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Abstract. The long-standing P. J. Ryan’s problem asks if the Ric-semisymmetric (RSS)
hypersurfaces in a Euclidean space are semisymmetric (SS). It is proved now that all known
results about this problem are covered by recent V. A. Mirzoyan’s theorem classifying all RSS
hypersurfaces. The problem is extended to normally flat submanifolds and solution is given
for one particular case. On the other hand, it is established that there exist SS normally flat
codimension two submanifolds which are not semiparallel (SP). This gives additional support
to the conjecture that among Riemannian manifolds of conullity two (they are all SS) only
those of planar type can be immersed isometrically as SP submanifolds.

Key words: semiparallel submanifolds, semisymmetric submanifolds, Ric-semisymmetric
submanifolds, Ryan’s problem, manifolds of conullity two.

1. INTRODUCTION

A Riemannian manifoldMm has the curvature tensorR of the Levi–Civita
connection∇, the Ricci tensor Ric, and the curvature operatorΩ, determined by the
matrix of curvature 2-forms (and often denoted also byR). The locally symmetric
manifolds Mm are characterized by the differential system∇R = 0, whose
integrability condition isΩ ·R = 0 (equivalently,R ·R = 0). The manifoldsMm

satisfying this condition are said to besemisymmetric. Analogously, ifR ·Ric = 0,
thenMm is said to beRic-semisymmetric.

Let a RiemannianMm be immersed isometrically into a Euclidean spaceEn

as a submanifold and leth be the second fundamental form of this immersion.
Due to the Gauss equation the curvature tensorR is determined byh, like the
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curvature (mixed) tensorR⊥ of the normal connection∇⊥, which determines
the corresponding curvature operatorΩ⊥. The pair(∇,∇⊥) is called thevan
der Waerden–Bortolotti connection̄∇ of the submanifold. Its curvature operator
Ω̄ is the pair(Ω,Ω⊥) (denoted also bȳR). A submanifoldMm in En is said
to beparallel (or symmetric, extrinsically) if ∇̄h = 0 (see [1,2] and semiparallel
if R̄ · h = 0 (see [3]); sometimes it has been considered alsosemisymmetric,
extrinsically (see [4−7]).

These conditions (withsemi-) will be further referred to asSS, RSS, andSP ,
respectively, and submanifolds satisfying them as SS, RSS, and SP submanifolds.
It is well known thatSP ⇒ SS ⇒ RSS (see [3,8]), but the converse implications
are not true, in general (see, e.g., [9], Sec. 8, Notes; [10]). Nevertheless, in some
special cases they are true. For instance, it is known that for RiemannianM3 the
conditionsSS andRSS are equivalent. But among submanifoldsM3 in En there
exist SS which are not SP, as is seen from the classification in [6].

Special attention has been paid to hypersurfaces. All hypersurfacesMm

which are intrinsically SS have been classified in a space formNm+1(c) of
nonzero constant curvature by Ryan [11] and then by a complementary condition
of completeness inEm+1 by Szabó [12].

It is a long-standing question whetherSS and RSS are equivalent for
hypersurfacesMm in Em+1,m > 3. An affirmative answer was given in [13]
for suchMm with positive scalar curvature, then generalized in [14] to the case of
non-negative scalar curvature and also of constant scalar curvature or of nonzero
constant sectional curvature. The above question in general was set in Problem
P808 of [8], now known as P. J. Ryan’s problem.

In [15] this equivalence was proved under the additional global condition of
completeness of the hypersurfaceMm, and in [16] for the dimensionm = 4 with-
out any additional condition. Defever [17] announced that P. J. Ryan’s problem is
solved. He gave, based on his preprints, an example of hypersurfaceM5 in E6

which is RSS, but not SS, and then generalized it to the arbitrary dimension.
The present paper shows that all these results are covered by the classification

theorem for RSS hypersurfacesMm in Em+1, given recently by Mirzoyan [18].
Note that in [13] the result cited above was extended to the case of hypersurfaces

Mm in Riemannian space formNm+1(c), like the result of [16] in [19]. In [20] the
equivalence ofRSS andSS is established also for Lorentzian hypersurfaces in
Minkowski spaceEm+1

1 ,m ≥ 4. Recently, in [21,22], the equivalence ofRSS and
SS was established for hypersurfaces in a semi-Euclidean space by some additional
conditions (involving, e.g., pseudo-SS and the conditionC ·R = 0, whereC is the
Weyl conformal curvature operator).

Hypersurfaces belong to the class of submanifoldsMm in En with the flat
normal connection. P. J. Ryan’s problem can be extended naturally to all normally
flat submanifoldsMm in En, but in general, this extended problem is still open.
Below its solution is given only for one particular case.
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All this leads to another problem of whether an arbitrary SS Riemannian
manifoldMm can be immersed isometrically intoEn as an SP submanifold. For
the dimensionm = 2 this problem has been solved by now. Indeed, it is known
that every RiemannianM2 is SS, but according to the classification theorem for
SP surfacesM2 in En, established in [3,5] (see also, e.g., [9], Sec. 15), such
a surface must have non-negative Gaussian curvature. Therefore, in general the
answer to this problem form = 2 is negative, because a RiemannianM2 of
negative curvature cannot be immersed intoEn as an SP surface. Nevertheless,
in particular, for RiemannianM2 of non-negative curvature the answer will be
positive, as is shown in [23]. Note that the same problem is stated in [23] also for
pseudo-Euclidean spacesEn

s instead ofEn and it is shown that every holomorphic
Riemannian manifoldM2 can be immersed isometrically and holomorphically into
E7

s with s ∈ {0, 3, 4, 5} as an SP surface.
The immersion problem stated above has a negative answer also for the

dimensionm = 3, at least for the following reason. Namely, in [24] for the Rie-
mannian manifoldsMm, foliated into locally Euclidean leaves of codimension
two (they all are SS and are called in [24] the RiemannianMm of conullity two),
the concept ofasymptoticone-parametric family of such leaves was introduced
(previously, form = 3, in [25]). All Mm of conullity two are divided intoplanar,
hyperbolic, parabolic, andelliptic ones if they admit, respectively, infinitely many,
two, one, or no asymptotic foliations. In [24] it is shown that there exist the
conullity two Mm of every type. But using the classification theorem of all three-
dimensional SP submanifoldsM3 in En (see [6]), it is shown in [26] that only
planar conullity twoM3 can be immersed intoEn as an SP submanifold.

In [27] it is shown that if a submanifoldMm with codimension two plane
generators inEn is SP and intrinsically a manifold of conullity two, then it must
be of planar type. Considering this result and that of [26], one can ask what the
situation is with the other SP immersions of conullity two Riemannian manifolds
Mm into En.

The second task of the present paper is to investigate this new problem for the
casen = m + 2.

2. NORMALLY FLAT SUBMANIFOLDS

In what follows the Cartan formalism will be used in a modern setting (see,
e.g., [28], Appendix B; [29], Ch. 7; [9], Part I).

Let O(En) be the bundle of orthonormal frames{x; e1, ..., en} in En. If we
identify a pointx ∈ En with its radius vector, there hold the following infinitesimal
displacement equations and structural equations:

dx = eIω
I , dei = eJωJ

I , ωJ
I + ωI

J = 0,

dωI = ωJ ∧ ωI
J , dωJ

I = ωK
I ∧ ωJ

K , I, J, ... = 1, ..., n.
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Let Mm be a submanifold of classC∞ in En. Then the bundleO(En) can be
reduced to the principal bundleO(En,Mm) of adapted toMm orthonormal frames
{x; e1, ..., em; em+1, ..., en} for whichx ∈ Mm, the vectorsei (i, j, ... = 1, ...,m)
belong to the tangent subspaceTxMm and thus the vectorseα (α, β, ... = m +
1, ..., n) belong to the normal subspaceT⊥x Mm.

According to a well-known scheme (see, e.g., [9], Secs. 2 and 3)

ωα = 0, ωα
i = hα

ijω
j , hα

ij = hα
ji, (2.1)

∇̄hα
ij = hijkω

k, hα
ijk = hα

ikj(= ∇̄ih
α
kj), (2.2)

∇̄hα
ijk ∧ ωk = hβ

ijΩ
α
β − hα

kjΩ
k
i − hα

ikΩ
k
j . (2.3)

Here∇̄ is the van der Waerden–Bortolotti connection (∇̄ = ∇⊕∇⊥, where∇ is
the Levi–Civita connection onMm determined by the 1-formsωj

i and∇⊥ is the
normal connection determined by the 1-formsωβ

α); therefore∇̄hα
ij in (2.2) means

∇̄hα
ij = dhα

ij + hβ
ijω

α
β − hα

kjω
k
i − hα

ikω
k
j (similar is the expression for̄∇hα

ijk in
(2.3)); and

Ωj
i = dωj

i − ωk
i ∧ ωj

k = ωα
i ∧ ωj

α = Rj
iklω

k ∧ ωl, (2.4)

Ωβ
α = dωβ

α − ωγ
α ∧ ωβ

γ = ωi
α ∧ ωβ

i = Rβ
αklω

k ∧ ωl (2.5)

are the curvature 2-forms of the connections∇ and∇⊥, respectively, where

Rj
ikl = −

∑
α

hα
i[kh

α
l]j , Rβ

αkl = −
∑

i

hα
i[kh

β
l]j (2.6)

are the components of their curvature tensorsR andR⊥, respectively.
A submanifoldMm in En, whose second fundamental formh is parallel

with respect to∇̄, i.e. ∇̄h = 0, or, equivalently,hα
ijk = 0, is said to beparallel

[1], or locally symmetric(extrinsically) [2]. If the integrability condition of this
differential system is satisfied, thenMm is said to besemiparallel(shortly, SP) [3].
Due to (2.3) this condition is

hβ
ijΩ

α
β − hα

kjΩ
k
i − hα

ikΩ
k
j = 0. (2.7)

If for a Riemannian manifoldMm its curvature tensorR is parallel with
respect to∇, i.e. ∇R = 0, then thisMm is said to belocally symmetric. If the
integrability condition of this differential system is satisfied, thenMm is said to be
semisymmetric(shortly, SS). This condition is

RpjklΩ
p
i + RipklΩ

p
j + RijplΩ

p
k + RijkpΩ

p
l = 0, (2.8)

whereRijkl = Rj
ikl.
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The symmetric tensor with componentsRjk = Rijklδ
il =

∑
i Rijki is called

theRicci tensorand denoted by Ric. A Riemannian manifoldMm which satisfies
the condition

RpkΩ
p
j + RjpΩ

p
k = 0, (2.9)

is said to beRic-semisymmetric(shortly, RSS).
It is easy to check that (2.7) implies (2.8) and this, in its turn, implies (2.9).
A submanifoldMm in Em+1 is called ahypersurface. Thenα, β, ... take only

one valuem + 1, thereforeΩβ
α = 0.

A submanifoldMm in Em+2 is said to have codimension two.

Lemma 2.1(see [5]; also [9], Proposition 8.7).For every semiparallel submanifold
Mm in Em+2 (i.e. with codimension two) there holdsΩβ

α = 0.

In general, a submanifoldMm in En, for whichΩβ
α = 0, is said to benormally

flat (or, in more detail, to haveflat normal connection∇⊥). Then, due to (2.5) and
(2.6), all matrices‖hα

ij‖ and‖hβ
ij‖ with α 6= β commute and thus at every point

x ∈ Mm the orthonormal frame inO(Mm, En) can be in its tangent part chosen
so that all these matrices have the diagonal form, i.e.hα

ij = kα
i δij .

In particular, every hypersurface is normally flat, and thenkm+1
i = λi are the

well-known principal curvatures. In general, the vectorski = kα
i eα, normal to a

normally flatMm in En, are called theprincipal curvature vectorsof thisMm (see
[9]). The directions of the frame vectorse1, ..., em, which realize these diagonal
forms, are called theprincipal directions.

For these vectors the differential system (2.1) reduces to

ωα = 0, ωα
i = kα

i ωi (2.1′)

and the curvature 2-forms are

Ωij = −〈ki, kj〉ωi ∧ ωj , (2.4′)

thus the curvature tensorR has the components

Rij,kl = 〈ki, kj〉(δikδjl − δilδjk).

Correspondingly, the Ricci tensor Ric has the components

Rjk = (〈mH, kj〉 − 〈kj , kk〉)δjk,

whereH is the mean curvature vector of the immersion:

H =
1
m

δijhij =
1
m

(k1 + ... + km).

71



The conditions (2.7), (2.8), and (2.9) of semiparallelity (SP ), semi-
symmetricity (SS), and Ric-semisymmetricity (RSS) reduce for a normally flat
submanifoldMm in En, respectively, to

(ki − kj)〈ki, kj〉 = 0, (2.7′)

〈ki − kj , kk〉〈ki, kj〉 = 0, (2.8′)

〈ki + kj −mH, ki − kj〉〈ki, kj〉 = 0 (2.9′)

for every two different values of the subscriptsi, j and for every three different
values of the subscriptsi, j, k (see [9], Sec. 12; [18]).

It is known that a RiemannianM3 is Ric-semisymmetric if and only if it is
semisymmetric. (Note that for normally flat submanifoldsM3 in En this follows
easily: thenm = 3 andki + kj −mH = kk for every three different values of the
subscriptsi, j, k, thus the conditions(2.8′) and(2.9′) coincide.)

Therefore we are further interested mostly in the casem ≥ 4.

3. V. A. MIRZOYAN’s THEOREM AND ITS CONSEQUENCES

For hypersurfaces the conditions(2.7′), (2.8′), and(2.9′), respectively, take the
form

λiλj(λi − λj) = 0, (3.1)

λiλjλk(λi − λj) = 0, (3.2)

λiλj(λi − λj)(λi + λj −mH) = 0, (3.3)

for every two different values ofi, j and for every three different values ofi, j, k,
wheremH = λ1 + ... + λm (see, e.g., [16,18]).

For anyM3 the conditions (3.2) and (3.3) are equivalent, as established above.
For Mm with m ≥ 4 in Em+1 their equivalence is a much-investigated problem;
the survey of the results is given above in the Introduction.

The task of the present section is to show that all these results are covered by a
classification theorem for all RSS hypersurfacesMm in Em+1, given recently by
Mirzoyan [18].

Theorem 3.1 (see [18]). A hypersurfaceMm in the Euclidean spaceEm+1

is Ric-semisymmetric if and only if it is an open subset of one of the following
hypersurfaces:

(1) a hypersphereSm in Em+1;
(2) a hypercone of rotationCm in Em+1;
(3) a productSk×Em−k, whereSk is a hypersphere inEk+1 andEm−k is an

(m− k)-dimensional plane, totally orthogonal toEk+1, k = 2, ...,m− 1;
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(4) a product Ck × Em−k, where Ck is a hypercone of revolution in
Ek+1 and Em−k is an (m − k)-dimensional plane, totally orthogonal toEk+1,
k = 2, ...,m− 1;

(5) a hypersurface whose vector valued second fundamental formh has the
matrix‖hij‖ of rank≤ 2;

(6) a semi-Einstein hypersurfaceKm in Em+1 (m ≥ 5) that carries a three-
component orthogonal conjugate system consisting of two spheresSp(r1) (p ≥ 2)
and Sq(r2) (q ≥ 2) and a line L, and that is a cone with one-dimensional
flat generators(the lineL as a generator at each point) over the direct product
Sp(r1) × Sq(r2), which is an Einstein submanifold ofEm+1 and belongs to a
hypersphereSm(r) ⊂ Em+1, where the radiir1, r2, and r are connected by the
conditionr2 = r2

1 + r2
2 and are linear(nonconstant) functions onL;

(7) a productKk×Em−k, whereKk is a semi-Einstein hypersurface inEk+1,
described likeKm in point(6), andEm−k is an(m−k)-dimensional plane, totally
orthogonal toEk+1, 5 ≤ k ≤ m− 1.

Here only some notations and terms are changed and formulations characteriz-
ing the products are added compared to the original text of [18]. (For example, in
[18] Ric-semiparallelis used instead ofRic-semisymmetric, etc.)

In the proof in [18] first a conclusion is made from (3.3) that amongλ1, ..., λm

there can be at most two distinct nonzero values.
If among them there is only one of multiplicityp, and the other, of multiplicity

m − p, is zero, then (3.1) is satisfied; thus the hypersurface is semiparallel. The
classification result of [3], refined in [5] (see also [9], Sec. 12), gives that this
hypersurfaceMm either has rank≤ 1 or is one of the hypersurfaces (1)–(4) in
Theorem 3.1.

Let there be two nonzero principal curvatures:λ anda − λ of multiplicities p
andq, respectively, wherea = mH.

If p = 1 or q = 1, thenpq = 1 and this gives (5) of Theorem 3.1. Then among
λ1, ..., λm only two are nonzero, all others are zero, and thus (3.2) is satisfied: the
hypersurface is semisymmetric.

Most interesting is the case wherep ≥ 2 andq ≥ 2. Then

a =
p− q

1− q
λ, µ = a− λ =

p− 1
1− q

λ.

Here the frame vectorsei can be renumbered so thatλb = λ, λu = µ, andλs = 0.
Using (2.2), one can show (see [18], Eqs. (4.5)) that

dλ = hsω
s, (µ− λ)ωb

u = hbusω
s, (3.4)

λωs
b = hsω

b + hbusω
u, µωs

u = hbusω
b +

p− 1
1− q

hsω
u, (3.5)

wherehs = hm+1
bbs andhbus = hm+1

bus . Therefore the corresponding eigendistribu-
tionsT (λ), T (µ), andT (0) of ‖hm+1

ij ‖ are foliations. From the first equation of (3.4)
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it follows after exterior differentiation thathbus = 0, thusωb
u = 0, and from here

after exterior differentiation

m∑
s=p+q+1

h2
s = λ4 p− 1

q − 1
. (3.6)

Here the relationp + q = m cannot hold, because then the left-hand side is zero,
but the right-hand side is nonzero. Hence at least one zero eigenvalueλp+q+1 must
exist. Thus the casem = 4 is here impossible.

The Ricci tensor has here a diagonal form with diagonal elements

ρb = ρu =
p− 1
1− q

λ2 < 0, ρs = 0. (3.7)

The further proof in [18] deals with the geometrical interpretation of the
consequences from the differential system which determines the considered
hypersurfaceMm in Em+1 in the case wherep ≥ 2 andq ≥ 2.

Let us show now how the known results about the P. J. Ryan’s problem for the
Euclidean spaceEm+1 can be deduced from V. A. Mirzoyan’s Theorem 3.1.

First, let us recall that the hypersurfaces (1)–(4) are semiparallel and thus
semisymmetric, but the hypersurfaces (5) are intrinsically the manifolds of
conullity two (in the sense of [24]) and also semisymmetric. Therefore only the
hypersurfaces (6) and (7) are interesting from the point of view of this problem.

Corollary 3.2. Every Ric-semisymmetric hypersurfaceMm with positive scalar
curvature inEm+1 is semisymmetric.

Indeed, from (3.7) it is seen that the cases (6) and (7) are here excluded. This
is the result of [13].

The same argument shows that in this corollarypositive scalar curvaturecan
be replaced bynon-negative scalar curvature. This is the result of [14].

Corollary 3.3. Every Ric-semisymmetric hypersurfaceMm with constant scalar
curvature inEm+1 is semisymmetric.

Indeed, it is seen from (3.4) thatλ = const implieshs = 0, but due to (3.6) this
is impossible for (6) and (7). So follows another result of [14].

Corollary 3.4. If Ric-semisymmetric hypersurfaceMm in Em+1 is complete, then
it is semisymmetric.

Indeed, from the geometrical description of hypersurfaces (6) and (7) it is seen
that they, as some cones, are incomplete. This gives the result of [15].

Corollary 3.5. Every Ric-semisymmetric hypersurfaceM4 in E5 is semisymmetric.

Indeed, as shown above, it follows from (3.6) that the casem = 4 is impossible
for (6) and (7). This is the result of [16].
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4. THE EXISTENCE OF RIC-SEMISYMMETRIC BUT
NON-SEMISYMMETRIC HYPERSURFACES

P. J. Ryan’s problem is finding its final solution in the research work of
F. Defever, who has announced in [17], based on his still unpublished preprints,
that there exist Ric-semisymmetric but not semisymmetric hypersurfacesMm in
Em+1, if m > 4.

First, he constructed an example for the casem = 5 and then generalized
it for the casem ≥ 7. This last example has been obtained by a completely
integrable system of partial differential equations and actually gives a family of
needed hypersurfaces, depending on constant parameters.

In the present section we show that the existence of such hypersurfaces can
be proved also in the framework of [18] using Cartan’s exterior differential calculus
and the Frobenius theorem for totally integrable differential systems (see the second
version of this theorem in [30]).

The hypersurface of Theorem 3.1, as noted above, can be non-semisymmetric
only if it is one of the cases (6) and (7). Thus it must be determined by the
differential system consisting of

ωm+1 = 0, ωm+1
b = λωb, ωm+1

u = µωu, ωm+1
s = 0, (4.1)

and of (3.4), (3.5), where, as was shown,hbus = 0, so of

dλ = hsω
s, ωb

u = 0, λωs
b = hsω

b, λωs
u = hsω

u. (4.2)

Here (4.2) can be obtained by exterior differentiation from (4.1) (and from the first
equations of (3.4)).

In their turn, (4.2) give by differential prolongation, i.e. by exterior
differentiation and then using Cartan’s lemma, the following: the first equation
of (4.2) gives

dhs − htω
t
s = Astω

t, Ast = Ats, (4.3)

the second equation gives (3.6), but the last two equations of (4.2) imply

Ast = 2λ−1hsht.

Let us consider the vectorn =
∑

s eshs. Due to (4.3)

dn = −λ−1
∑

s

h2
s(ebω

b + euωu) + 2n(htω
t).

If we fix arbitrarily the pointx ∈ Mm, then allωb = ωu = ωt = 0, and thus
n is an invariant vector atx. The orthonormal frame atx can be taken so that
n = νem. Thenhm = ν, whereν2 = λ4 p−1

q−1 due to (3.6), andhs′ = 0 for
s′ = p + q + 1, ...,m− 1. Hence (4.2) reduces to

dλ = νωm, λωm
b = νωb, λωm

u = νωu, ωb
u = ωs′

b = ωs′
u = 0, (4.4)
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and (4.3) to

dν = 2λ−1ν2ωm, ωm
s′ = 0. (4.5)

Exchangingem by −em, if needed, we can obtainν = cλ2, wherec =
√

p−1
q−1 =

const. Using alsoµ = −c2λ, we can reduce the differential system (4.1), (4.4),
(4.5) to

ωm+1 = 0, ωm+1
b = λωb, ωm+1

u = −c2λωu, ωm+1
s′ = ωm+1

m = 0, (4.6)

dλ = cλ2ωm, ωm
b = cλωb, ωm

u = cλωu, ωb
u = ωs′

b = ωs′
u = ωm

s′ = 0. (4.7)

It is easy to check that the exterior equations, obtained by exterior differentiation
from the equations of this last system, are satisfied due to the equations of the same
system. Therefore, due to the Frobenius theorem, this system is totally integrable
and determines the considered hypersurface up to some constants.

If we take i = k = 1 and j = p + 1, so thatλi = λk = λ andλj = µ =
p−1
1−q λ 6= λ, we see that (3.2) is not satisfied, becauseλ 6= 0.

As a result, the following statement can be formulated.

Theorem 4.1. There exist Ric-semisymmetric but non-semisymmetric hyper-
surfacesMm in Em+1.

The geometrical construction of these hypersurfaces is described by Mirzoyan
[18], and is reproduced here as points (6) and (7) of Theorem 3.1. Note that in [18]
the existence of these hypersurfaces is not established explicitly, although it is seen
indirectly from the construction.

For a particular case, namely for the hypersurfaces (6), the theorem has been
announced by Defever [17]. Note that from the deduction which led to Theorem 4.1
it can be concluded that the example given by Theorem 3.2 of [17] coincides with
one of hypersurfaces (6).

Indeed, it follows from (4.6) and (4.7) thatdωm = 0, therefore a function exists
on the hypersurfaceMm of (6) (note that for this hypersurface the set of values of
s′ is empty). Let us denote this function byxm, so thatωm = dxm. Now the
first equation of (4.7) can be integrated, which gives−λ−1 = c(xm + C). If we
introduce a constanth so thatC = eh, and for positivexm the variablex1 so that

xm = ex1
, thenxm + C = ehx1

. Recall thatc =
√

p−1
q−1 . If we now denote

β = (
√

(p− 1)(q − 1))−1, we obtain the example of Theorem 3.2 of [17]; the only
difference is thatn, q, r stand instead ofm, p, q.

Therefore, it can be concluded that Theorem 3.2 of [17] gives the most general
hypersurfaces of (6) of Theorem 3.1 above.
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5. EXTENSION OF P. J. RYAN’s PROBLEM

As we have now the complete solution of P. J. Ryan’s problem in its classical
setting, it is natural to pose the problem in a more general setting, namely
to ask whether a Ric-semisymmetric normally flat submanifoldMm in En is
semisymmetric. Section 2 of this paper concludes with the statement that for
dimensionm = 3 the answer is positive. Therefore, next the casem = 4 is to
be considered. Then4H = k1 + k2 + k3 + k4, therefore the Ric-semisymmetricity
condition(2.9′) reduces to

〈ki, kj〉〈ki − kj , kk + kl〉 = 0 (5.1)

for every four different values ofi, j, k, l. Taking (5.1) also fork, j, i, l and then for
i, l, k, j, we can see that the set of (5.1) is equivalent to the set of

〈ki, kj〉 = 〈kk, kl〉,

so form = 4 to

〈k1, k2〉 = 〈k3, k4〉, 〈k1, k3〉 = 〈k2, k4〉, 〈k1, k4〉 = 〈k2, k3〉. (5.2)

The set of the last three conditions is symmetric with respect to interchanging of
1,2, also of 3,4, as well as of the pairs{1, 2} and{3, 4}.

Suppose that the semisymmetricity condition(2.8′) is not satisfied for at least
one triple of different valuesi, j, k. After renumbering, if needed, this can be
achieved byi = 1, j = 2, so that

〈k1, k2〉〈k1 − k2, kk〉 6= 0, (5.3)

where the subscriptk is either 3 or 4. In particular,〈k1, k2〉 6= 0.
Let us call thenk1 andk2 the distinguishedprincipal curvature vectors for a

normally flat Ric-semisymmetric but not semisymmetric submanifoldM4 in En.
Let us consider further the case wheren = 6 and the distinguished principal

curvature vectors are collinear. This leads tok2 = κk1 6= 0, and now
(1 − κ)〈k1, kk〉 6= 0 due to (5.3). On the other hand,〈k2, k4〉 = κ〈k1, k4〉 and
〈k1, k4〉 = κ〈k1, k3〉, as follows from (5.2). This implies〈k1, kk〉 = κ2〈k1, kk〉,
which is equivalent to(1+κ)(1−κ)〈k1, kk〉 = 0, and thereforeκ = −1. Moreover,
〈k1, k3 + k4〉 = 0.

The normal to the consideredM4 frame vectorse5 ande6 in E6 can be taken
at an arbitrary pointx ∈ M4 so thatk1 = −k2 = λe5. Thenk3 = µe5 + ν3e6,
k4 = −µe5 + ν4e6. Thus, thisM4 is determined by the differential system

ω5 = ω6 = 0,

ω5
1 = λω1, ω5

2 = −λω2, ω5
3 = µω3, ω5

4 = −µω4, (5.4)

77



ω6
1 = ω6

2 = 0, ω6
3 = ν3ω

3, ω6
4 = ν4ω

4. (5.5)

Here, due to (5.2),
−λ2 = −µ2 + ν3ν4

and in general there exists such a functionν thatν3 = ν(µ−λ), ν4 = ν−1(µ+λ).
By exterior differentiation Eq. (5.4) give the following exterior equations:

dλ ∧ ω1 + 2λω2
1 ∧ ω2 + (λ− µ)ω3

1 ∧ ω3 + (λ + µ)ω4
1 ∧ ω4 = 0, (5.6)

2λω2
1 ∧ ω1 − dλ ∧ ω2 − (λ + µ)ω3

2 ∧ ω3 − (λ− µ)ω4
2 ∧ ω4 = 0, (5.7)

(λ−µ)ω3
1∧ω1−(λ+µ)ω3

2∧ω2+[dµ+ν(λ−µ)ω6
5]∧ω3+2µω4

3∧ω4 = 0, (5.8)

(λ+µ)ω4
1∧ω1−(λ−µ)ω4

2∧ω2+2µω4
3∧ω3−[dµ+ν−1(λ+µ)ω6

5]∧ω4 = 0. (5.9)

The same procedure by (5.5) leads to

λω6
5 ∧ ω1 − ν(λ− µ)ω3

1 ∧ ω3 + ν−1(λ + µ)ω4
1 ∧ ω4 = 0, (5.10)

λω6
5 ∧ ω2 − ν(λ− µ)ω3

2 ∧ ω3 + ν−1(λ + µ)ω4
2 ∧ ω4 = 0, (5.11)

ν(λ− µ)[ω3
1 ∧ ω1 + ω3

2 ∧ ω2]+

[−(λ− µ)dν − ν(dλ− dµ) + µω6
5] ∧ ω3 + (ν3 − ν4)ω4

3 ∧ ω4 = 0, (5.12)

−ν−1(λ + µ)[ω4
1 ∧ ω1 + ω4

2 ∧ ω2]+

(ν3 − ν4)ω4
3 ∧ ω3 + [−ν−2(λ + µ)dν + ν−1(dλ + dµ)− µω6

5]∧ ω4 = 0. (5.13)

From (5.6), due to Cartan’s lemma,

dλ = Aω1 + Bω2 + Cω3 + Dω4,

2λω2
1 = Bω1 + Eω2 + Fω3 + Gω4,

(λ− µ)ω3
1 = Cω1 + Fω2 + Hω3 + Iω4,

(λ + µ)ω4
1 = Dω1 + Gω2 + Iω3 + Jω4.

Similarly, from (5.7) it follows thatE = −A and

−(λ + µ)ω3
2 = Fω1 − Cω2 + Kω3 + Lω4,

−(λ− µ)ω4
2 = Gω1 −Dω2 + Lω3 + Mω4.
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Now substitution into (5.10) givesF = G = I = 0 and

λω6
5 = Qω1 − νCω3 + ν−1Dω4,

but substitution into (5.11) addsC = D = L = Q = 0.
The result is:

dλ = Aω1 + Bω2, 2λω2
1 = Bω1 −Aω2, ω6

5 = 0, (5.14)

(λ− µ)ω3
1 = Hω3, −(λ + µ)ω3

2 = Kω3,

(λ + µ)ω4
1 = Jω4, −(λ− µ)ω4

2 = Mω4.
(5.15)

Now (5.8) and (5.9) reduce to

(dµ−Hω1−Kω2)∧ω3+2µω4
3∧ω4 = 0, 2µω4

3∧ω3−(dµ+Jω1+Mω2)∧ω4 = 0,

and from here, due to Cartan’s lemma,J = −H, M = −K,

dµ = Hω1 + Kω2 + Rω3 + Sω4, 2µω4
3 = Sω3 + Tω4, (5.16)

so that
(λ + µ)ω4

1 = −Hω4, (λ− µ)ω4
2 = Kω4. (5.17)

Finally, (5.12) and (5.13) lead together, after some calculations, toA = B = 0;
therefore, from (5.14),ω2

1 = 0. This last equation gives by exterior differentiation,
due to (5.15), (5.17), and (5.4), a contradiction:λ2ω1 ∧ ω2 = 0!

Hence the following statement holds.

Theorem 5.1. In E6 there exists no normally flat Ric-semisymmetric but not
semisymmetric submanifoldM4 whose distinguished principal curvature vectors
are collinear.

Of course, this theorem does not solve the extended P. J. Ryan’s
problem in general (i.e. without the assumption about the collinearity of the
distinguished principal curvature vectors): do there exist Ric-semisymmetric but
not semisymmetric normally flat submanifoldsM4 in E6? All the more, this
extended problem is open for general dimensionsm andn.

6. SEMISYMMETRIC BUT NOT SEMIPARALLEL NORMALLY FLAT
SUBMANIFOLDS OF CODIMENSION TWO

Let us turn now to the other problem indicated in the introduction. Namely,
let us ask if there exist among the normally flat submanifoldsMm in Em+2 those
which are semisymmetric but not semiparallel. Recall that every semiparallelMm

in Em+2 is, due to Lemma 2.1, normally flat. All of them are classified in [5].
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From(2.7′) it follows immediately

Lemma 6.1. A normally flat submanifoldMm in En is semiparallel if and only if
every two principal curvature vectors are either equal or orthogonal.

For n = m + 2, when there cannot exist more than two mutually orthogonal
nonzero normal toMm vectors, this means that amongk1, ..., km

(1) there is either only one nonzerok of multiplicity p and the remainingm−p
are zero or

(2) there are two orthogonal nonzerokI and kII of multiplicities p and q,
respectively, and the remainingm− p− q are zero.

The classification in [5] (where classes (1) and (2) are denoted, in more detail,
by (A(p)) and(B(p,q)), respectively) can be complemented by the characterization
of the inner metric as follows.

Proposition 6.2. A semiparallel submanifoldMm in Em+2 of class (1) is
intrinsically

for p = 0 andp = 1 locally Euclidean,
for p = m of positive constant curvature,
for 2 < p < m a product of an elliptic cone and a locally Euclidean manifold

(where this cone can degenerate into a product of elliptic space and a line),
for p = 2 a manifold of conullity two of planar type(according to[24]).

A semiparallelMm in Em+2 of class(2) is intrinsically
for p = q = 1 locally Euclidean,
for p > 1 andq > 1 a product of three manifolds, one of which is(m−p−q−2)-

dimensional and locally Euclidean, the other two are the elliptic cones(one or both
of which can degenerate into the product of1- andp- (or q-)-dimensional spaces,
the latter of which are of constant positive curvature),

for p > 2 and q = 1 a product of a(p + 1)-dimensional elliptic cone and
an (m − p − 1)-dimensional locally Euclidean manifold(where this cone can
degenerate into a product of1- and p-dimensional spaces, the latter being of
constant positive curvature),

for p = 2 andq = 1 a manifold of conullity two of planar type.

Proof. The first two statements about class (1), like the first statement about
class (2), follow immediately from(2.4′).

For 1 < p < m, let the first normal toMm unit vectorem+1 be taken so that
k1 = ... = kp = κem+1, κ 6= 0. Then

ωm+1
a = κωa, ωm+2

a = ωm+1
u = ωm+2

u = 0, (6.1)

wherea runs over{1, ..., p} andu runs over{p + 1, ...,m}. From here, by exterior
differentiation,

dlnκ ∧ ωa + ωu ∧ ωa
u = 0, ωa ∧ ωm+2

m+1 = 0,
∑

a

ωa
u ∧ ωa = 0.
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Hence, due to Cartan’s lemma

dlnκ = κaωa +
∑

u

λuωu, −ωa
u = λuωa +

∑
v

µa
uvω

v,

ωm+2
m+1 = νaωa, ωu

a =
∑

b

φu
abω

b.

Considering this for different values ofa, we obtain

dlnκ =
∑

u

λuωu, −ωa
u = λuωa, ωm+2

m+1 = 0. (6.2)

The last statement about class (1) can be verified by comparing the middle
formulae in (6.2) with Eqs. (5.2) and (5.7) of [24], which gives that a Riemannian
manifold of conullity two is of planar type if and only if−ωa

u = λuωa, where now
a ∈ {1, 2}.

The penultimate statement about class (1) can be verified by geometrical
interpretation of the corresponding deduction made in [7].

The same is true of the first three statements about class (2). For the last
statement about class (2), let us consider the case wherep > 1 and q = 1. If
we take here normal toMm frame vectorsem+1 andem+2 collinear tokI andkII ,
respectively, so thatkI = κIem+1 andkII = κIIem+2, thenMm in Em+2 is
determined by the differential system

ωm+1 = ωm+2 = 0,

ωm+1
a = κIω

a, ωm+2
a = ωm+2

p+1 = 0, ωm+2
p+1 = κIIω

p+1,

ωm+1
u = ωm+2

u = 0,

wherea runs over{1, ..., p} andu runs over{p + 2, ...,m}. From the last two
equations, after exterior differentiation and using Cartan’s lemma, it follows that

ωa
u = λuabω

b, ωp+1
u = µuωp+1,

whereλuab = λuba.
Similarly, usingp > 1 as a particular case, we get from the other equations

dlnκI = −λIuωu, ωa
u = λIuωa, (6.3)

dlnκII = −µuωu, ωp+1
u = µuωp+1, (6.4)

ωa
p+1 = νωa, ωm+2

m+1 = κIIκ
−1
I νωp+1. (6.5)

These equations imply that the differential systemωa = 0 is totally integrable,
due to Frobenius theorem. Its leaves are locally Euclidean, because their curvature
2-forms vanish due to (2.4) and (2.6), as is easy to check.
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For p = 2 this means thatMm is intrinsically a Riemannian manifold of
conullity two, which is of planar type, as is seen from the comparison of the last
equation of (6.3) and the first equation of (6.5) with Eqs. (5.2) and (5.7) of [24].

This verifies the last statement about class (2) and completes the proof.
For the purposes of the present paper the following consequence is important.

Corollary 6.3. If a semiparallel submanifoldMm in Em+2 is intrinsically a
Riemannian manifold of conullity two, then it is of planar type.

Let us consider now the problem stated at the beginning of this section. The
negative answer follows from

Proposition 6.4. Among the non-semiparallel normally flat submanifoldsMm

in Em+2 there exist intrinsically semisymmetricMm of conullity two, whose
Euclidean leaves of codimension two are the(m−2)-dimensional planes inEm+2

and which are of hyperbolic type.

Proof. For such anMm there holds(2.8′) but not(2.7′), i.e. (ki − kj)〈ki, kj〉 6= 0
for at least one pair(i, j). After renumbering, if needed, this gives
(k1 − k2)〈k1, k2〉 6= 0. Due to (2.8′), all k3, ..., km must be orthogonal to this
nonzero vector.

The orthonormal frame ofO(Mm, Em+2) can be adapted further so that at an
arbitrary pointx ∈ Mm the unit normal vectorem+1 is collinear tok1 − k2 6= 0.
Then

k1 = λ1em+1 + κem+2, k2 = λ2em+1 + κem+2, (λ1 − λ2)(λ1λ2 + κ2) 6= 0,
(6.6)

andku = µuem+2, where the indexu runs over{3, ...,m}.
Now (2.8′), used for the triples(1, u, 2) and(2, u, 1), leads to

κµu(λ1λ2 + κ2 − κµu) = 0, (6.7)

but, by(u, v, 1) and(u, v, 2), to

κ(µu − µv)µuµv = 0. (6.8)

It is sufficient to take here the subcase whenµu = 0 for every valueu ∈
{3, ...,m}. Then Eqs.(2.1′) reduce to

ωm+1 = ωm+2 = 0,

ωm+1
1 = λ1ω

1, ωm+1
2 = λ2ω

2, ωm+1
u = 0, (6.9)

ωm+2
1 = κω1, ωm+2

2 = κω2, ωm+2
u = 0. (6.10)

The last equations of (6.9) and (6.10) give by exterior differentiation

ω1
u ∧ λ1ω

1 + ω2
u ∧ λ2ω

2 = 0, κ(ω1
u ∧ ω1 + ω2

u ∧ ω2) = 0. (6.11)
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The first two equations of (6.9) give by exterior differentiation

(dλ1 − κωm+2
m+1) ∧ ω1 + (λ1 − λ2)ω2

1 ∧ ω2 − λ1

∑
u

ω1
u ∧ ωu = 0, (6.12)

(λ1 − λ2)ω2
1 ∧ ω1 + (dλ2 − κωm+2

m+1) ∧ ω2 − λ2

∑
u

ω2
u ∧ ωu = 0, (6.13)

but the first two equations of (6.10) lead to

(dκ + λ1ω
m+2
m+1) ∧ ω1 − κ

∑
u

ω1
u ∧ ωu = 0, (6.14)

(dκ + λ2ω
m+2
m+1) ∧ ω2 − κ

∑
u

ω2
u ∧ ωu = 0. (6.15)

Let the essential codimension ofMm be two. Thenκ 6= 0, due to (6.5), and
now the second equation of (6.11) gives

ω1
u = auω1 + buω2, ω2

u = buω1 + euω2, (6.16)

due to Cartan’s lemma, but substitution into the first equation of (6.11) leads to
(λ1 − λ2)bu = 0, thus tobu = 0.

The differential systemω1 = ω2 = 0 is totally integrable becausedω1 and
dω2 vanish as algebraic consequences of the equations of this system. For the
leaves of the foliation determined by this system there holddx =

∑
u euωu,

deu =
∑

v evω
v
u, thus these leaves are generating(m − 2)-planes. The analysis

of the system of exterior equations (6.11)–(6.15) shows that the characters are here
s1 = 2m ands2 = 1, and the Cartan’s numberQ = s1 + 2s2 = 2(m + 1) is equal
to the number of new coefficients after developing these exterior equations by the
Cartan’s lemma. Hence (see [31,32]) the consideredMm exists and depends on one
real analytic function of two real arguments. The generating(m− 2)-planes are its
Euclidean leaves, so thatMm is intrinsically of conullity two. Now (6.16) are Eqs.
(5.2) of [24] with cu = bu, but since herebu = 0, the comparison with Eqs. (5.7) of
[24] shows that thisMm is of hyperbolic type in general, wheneu 6= au for at least
one value ofu. This completes the proof.

Corollary 6.5. There exist Riemannian manifoldsMm of conullity two, which
can be immersed isometrically intoEm+2 as normally flat semisymmetric but not
semiparallel submanifolds.

Note that the investigations in this Sec. 6 give additional support for a
conjecture arisen in [26,27]: among the Riemannian manifoldsMm of conullity two
only those of planar type can be immersed isometrically intoEn as semiparallel
submanifolds.
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Semiparalleelsus, semisümmeetrilisus ja
Ric-semisümmeetrilisus normaaltasaste alammuutkondade

puhul Eukleidilises ruumis

Ülo Lumiste

On tõestatud, et kõik senised tulemused kaua püsinud ja hiljuti lahendatud
P. J. Ryani probleemi kohta on kaetavad V. A. Mirzojani äsjase teoreemiga, mis
annab kõigi Ric-semisümmeetriliste alammuutkondade täieliku klassifikatsiooni.
See probleem on laiendatud normaaltasaste alammuutkondade juhule ja antud
lahendus ühel erijuhul. On näidatud, et eksisteerivad semisümmeetrilised normaal-
tasased kodimensiooniga kaks alammuutkonnad, mis pole semiparalleelsed.
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