642 2 0.304 -
20 0.735 2 0.444 -
0.4 25 0.491 2 0.485 -
20 0.605 3 0.918 -
0.6 40 0.334 3 0.638 -
30 0.387 5 0.806 -
0.8 70 0.187 9 0.835 -
60 0.193 12 0.879 -
Tableb5. Case B, plastic buckling
0
y b/h p m p p
Both edges clamped
0.2 160 0.651 4 0.226 -
120 1.043 4 0.300 -
0.4 120 0.607 6 0.465 -
100 0.836 6 0.564 -
0.6 140 0.399 10 0.648 -
120 0.565 11 0.774 -
0.8 220 0.230 22 0.856 -
210 0.276 23 0.921 -
Outer edge clamped, inner edge free
0.2 130 0.964 1 0.284 1.175
110 1.155 1 0.326 1.383
0.4 90 0.687 3 0.497 1.065
80 0.787 3 0541 1.145
0.6 80 0.450 6 0.682 -
60 0.564 7 0.773 -
0.8 100 0.205 14 0.827 -
60 0.241 20 0.871 -



(b)

Fig. 4. Contour diagrams for deflection patterns: (a) Cas€A:+ Cl; v = 0.2, b/h = 40,
m = 2; (b) Case B:.Cl + Cl; v = 0.2, b/h = 120, m = 4; (c) Case C:Cl + CI;
~v=0.2, b/h = 30, m = 2; (d) Case A:Cl + Fr; v = 0.6, b/h = 30, m = b5;
(e) Case BCl + Fr; v = 0.4, b/h = 80, m = 3; (f) Case C:Cl + Fr; v = 0.4,
b/h =10, m = 0.

101



7. DISCUSSION

Analysing the numerical data given in Section 6, we can draw the followi
conclusions.

(i) For the cases considered in this paper non-axisymmetric buckling domin
Axisymmetric buckling leads to the lowest critical load only in Case&€:+ Cl
and also in Case AF'r + Cl1 if v = 0.2 (elastic buckling). In several cases n
axisymmetric buckling forms were registered at all (e.g. for plastic buckling
Cases A and B). In some cases the axisymmetric buckling form exists, but it re:
in very high buckling loads which have no practical meaning (see, e.g., Cas
Cl + Cl, elastic buckling).

(i) The number of circumferential waves increases with the parameter
This conclusion is valid both for elastic and elastic-plastic buckling.

(iii) As follows from Tables 1-5, the wave numbers for elastic and plas
buckling are practically the same if both edges of the plate are clamped.
conclusion holds also for Case Er + Cl. In Case A:Fr + Cl and Case B:
Fr + CI, transition to plastic deformations causes the growth of wave numt
(especially for greater values 6j.

(iv) Taking into account plastic deformations, we can increase the critical lo
considerably. For example, let us take Case& B+ C! for v = 0.2. The elastic
limit load is p; = 0.48, the plastic critical load fob/h = 120 isp = 1.043;
consequentlyp/p; = 2.17.

It is of interest to compare our numerical results with the results of other paj
(of course, this can be done only in the case of elastic buckling, since we hav
comparative data for plastic buckling). Yamak] pnalysed buckling of annular
plates under uniform compressive forces (our Case C). His paramet@n be
calculated from the paramet&;, according to the formula® = P,,. For Case C:
Cl+ Cl, wherey = 0.4, we findk = 10.05 (Yamaki’s value isl0.10); for Case C:
Fr+ Cl, by takingy = 0.6, we getk = 4.30 (Yamaki’s value ist.29). In all cases
also the wave numbers for our results and for the pajstrictly coincide. So, the
accordance with Yamaki's results is rather good.

Next we shall concentrate on the case where tensile radial stress acts at the
edge (our Case B). Mansfield] [used the stress field

ol 2
OrM = —0gM =D (;) , (47)

which is different from our Eq. (5). For this reason, along the outer edgd acts
the stress

2
OrM = —09gM = D7

If we compare the circumferential stresses according to Egs. (5) and (47)
find .
0-9 2

- = 1 ) 48
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Since|og| > |ogas| and the non-axisymmetric buckling is caused mainly by tt
hoop stresses, Mansfield’s critical loads could be expected to be greater than
The calculations confirm this fact. As an example let us consider CaSeé B:C!
for v = 0.1, whereP = 1613.1. Mansfield’s loading parameter is

By = i(u —1)> = Py(1—7)*

It follows from here that3, = 131. According to Fig. 4 in the papef]we
have~ 175. If v = 0.2, we obtaing; = 89, while Mansfield’s value isv 140.
In both cases the wave numbers coincide with our wave numbers. Thus, in
opinion, the coincidence with Mansfield’s results may be regarded as satisfact

8. CONCLUSIONS

A method for the investigation of the buckling of elastic-plastic annular plai
was proposed. The loading and boundary conditions were chosen such that
axisymmetric buckling could be expected. The numerical examples show the
most cases the lowest critical load is realized for non-axisymmetric buckling. -
recommended method of solution is applicable also to other loading and boun
conditions which were not considered in the present paper.
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Elastsete-plastsete rongasplaatide mittesimmeetriline

stabiilsuse kadu

Ulo Lepik

On uuritud elastsete-plastsete rdngasplaatide stabiilsust rajajoontel raken

radiaalsete jdudude mdju korral. On eeldatud, et plaadi materjal on lineaa
kalestuv ning allub Tresca voolavustingimusele.
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