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Non-axisymmetric buckling of elastic-plastic
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Abstract. The elastic-plastic stability of an annular plate under uniform radial loads applied
at its edges is considered. Emphasis is laid on the non-axisymmetric buckling forms since the
assumption of symmetric buckling does not necessarily lead to the lowest critical load. As
a constitutive law elastic-plastic relations with linear strain hardening and the Tresca yield
condition are adopted. The buckling equation is integrated by the Runge–Kutta method.
Numerical results for three types of loading and two versions of the boundary conditions are
presented.
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1. INTRODUCTION

Elastic stability of circular and annular plates has been treated by several
researchers under various loading and boundary conditions. In most of these
papers the buckling forms are assumed to be axisymmetric. In many cases non-
axisymmetric buckling forms also exist and the assumption of axisymmetric
buckling may overestimate the stability of the plate. In the case of non-
axisymmetric buckling we have to choose such a number of waves which leads
to the lowest critical load.

Non-axisymmetric buckling of elastic annular plates was discussed by Yamaki
[1], who considered a uniformly compressed annulus for 12 different versions of
the boundary conditions. The solution is given via elliptic functions. Mansfield [2]
considered an elastic plate subjected to a uniform radial load along the inner circle.
It is assumed that the stresses decay inversely as the square of the distance from the
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centre of the circle. It is shown that if the radial stress is compressive, the buckling
mode will have rotational symmetry, but if the radial stress is tensile, the plate
buckles into a number of circumferential waves (the hoop stresses are compressive).
Radwánska and Waszczyszyn [3] examined the postbuckling behaviour of annular
plates. The problem is solved with the aid of the orthogonalization method.
Numerical examples are given for the free inner edge and for the clamped external
edge; compressive load is applied to the outer edge. In the paper by Kumelj and
Kosel [4], stability of annular plates made of rectilinearly orthotropic material is
discussed. Noteworthy is also the paper by Kosel and Chen Jin [5] dealing with the
buckling of an annular plate subjected to two opposite locally acting pressures and
supported at two points. To increase the buckling strength of the plate, additional
radial or circular supports can be used. The effect of a circular rigid support was
examined by Laura et al. [6] and Lepik [7]. Thermal stability of annular elastic-
plastic plates with application to brake discs is discussed by Fan and Lippmann [8].

In this paper elastic-plastic buckling of annular plates under uniform radial
loads applied at its edges is analysed. In Section 2 the problem statement is
presented. The prebuckling state is investigated in Section 3. In Sections 4 and
5 the buckling equations are put together. Numerical calculations for six versions
of loading and boundary conditions, for which non-axisymmetric buckling might
be expected, are given in Section 6. These results are discussed in Section 7. In the
final Section 8 some conclusions are drawn.

2. PROBLEM STATEMENT

Let us consider a thin annular plate under uniform forces applied at its edge
and acting in the midplane of the plate. These forces invoke a stress state, which
is characterized by radial stressσ∗

r (r
∗) and by circumferential stressσ∗

θ(r
∗), where

r∗ is the radial coordinate. We shall denote the radius of the inner edge bya and
the radius of the outer edge byb; h is the thickness of the plate.

The equation of equilibrium is

dσ∗
r

dr∗
+

σ∗
r − σ∗

θ

r∗
= 0. (1)

With the purpose of simplifying subsequent expressions, the following
notations are introduced:

r =
r∗

b
, γ =

a

b
, σr =

σ∗
r

σs
, σθ =

σ∗
θ

σs
, p =

P ∗

σsh
. (2)

Here P ∗ is strength of the external force,σs stands for the yield stress of the
material.

Equation (1) takes the form

rσ′
r + σr − σθ = 0, (3)
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where the prime denotes differentiation with respect to the nondimensional
radiusr. In nondimensional formr = γ andr = 1 represent the inner and outer
edges, respectively.

Below, the following three loading types are considered.
Case A:Along the outer edge a uniform compressive stress is applied so that

the boundary conditions areσr(1) = −p, σr(γ) = 0.
Case B:Along the inner edge a uniform tensile stress acts; in this case we have

σr(1) = 0, σr(γ) = p.
Case C:Uniformly distributed compressive stresses act along the edges and we

get the boundary conditionsσr(1) = σr(γ) = −p.
The integrals of Eq. (3) are well known in the case of elastic deformations (see,

e.g., Timoshenko [9]); therefore here only the final results are presented.
Case A:

σr = − p

1− γ2

(
1− γ2

r2

)
, σθ = − p

1− γ2

(
1 +

γ2

r2

)
; (4)

Case B:

σr =
γ2p

1− γ2

(
1
r2
− 1

)
, σθ = − γ2p

1− γ2

(
1 +

1
r2

)
; (5)

Case C:
σr = σθ = −p = const. (6)

It follows from (4)–(6) thatσθ < 0 and |σr| < σθ for r ∈ [γ, 1]. This
circumstance creates favourable conditions for non-axisymmetric buckling.

3. PREBUCKLING STRESS STATE

It is considerably more difficult to integrate Eq. (3) in the plastic case than in the
elastic case. To illustrate this assertion, let us turn to the monograph by Il’yushin
[10]. Making use of the deformation theory and the von Mises yield condition, he
solved Eq. (3) forezz = 0, σzz 6= 0 (plane strain); his solution takes about ten
pages. In our paper a plane stress problemezz 6= 0, σzz = 0 must be solved;
hereby the solution is still more complicated. Evidently we must seek for some
simplifications.

One possibility is to replace the von Mises yield condition with the Tresca
condition. For this purpose we introduce the quantity

Q = max (|σr|, |σθ|, |σr − σθ|) . (7)

If Q < 1, the deformation is elastic, forQ ≥ 1 we get the elastic-plastic case.
This yield condition is shown in Fig. 1.
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Fig. 1. Tresca yield condition. Fig. 2. Stress-strain diagram with
linear strain hardening.

For further simplification we assume that the material is linearly strain-
hardening (Fig. 2). Ifσ∗

i and ei are effective stress and effective strain, then
according to the diagram in Fig. 2 we find

σ∗
i = σs + E(1− λ)(ei − es). (8)

Introducing the symbolσi = σ∗
i /σs, we can rewrite Eq. (8) in the non-

dimensional form
σi = λ + (1− λ)

ei

es
. (9)

Hereλ = const is the strain-hardening parameter. The inequalities0 ≤ λ ≤ 1
hold; limit cases correspond to the elastic and ideal-plastic material, respectively.

In the following treatment Cases A, B, and C must be considered separately.
Case A.Making use of (4) and (7), we findQ = −σθ. Consequently, transition

into the plastic state takes place through the segment DE in Fig. 1. It follows from
the associated flow rule that

dep
r = 0, dep

θ =
1

H ′dσ∗
θ . (10)

Here ep
r and ep

θ are plastic parts of the strains. The quantityH ′ is defined as
H ′ = dσ∗

i /dep
i , whereep

i is the effective plastic strain. In the case of the linear
strain-hardening material it follows from (8) that

H ′ = E
1− λ

λ
. (11)
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Next we integrate Eqs. (10) and present the result in nondimensional form

ep
r = 0, ep

θ =
esλ

1− λ
(σθ + 1). (12)

It is assumed that the strains are divisible into elastic and plastic parts

er = ee
r + ep

r , eθ = ee
θ + ep

θ. (13)

The elastic parts are (ν is the Poisson ratio)

ee
r = es(σr − νσθ), ee

θ = es(σθ − νσr). (14)

Making use of (12)–(14), we find

σr = A

{
1
es

[er + ν(1− λ)eθ]− νλ

}
,

σθ = A

[
1
es

(erν + eθ) (1− λ)− λ

]
,

(15)

whereA = (1− ν2 + λν2)−1.
Denoting the nondimensional radial displacement byu = u∗/b, we have

er = u′, eθ = u/r. (16)

Replacing (15) and (16) into Eq. (3), we find

r2u′′ + ru′ − (1− λ)u = −esλ(1− ν)r. (17)

The general solution of this equation is

u = Cp
1rΛ + Cp

2r−Λ − es(1− ν)r, (Λ =
√

1− λ). (18)

HereCp
1 , Cp

2 are the integration constants. Taking into account (16) and (18), we
can rewrite (15) in the form

σr = α1r
Λ−1Cp

1 + α2r
−Λ−1Cp

2 − 1,

σθ = β1r
Λ−1Cp

1 + β2r
−Λ−1Cp

2 − 1,
(19)

where

α1 =
A

es
[Λ + ν(1− λ)] , α2 =

A

es
[−Λ + ν(1− λ)] ,

β1 =
A

es
(1− λ)(1 + νΛ), β2 =

A

es
(1− λ)(1− νΛ).

(20)
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Elastic deformations can be treated in a similar way. By doing this we find for
the elastic region

u = Ce
1r + Ce

2

1
r
,

σr =
1
es

(
Ce

1

1− ν
− Ce

2

(1 + ν)r2

)
, (21)

σθ =
1
es

(
Ce

1

1− ν
+

Ce
2

(1 + ν)r2

)
.

In the present case plastic deformations appear in the zoner ∈ [γ, %]; for r ∈ [%, 1]
the deformations are elastic,% is the radius separating these zones.

There are five unknown constants in (19)–(21):Ce
1 , Ce

2 , Cp
1 , Cp

2 , and the
radius% (or the corresponding load parameterp). To evaluate these constants,
we shall satisfy the boundary conditionsσr(γ) = 0, σr(1) = −p, the condition
σθ(%−) = −1, and the continuity conditions foru andσr at r = %. Doing so we
get a system of five equations. To solve this system, it is expedient to prescribe%
and calculatep from the conditionσr(1) = −p. The final results can be presented
in the form

Cp
1 =

(
α1γ

Λ−1 − α2β1

β2
%2Λγ−Λ−1

)−1

,

Cp
2 = −β1

β2
%2ΛCp

1 ,

Ce
1 =

1
2
(1− ν)

[
es(1 + ν)σr(%−) +

1
%
u(%−)

]
, (22)

Ce
2 = %[u(%−)− Ce

1%],

p =
1
es

(
− Ce

1

1− ν
+

Ce
2

1 + ν

)
,

whereσr(%−) andu(%−) are evaluated from(18) and(19)1.
As an example the calculations were carried out for: (i)γ = 0.2, p = 0.4

(Fig. 3a, elastic case) and (ii)γ = 0.2, p = 0.78, % = 0.6 (Fig. 3b, elastic-plastic
case).

Case B.It follows from (5) that

Q = σr − σθ.

Consequently, plastic deformations appear if we move through the edge EF in
Fig. 1.

According to the associated flow rule, we have

dep
r =

1
H ′ (dσ∗

r − dσ∗
θ), dep

θ =
1

H ′ (dσ∗
θ − dσ∗

r ).
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The integral form of these equations, if we take into account (11), is

ep
r =

λes

1− λ
(σr − σθ − 1), ep

θ = − λes

1− λ
(σr − σθ − 1). (23)

For the elastic parts of the strainsee
r and ee

θ, (14) holds. Making use of (13), we
find

σr =
1

(1− ν)(1 + K)

[
1
es

(er + Keθ) + λ(1− ν)
]

,

σθ =
1

(1− ν)(1 + K)

[
1
es

(Ker + eθ)− λ(1− ν)
]

,

(24)

whereK = ν + λ(1− ν).

Fig. 3. Stresses versus radial coordinate: 1, radial stressσr; 2, hoop stressσθ. The
following versions are considered: (a) Case A,p = 0.4, γ = 0.2 (elastic); (b) Case A,
p = 0.78, % = 0.6, γ = 0.2 (elastic-plastic); (c) Case B,p = 0.4, γ = 0.4 (elastic);
(d) Case B,p = 0.91, % = 0.6, γ = 0.4 (elastic-plastic).
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The following way of solution is quite similar to that used in Case A. Therefore
we leave out the details and confine us to the final results.

In the plastic zoner ∈ [0, %] we have

u = Cp
1r + Cp

2

1
r
− λesr(ln r − 0.5),

esσr =
1

1− ν
Cp

1 −
1− λ

K + 1
1
r2

Cp
2 −

λes ln r

1− ν
+

λes(1 + λ)
2(K + 1)

, (25)

esσθ =
1

1− ν
Cp

1 +
1− λ

K + 1
1
r2

Cp
2 −

λes ln r

1− ν
− λes(1 + λ)

2(K + 1)
.

These results are applicable also in the elastic zoner ∈ [%, 1] if we replace
λ → 0, Cp

1 → Ce
1 , Cp

2 → Ce
2 . Satisfying the conditions

σr(γ) = p, σr(1) = 0, σr(%+)− σθ(%+) = 1,

σr(%+) = σr(%−), u(%+) = u(%−),

we find

Ce
1 = −1

2
es%

2(1− ν), Ce
2 = −1

2
es%

2(1 + ν),

Cp
1 = −λes ln %− 1

2
es%

2(1− ν), (26)

Cp
2 = −1

2
es%

2(1 + ν − λ), p = σ2(γ).

Numerical calculations forγ = 0.4, p = 0.4 (elastic case) and forγ =
0.4, % = 0.6, p = 0.91 (elastic-plastic case) are shown in Fig. 3c,d.

Case C.Equations (6) hold also in the elastic-plastic casep > 1 (now the whole
plate is in the plastic state).

It is useful to know the loadp+, at which first plastic deformations appear.
This load can be determined from the conditionσθ(γ) = −1 (Case A) or
σr(γ)− σθ(γ) = 1 (Case B). Taking into account (4) and (5), we see that in both
cases

p+ = 0.5(1− γ2). (27)

In Case C,p+ = 1.

4. VARIATION OF STRAINS AND STRESSES

To derive the bifurcation equation, we must vary the strain and stress state. The
strain variations for a point off the middle surface at distancez∗ are (see, e.g., [11],
p. 156):
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δer = δεr − z∗
∂2w∗

∂r∗2
,

δeθ = δεθ − z∗
(

1
r∗

∂w∗

∂r∗
− 1

r∗2
∂2w∗

∂θ2

)
, (28)

δerθ = δεrθ − 2z∗
(

1
r∗∂θ

∂w∗

∂r∗
− 1

r2

∂2w∗

∂θ

)
.

Here εr, εθ, εrθ denote the middle surface strains,w∗ is the deflection of the
buckled plate,θ is the polar angle. Next we introduce nondimensional quantities
w = w∗/h, z = z∗/h and seek nondimensional deflections in the form

w(r, θ) = W (r) cos mθ (m = 0, 1, 2, 3, ...). (29)

In view of (28), we find

δer = δεr −
(

h

b

)2

zW ′′ cos mθ,

δeθ = δεθ −
(

h

b

)2

z

(
1
r
W ′ +

m2

r2
W

)
cos mθ, (30)

δerθ = δεrθ + 2m

(
h

b

)2

z

(
1
r
W ′ − 1

r2
W

)
sinmθ.

To calculate the stress variationsδσx, δσθ, we must consider Cases A, B, and
C separately.

Case A.By varying Eqs. (15) we find

esδσr = s1δer + s2δeθ,

esδσθ = s3δer + s4δeθ,
(31)

where
s1 = A, s2 = Aν(1− λ), s3 = s2, s4 = A(1− λ). (32)

Case B.Here we vary (24). Equations (31) hold if we take

s1 =
1

(1− ν)(1 + K)
, s2 =

K

(1− ν)(1 + K)
, s3 = s2, s4 = s1. (33)

Case C.In this caseσr = σθ = −p and we find ourselves in the cornerD in
Fig. 1. Since here plastic flow is nonunique, a special treatment is necessary. We
proceed from Eqs. (19) of the paper [12], which for our case can be put into the
form (31), where

s1 = s4 =
4− 3λ

N
, s2 = s3 =

4ν(1− λ)− λ

N
(34)
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and

N = 2(1 + ν)[2(1− λ)(1− ν) + λ].

Equations (32)–(34) are valid also in the elastic case if we takeλ = 0.

5. BUCKLING EQUATION

To analyse the bifurcation process, we shall start from the equilibrium equations
(see, e.g., (2.162)–(2.165) in the text-book [11]). For our problem and in our
notations these equations obtain the form

rQr = Mr −Mθ + r
∂Mr

∂r
+

∂Mrθ

∂θ
,

rQθ =
∂Mθ

∂θ
+ 2Mrθ + r

∂Mrθ

∂r
,

r

(
σr

∂2w

∂r2
+

∂σr

∂r

∂w

∂r

)
+ σr

∂w

∂r
+

1
r

(
σθ

∂2w

∂θ2
+

∂σθ

∂θ

∂w

∂θ

)

+ Qr + r
∂Qr

∂r
+

∂Qθ

∂θ
= 0.

(35)

HereMr, Mθ, Mrθ are nondimensional moments, which can be calculated from
the formulae

Mr = 4
∫ 0.5

−0.5
δσrzdz, Mθ = 4

∫ 0.5

−0.5
δσθzdz, Mrθ = 4

∫ 0.5

−0.5
δσrθzdz, (36)

andQr, Qθ are nondimensional transverse shear forces.
In the bifurcation theory of elastic-plastic structures a complicated problem is to

determine the size and form of the elastic unloading zone. Several discussions have
been held about this problem, nevertheless we do not yet have a mathematically
correct solution. Therefore we make use of the Shanley concept, according to
which unloading at the bifurcation point may be neglected. Such a simplified
approach is favoured by the following facts:

(i) The Shanley concept has been successfully applied by many authors; the
results obtained are in good accordance with experimental data.

(ii) By neglecting the strain reversal we obtain the lower bound for the critical
loads.

Further discussion about the admissibility and expediency of the Shanley
concept can be found in [13,14].
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Since according to the Shanley concept no unloading takes place, we can
integrate (36). Taking into account (29)–(31), we find

Mr = −µ

3
cos mθ

[
s1W

′′ + s2

(
1
r
W ′ − m2

r2
W

)]
,

Mθ = −µ

3
cos mθ

[
s3W

′′ + s4

(
1
r
W ′ − m2

r2
W

)]
,

(37)

whereµ = (h/b)2/es.
Now let us evaluateMrθ. Since before bifurcationσrθ = 0, it is logical to

assume that the variation of the shear stressδσrθ is elastic and can be calculated
according to the formula

δσrθ =
G

σs
δerθ =

δerθ

2(1 + ν)es
, (38)

whereG is the shear modulus. It follows from (36) that

Mrθ =
1
3

µm

1 + ν
sinmθ

(
1
r
W ′ − 1

r2
W

)
. (39)

Next we calculateQr, Qθ from (35)1 and (35)2 and replace the results into
(35)3. By doing this we find

W ′′′′ + A3W
′′′ + A2W

′′ + A1W
′ + A0W = 0, (40)

where

A3 = (2s1 + s2 − s3)
1

s1r
,

A2 = −
[
s4 + m2

(
s2 + s3 +

2
1 + ν

)]
1

s1r2
− 12σr

s1µ
,

A1 =
[
s4 + 2m2

(
s2 +

1
1 + ν

)]
1

s1r3
− 12σθ

s1µr
,

A0 = −m2

(
2s2 + 2s4 −m2s4 +

2
1 + ν

)
1

s1r4
+

12m2σθ

s1µr2
.

(41)

In the elastic region, wherer > %, we take againλ = 0.
To integrate (40), we must specify the boundary conditions. The main versions

for this are:
(i) clamped edgeW = W ′ = 0;
(ii) simply supported edgeW = Mr = 0;
(iii) free edgeMr = 0 andQ∗

r + σ∗
r (dw∗/dr∗) = 0 (in dimensionless form the

last equation isQr + 4pW ′ cos mθ = 0).
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Since (38) is linear with regard toW, the superposition method can be used to
solve the boundary value problem. To illustrate the application of this method, let
us consider a plate with both ends clamped.

The general solution of (40) can be written in the form

W = C1W1 + C2W2 + C3W3 + C4W4, (42)

where W1, W2, W3, W4 are particular solutions satisfying the boundary
conditions

W1(γ) = 0, W ′
1(γ) = 0, W ′′

1 (γ) = 1, W ′′′
1 (γ) = 0,

W2(γ) = 0, W ′
2(γ) = 0, W ′′

2 (γ) = 0, W ′′′
2 (γ) = 1,

W3(γ) = 1, W ′
3(γ) = 0, W ′′

3 (γ) = 0, W ′′′
3 (γ) = 0,

W4(γ) = 0, W ′
4(γ) = 1, W ′′

4 (γ) = 0, W ′′′
4 (γ) = 0.

The conditionsW (γ) = W ′(γ) = 0 are satisfied ifC3 = C4 = 0. Fulfilling
the conditionsW (1) = W ′(1) = 0, we get

C1W1(1) + C2W2(1) = 0,

C1W
′
1(1) + C2W

′
2(1) = 0.

(43)

This system has a nontrivial solution if its determinant is zero:

D = W1(1)W ′
2(1)−W2(1)W ′

1(1) = 0. (44)

We can choose one of the coefficients in (43) arbitrarily by taking, for example,
C1 = 1. ThenC2 = −W1(1)/W2(1) and according to (42) we find

W (r) = W1(r)−
W1(1)
W2(1)

W2(r). (45)

Other boundary value problems can be treated in a similar way.
To calculate the critical loads and the deflection shapes, the following two

algorithms are proposed.
Algorithm 1. This algorithm is applicable to plastic buckling in the Cases A

and B.
Step 1: Specify the values of% andm.
Step 2: Making use of (19)–(21) in Case A and of (24)–(26) in Case B, calculate

the stresses for the prebuckling state.
Step 3: Evaluate the coefficientsA0, A1, A2, A3 according to (41).
Step 4: By integrating (40) find the partial solutionsW1, W2.
Step 5: Calculate the determinantD in (44).
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Step 6: If D 6= 0, change% and return to Step 1 (making use of linear
interpolation, we shall repeat this step until the conditionD = 0 is fulfilled with
the prescribed accuracy).

Step 7: Evaluate the critical loadpcr.
Step 8: Repeat this procedure for different values ofm and find the value for

whichpcr is minimal.
Step 9: Making use of (45) and (29), calculate the functionw = w(r, θ).
Algorithm 2. This algorithm holds good for elastic buckling in Cases A and B

and for Case C (elastic and plastic buckling). Algorithm 1 remains applicable if we
carry out the following changes:

(i) In Steps 1 and 6, instead of%, we shall prescribe the loadp.
(ii) Steps 2 and 7 will be omitted.

6. NUMERICAL EXAMPLES

In the examples given below calculations were carried out for material
parametersν = 0.3, λ = 0.95, es = 0.004. Equation (40) was integrated using
the Runge–Kutta method with the step∆ = 0.01(1− γ).

Two versions of boundary conditions were considered:
(i) Both ends of the plate are clamped (versionCl + Cl).
(ii) The inner edge is free, the outer edge clamped (versionFr + Cl).
It should be noted that for elastic deformations and also for Case C the number

of parameters may be reduced by one if we introduce a new parameter

P =
12p

µ
(1− ν2). (46)

Now the solutions do not depend upon the relationb/h.
The critical values of the parameterP are shown in Tables 1–3, whereγ = a/b.

The integerm is the wave number for whichP is minimal. The symbolP 0 is the
critical load for axisymmetric buckling. Dashes in the last columns of the tables
indicate that axisymmetric buckling does not take place. It is essential to know the
load at which the first plastic deformations appear; it is marked byp+. The symbol
(b/h)∗ marks the relation at which the loadp+ is attained.

For plastic deformations in Cases A and B the coordinate% separating the
elastic and plastic zones depends upon the relationb/h. Consequently, different
values ofb/h produce different buckling forms. Plastic deformations take place if
b/h < (b/h)∗. Critical loadsp for plastic buckling are listed in Tables 4 and 5,
where for each value ofγ two typical values ofb/h, for which the critical load is
calculated, are taken. Contour plots for the buckling forms are shown in Fig. 4.
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Table 1. Case A, elastic buckling 
 

γ  
+

p  
*

)( hb  P  m  0P  

Both edges clamped 

0.2 0.48   51.2   55.1   2     69.8 

0.4 0.42   69.1   88.2   4   141.8 

0.6 0.32 102.8 147.0   8   360.7 

0.8 0.16 213.7 318.0 20 1631.7 

Outer edge clamped, inner edge free 

0.2 0.48 31.7 21.1 0     21.1 

0.4 0.42 38.5 27.2 1 – 

0.6 0.32 48.7 33.1 3 – 

0.8 0.16 88.1 54.3 8 – 
 

 
Table 2. Case B, elastic buckling 

 
γ  

+
p  

*
)( hb  P  m  0P  

Both edges clamped 

0.2 0.48 180.8 691.7   4 12819 

0.4 0.42 140.3 364.0   6 12080 

0.6 0.32 152.0 324.6 10 28310 

0.8 0.16 253.1 454.0 22 63109 

Outer edge clamped, inner edge free 

0.2 0.48 141.8 421.6   1   963 

0.4 0.42   98.7 178.8   3   580 

0.6 0.32   88.6 109.7   5   735 

0.8 0.16 116.1   94.2 10 2020 
 

 
Table 3. Case C, elastic and plastic buckling 

 
γ  

*
)( hb  elP  mel 

0
elP  plP  plm  

0
plP  

Both edges clamped 

0.2   35.6   55.7   2   62.2   141.2   2   157.7 

0.4   47.9 101.0   3 109.2   255.9   3   276.7 

0.6   72.1 228.7   5 244.7   579.8   5   620.2 

0.8 144.3 917.3 11 977.5 2325.8 11 2477.3 

Outer edge clamped, inner edge free 

0.2   15.8   10.9   0   10.9     14.6   0     14.6 

0.4   15.8   10.9   0   10.9     16.3   0     16.5 

0.6   20.6   18.5   0   18.5     25.9   0     25.9 

0.8   38.6   65.2   0   65.2     77.6   0     77.6 

 



100  100 

Table 4. Case A, plastic buckling 
 

γ  hb  p  m  ρ  
0

p  

Both edges clamped 
0.2   50 

  40 
0.505 
0.742 

  2 
  2 

0.211 
0.462 

0.644 
– 

0.4   60 
  50 

0.545 
0.585 

  4 
  5 

0.590 
0.734 

– 
– 

0.6   80 
  75 

0.389 
0.395 

  9 
  9 

0.818 
0.862 

– 
– 

0.8 200 
160 

0.188 
0.198 

20 
21 

0.841 
0.921 

– 
– 

Outer edge clamped, inner edge free 
0.2   25 

  20 
0.642 
0.735 

  2 
  2 

0.304 
0.444 

– 
– 

0.4   25 
  20 

0.491 
0.605 

  2 
  3 

0.485 
0.918 

– 
– 

0.6   40 
  30 

0.334 
0.387 

  3 
  5 

0.638 
0.806 

– 
– 

0.8   70 
  60 

0.187 
0.193 

  9 
12 

0.835 
0.879 

– 
– 

 
 

Table 5. Case B, plastic buckling 
 

γ  hb  p  m  ρ  
0

p  

Both edges clamped 
0.2 160 

120 
0.651 
1.043 

  4 
  4 

0.226 
0.300 

– 
– 

0.4 120 
100 

0.607 
0.836 

  6 
  6 

0.465 
0.564 

– 
– 

0.6 140 
120 

0.399 
0.565 

10 
11 

0.648 
0.774 

– 
– 

0.8 220 
210 

0.230 
0.276 

22 
23 

0.856 
0.921 

– 
– 

Outer edge clamped, inner edge free 
0.2 130 

110 
0.964 
1.155 

  1 
  1 

0.284 
0.326 

1.175 
1.383 

0.4   90 
  80 

0.687 
0.787 

  3 
  3 

0.497 
0.541 

1.065 
1.145 

0.6   80 
  60 

0.450 
0.564 

  6 
  7 

0.682 
0.773 

– 
– 

0.8 100 
  60 

0.205 
0.241 

14 
20 

0.827 
0.871 

– 
– 

 
 



Fig. 4. Contour diagrams for deflection patterns: (a) Case A:Cl + Cl; γ = 0.2, b/h = 40,
m = 2; (b) Case B:Cl + Cl; γ = 0.2, b/h = 120, m = 4; (c) Case C:Cl + Cl;
γ = 0.2, b/h = 30, m = 2; (d) Case A:Cl + Fr; γ = 0.6, b/h = 30, m = 5;
(e) Case B:Cl + Fr; γ = 0.4, b/h = 80, m = 3; (f) Case C:Cl + Fr; γ = 0.4,
b/h = 10, m = 0.
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7. DISCUSSION

Analysing the numerical data given in Section 6, we can draw the following
conclusions.

(i) For the cases considered in this paper non-axisymmetric buckling dominates.
Axisymmetric buckling leads to the lowest critical load only in Case C:Fr + Cl
and also in Case A:Fr + Cl if γ = 0.2 (elastic buckling). In several cases no
axisymmetric buckling forms were registered at all (e.g. for plastic buckling in
Cases A and B). In some cases the axisymmetric buckling form exists, but it results
in very high buckling loads which have no practical meaning (see, e.g., Case B:
Cl + Cl, elastic buckling).

(ii) The number of circumferential wavesm increases with the parameterγ.
This conclusion is valid both for elastic and elastic-plastic buckling.

(iii) As follows from Tables 1–5, the wave numbers for elastic and plastic
buckling are practically the same if both edges of the plate are clamped. This
conclusion holds also for Case C:Fr + Cl. In Case A:Fr + Cl and Case B:
Fr + Cl, transition to plastic deformations causes the growth of wave numbers
(especially for greater values ofγ).

(iv) Taking into account plastic deformations, we can increase the critical loads
considerably. For example, let us take Case B:Cl + Cl for γ = 0.2. The elastic
limit load is p+ = 0.48, the plastic critical load forb/h = 120 is p = 1.043;
consequently,p/p+ = 2.17.

It is of interest to compare our numerical results with the results of other papers
(of course, this can be done only in the case of elastic buckling, since we have no
comparative data for plastic buckling). Yamaki [1] analysed buckling of annular
plates under uniform compressive forces (our Case C). His parameterk can be
calculated from the parameterPel, according to the formulak2 = Pel. For Case C:
Cl +Cl, whereγ = 0.4, we findk = 10.05 (Yamaki’s value is10.10); for Case C:
Fr +Cl, by takingγ = 0.6, we getk = 4.30 (Yamaki’s value is4.29). In all cases
also the wave numbers for our results and for the paper [1] strictly coincide. So, the
accordance with Yamaki’s results is rather good.

Next we shall concentrate on the case where tensile radial stress acts at the inner
edge (our Case B). Mansfield [2] used the stress field

σrM = −σθM = p
(γ

r

)2
, (47)

which is different from our Eq. (5). For this reason, along the outer edger = 1 acts
the stress

σrM = −σθM = pγ2.

If we compare the circumferential stresses according to Eqs. (5) and (47), we
find

σθ

σθM
=

1
1− γ2

(1 + r2). (48)

102



Since|σθ| > |σθM | and the non-axisymmetric buckling is caused mainly by the
hoop stresses, Mansfield’s critical loads could be expected to be greater than ours.
The calculations confirm this fact. As an example let us consider Case B:Cl + Cl
for γ = 0.1, whereP = 1613.1. Mansfield’s loading parameter is

β+ =
β

µ
(µ− 1)2 = Pγ(1− γ)2.

It follows from here thatβ+ = 131. According to Fig. 4 in the paper [2] we
have∼ 175. If γ = 0.2, we obtainβ+ = 89, while Mansfield’s value is∼ 140.
In both cases the wave numbers coincide with our wave numbers. Thus, in our
opinion, the coincidence with Mansfield’s results may be regarded as satisfactory.

8. CONCLUSIONS

A method for the investigation of the buckling of elastic-plastic annular plates
was proposed. The loading and boundary conditions were chosen such that non-
axisymmetric buckling could be expected. The numerical examples show that in
most cases the lowest critical load is realized for non-axisymmetric buckling. The
recommended method of solution is applicable also to other loading and boundary
conditions which were not considered in the present paper.
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Elastsete-plastsete rõngasplaatide mittesümmeetriline
stabiilsuse kadu

Ülo Lepik

On uuritud elastsete-plastsete rõngasplaatide stabiilsust rajajoontel rakendatud
radiaalsete jõudude mõju korral. On eeldatud, et plaadi materjal on lineaarselt
kalestuv ning allub Tresca voolavustingimusele.
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