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Abstract. The long-standing P. J. Ryan’s problem asks if the Ric-semisymmetric (RSS)
hypersurfaces in a Euclidean space are semisymmetric (SS). It is proved now that all known
results about this problem are covered by recent V. A. Mirzoyan'’s theorem classifying all RSS
hypersurfaces. The problem is extended to normally flat submanifolds and solution is given
for one particular case. On the other hand, it is established that there exist SS normally flat
codimension two submanifolds which are not semiparallel (SP). This gives additional support
to the conjecture that among Riemannian manifolds of conullity two (they are all SS) only
those of planar type can be immersed isometrically as SP submanifolds.
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1. INTRODUCTION

A Riemannian manifold\/™ has the curvature tensdt of the Levi—Civita
connectioriV, the Ricci tensor Ric, and the curvature oper&tpdetermined by the
matrix of curvature 2-forms (and often denoted alsait)y The locally symmetric
manifolds M™ are characterized by the differential systévikR = 0, whose
integrability condition i€2 - R = 0 (equivalently,R - R = 0). The manifolds)/ ™
satisfying this condition are said to bemisymmetric. Analogously,i - Ric = 0,
thenM™ is said to beRic-semisymmetric.

Let a Riemanniam/™ be immersed isometrically into a Euclidean sp&ée
as a submanifold and lét be the second fundamental form of this immersion.
Due to the Gauss equation the curvature ten?ds determined by, like the
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curvature (mixed) tensoR" of the normal connectio’V-, which determines
the corresponding curvature operafot. The pair(V, V=) is called thevan
der Waerden—Bortolotti connectioii of the submanifold. Its curvature operator
Q is the pair(Q2, Q+) (denoted also by?). A submanifoldM™ in E™ is said
to be parallel (or symmetrig extrinsically) if VA = 0 (see ['?] and semiparallel

if R-h=0 (see f]); sometimes it has been considered atsomisymmetric
extrinsically (see{™"]).

These conditions (witsemi) will be further referred to as'S, RS.S, andSP,
respectively, and submanifolds satisfying them as SS, RSS, and SP submanifolds.
It is well known thatSP = SS = RSS (see }-®]), but the converse implications
are not true, in general (see, e.d], Bec. 8, Notes;'P]). Nevertheless, in some
special cases they are true. For instance, it is known that for Riemanfitahe
conditionsS.S and RS'S are equivalent. But among submanifoltls® in E” there
exist SS which are not SP, as is seen from the classificatidi.in [

Special attention has been paid to hypersurfaces. All hypersurfacés
which are intrinsically SS have been classified in a space fofft!(c) of
nonzero constant curvature by Ryaf][and then by a complementary condition
of completeness ik™ ! by Szab6 {?].

It is a long-standing question whethétS and RSS are equivalent for
hypersurfaces\/™ in E™+1 m > 3. An affirmative answer was given i
for suchM™ with positive scalar curvature, then generalized'f) {o the case of
non-negative scalar curvature and also of constant scalar curvature or of nonzero
constant sectional curvature. The above question in general was set in Problem
P808 of ], now known as P. J. Ryan’s problem.

In [*°] this equivalence was proved under the additional global condition of
completeness of the hypersurfatg™, and in [%] for the dimensionm = 4 with-
out any additional condition. Defevel”] announced that P. J. Ryan’s problem is
solved. He gave, based on his preprints, an example of hypersurfade E6
which is RSS, but not SS, and then generalized it to the arbitrary dimension.

The present paper shows that all these results are covered by the classification
theorem for RSS hypersurfacés™ in E™*!, given recently by Mirzoyan'f].

Note that in [3] the result cited above was extended to the case of hypersurfaces
M™ in Riemannian space fordv*(c), like the result of {°] in [1°]. In [2°] the
equivalence ofRSS and SS is established also for Lorentzian hypersurfaces in
Minkowski spacelT" ™ m > 4. Recently, in {'?2], the equivalence oRSS and
5SS was established for hypersurfaces in a semi-Euclidean space by some additional
conditions (involving, e.g., pseud®$ and the conditior”’ - R = 0, whereC'is the
Weyl conformal curvature operator).

Hypersurfaces belong to the class of submanifald® in E™ with the flat
normal connection. P. J. Ryan’s problem can be extended naturally to all normally
flat submanifolds)M™ in E™, but in general, this extended problem is still open.
Below its solution is given only for one particular case.
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All this leads to another problem of whether an arbitrary SS Riemannian
manifold M™ can be immersed isometrically infg” as an SP submanifold. For
the dimensionn = 2 this problem has been solved by now. Indeed, it is known
that every Riemannian/? is SS, but according to the classification theorem for
SP surfaces\/? in E", established in%°] (see also, e.g.,’, Sec. 15), such
a surface must have non-negative Gaussian curvature. Therefore, in general the
answer to this problem fom = 2 is negative, because a Riemannidf? of
negative curvature cannot be immersed iAtd as an SP surface. Nevertheless,
in particular, for Riemanniad/? of non-negative curvature the answer will be
positive, as is shown ir’f]. Note that the same problem is stated it falso for
pseudo-Euclidean spaceg¥ instead of£™ and it is shown that every holomorphic
Riemannian manifold/? can be immersed isometrically and holomorphically into
E7 with s € {0,3,4,5} as an SP surface.

The immersion problem stated above has a negative answer also for the
dimensionm = 3, at least for the following reason. Namely, #] for the Rie-
mannian manifolds\/™, foliated into locally Euclidean leaves of codimension
two (they all are SS and are called itt][the Riemanniam/™ of conullity twd,
the concept ofasymptoticone-parametric family of such leaves was introduced
(previously, form = 3, in [2°]). All M™ of conullity two are divided intglanar,
hyperbolic, parabolicandelliptic ones if they admit, respectively, infinitely many,
two, one, or no asymptotic foliations. Irf*] it is shown that there exist the
conullity two M™ of every type. But using the classification theorem of all three-
dimensional SP submanifold®/? in E" (see f]), it is shown in P5] that only
planar conullity twoM 3 can be immersed int” as an SP submanifold.

In [27] it is shown that if a submanifold/™ with codimension two plane
generators inE™ is SP and intrinsically a manifold of conullity two, then it must
be of planar type. Considering this result and that?6f, [one can ask what the
situation is with the other SP immersions of conullity two Riemannian manifolds
M™ into E".

The second task of the present paper is to investigate this new problem for the
casen = m + 2.

2. NORMALLY FLAT SUBMANIFOLDS

In what follows the Cartan formalism will be used in a modern setting (see,
e.g., %], Appendix B; Y], Ch. 7; ], Part 1.

Let O(E™) be the bundle of orthonormal fram¢s; ey, ...,e,} in E™. If we
identify a pointz € E™ with its radius vector, there hold the following infinitesimal
displacement equations and structural equations:

de = ejw!, de; =ejwi, wi+wh=0,

dw! = w’ /\wﬁ7 dw}] = wf( /\w]‘](, I.J,..=1,...,n.
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Let M™ be a submanifold of clags* in E™. Then the bundl®(E™) can be
reduced to the principal bundie( E™, M) of adapted ta\/™ orthonormal frames
{z;e1,...,em; €m+1, ..., en } fOr whichz € M™, the vectors; (i,7,... = 1,...,m)
belong to the tangent subspdtgM™ and thus the vectors, (o, 3,... = m +
1,...,n) belong to the normal subspagg M™.

According to a well-known scheme (see, e.g], $ecs. 2 and 3)

w® =0, wi = h§w!, his = hS;, (2.1)
Vh; = hijpw", hise = i (= Vihi;), (2.2)
Vheie Aw = B85 — h, OF — hg.QF. (2.3)

HereV is the van der Waerden—Bortolotti connectidn £ V @ VL, whereV is
the Levi—Civita connection o/™ determined by the 1-forms;/ and V1 is the

normal connection determlned by the 1- forw&) thereforeVh¢: % in (2.2) means
Vh; = dhgy + h’g — hiwl — h§wh (similar is the expressmn fovhgy, in

i k:g 1
(2. 3)) and
Qf = dwg — WP A wi =W AW = nglwk A, (2.4)
08 = dw? — Wl A wﬁ? =Wl A wi’g = nglwk At (2.5)

are the curvature 2-forms of the connectiGhandV+, respectively, where

Z i Z b (2:6)

are the components of thelr curvature tenslétz.'x;ndRL respectively.

A submanifold M™ in E™, whose second fundamental fornis parallel
with respect tov, i.e. Vh =0, or, equwalentlyh”k 0, is said to beparallel
[1], or locally symmetrigiextrinsically) B]. If the integrability condition of this
differential system is satisfied, théd™ is said to besemiparallel(shortly, SP) {].
Due to (2.3) this condition is

h{QG — b QF — hgQF = 0. (2.7)
If for a Riemannian manifold\/™ its curvature tensor? is parallel with
respect tov, i.e. VR = 0, then thisM™ is said to bdocally symmetric If the

integrability condition of this differential system is satisfied, thdfi* is said to be
semisymmetri¢shortly, SS). This condition is

Rpjlef + Ripk:lQ§ + Rijplgg + Rz‘jkpﬁf =0, (2.8)
whereR; i, = RY,.
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The symmetric tensor with components;, = Rijkldil = >, Rijii is called
theRicci tensorand denoted by Ric. A Riemannian manifdid™ which satisfies
the condition

Rpkﬁg + ijQi =0, (2.9)

is said to beRic-semisymmetrigshortly, RSS).
It is easy to check that (2.7) implies (2.8) and this, in its turn, implies (2.9).
A submanifoldM™ in E™*! is called ahypersurface Thena, 3, ... take only
one valuen + 1, therefore = 0.
A submanifoldM™ in E™*2 s said to have codimension two.

Lemma 2.1(see }]; also [], Proposition 8.7)For every semiparallel submanifold
M™ in E™*+2 (i.e. with codimension twdhere holds? = 0.

In general, a submanifol#l/™ in E™, for which Qg =0, is said to benormally
flat (or, in more detail, to havBlat normal connectio/). Then, due to (2.5) and
(2.6), all matrices|hg|| and||hfj|| with o« # 8 commute and thus at every point
x € M™ the orthonormal frame i®(M™, E™) can be in its tangent part chosen
so that all these matrices have the diagonal form/ife= £f*d;;.

In particular, every hypersurface is normally flat, and th&i* = ); are the
well-known principal curvatures. In general, the vectbys= k{‘e,, normal to a
normally flatA/™ in E™, are called th@rincipal curvature vectorsf this M™ (see
[°]). The directions of the frame vectoes, ..., e,,, Which realize these diagonal
forms, are called thprincipal directions

For these vectors the differential system (2.1) reduces to

w' =0, w¥=k%" (2.1)
and the curvature 2-forms are
Qij = —<k‘i, k‘j>wi A wj, (24/)
thus the curvature tens@ has the components
Rij 1 = (Ki, kj) (00510 — 0ijk)-
Correspondingly, the Ricci tensor Ric has the components
Ry = ((mH, kj) — (kj, k))djk,

whereH is the mean curvature vector of the immersion:

1 .. 1
H = —cWhij = 7(]{;1 + ...+ k‘m)
m m
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The conditions (2.7), (2.8), and (2.9) of semiparallelit) R), semi-
symmetricity 6.5), and Ric-semisymmetricityRSS) reduce for a normally flat
submanifoldM™ in E™, respectively, to

(ki — k) (ki, kj) = 0, (2.7)
(ki — kj, ki) (ki, k) =0, (2.8")
<ki + kj —mH, k; — k‘j><k‘i, k‘j> =0 (2.9/)

for every two different values of the subscriptg and for every three different
values of the subscripisj, k (see [], Sec. 12; [%]).

It is known that a Riemanniai/? is Ric-semisymmetric if and only if it is
semisymmetric. (Note that for normally flat submanifolds in E™ this follows
easily: thenm = 3 andk; + k; — mH = ky, for every three different values of the
subscripts, j, k, thus the condition§2.8’) and(2.9’) coincide.)

Therefore we are further interested mostly in the case 4.

3. V. A MIRZOYAN's THEOREM AND ITS CONSEQUENCES

For hypersurfaces the conditio(is7’), (2.8'), and(2.9'), respectively, take the
form

Adj (A — A) =0, (3.1)
AiNjAk(Ai — X)) =0, (3.2)
)\z/\j<)\z — )\J)(/\z + Aj — mH) =0, (3.3)

for every two different values af j and for every three different values ofj, k,
wheremH = A\ + ... + Ay, (see, e.g.,'[1¥)).

For anyM?3 the conditions (3.2) and (3.3) are equivalent, as established above.
For M™ with m > 4 in E™*! their equivalence is a much-investigated problem;
the survey of the results is given above in the Introduction.

The task of the present section is to show that all these results are covered by a
classification theorem for all RSS hypersurfadé® in E™t1, given recently by
Mirzoyan [*%].

Theorem 3.1 (see [®]). A hypersurfaceM™ in the Euclidean space’™!
is Ric-semisymmetric if and only if it is an open subset of one of the following
hypersurfaces
(1) a hypersphere™ in E™m+1;
(2) a hypercone of rotatio®™ in E™+1;
(3) a productS* x E™~* whereS* is a hypersphere i**! and E™* is an
(m — k)-dimensional plangtotally orthogonal toEFt k=2, ...m—1;
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(4) a product C* x E™= % where C* is a hypercone of revolution in
E*1 and E™ % is an (m — k)-dimensional plangtotally orthogonal toE**!,
k=2,...,m—1;

(5) a hypersurface whose vector valued second fundamental fionas the
matrix || k|| of rank < 2;

(6) a semi-Einstein hypersurfadé™ in E™*! (m > 5) that carries a three-
component orthogonal conjugate system consisting of two sphéfes) (p > 2)
and S9(r2) (¢ > 2) and a line L, and that is a cone with one-dimensional
flat generatorg(the line L. as a generator at each poinbver the direct product
SP(r1) x S9(ry), which is an Einstein submanifold @™*! and belongs to a
hyperspheres™(r) ¢ E™*!, where the radiiry, ro, andr are connected by the
conditionr? = 72 + r2 and are linear(nonconstantfunctions onZ;

(7) a productK’* x E™~* whereK"* is a semi-Einstein hypersurface Bf+1,
described likek ™ in point (6), and E™* is an (m — k)-dimensional plangotally
orthogonal toE**1, 5 < k < m — 1.

Here only some notations and terms are changed and formulations characteriz-
ing the products are added compared to the original text®df (For example, in
[*¥] Ric-semiparallels used instead dRic-semisymmetrj@tc.)

In the proof in [#] first a conclusion is made from (3.3) that amokg ..., \,,
there can be at most two distinct nonzero values.

If among them there is only one of multiplicigy and the other, of multiplicity
m — p, is zero, then (3.1) is satisfied; thus the hypersurface is semiparallel. The
classification result of?], refined in P] (see also {], Sec. 12), gives that this
hypersurfaceM™ either has rank< 1 or is one of the hypersurfaces (1)—(4) in
Theorem 3.1.

Let there be two nonzero principal curvaturesanda — A of multiplicities p
andgq, respectively, where = mH.

If p=1o0rq =1, thenpq = 1 and this gives (5) of Theorem 3.1. Then among
A1, ..., Ay ONly two are nonzero, all others are zero, and thus (3.2) is satisfied: the
hypersurface is semisymmetric.

Most interesting is the case whare> 2 andq > 2. Then

a:]ﬂ/\7 M:a_)\:E/\_
l1—q l—¢q

Here the frame vectors can be renumbered so that = A\, A\, = p, andA; = 0.
Using (2.2), one can show (se€], Egs. (4.5)) that

d\ = hsw®, (1 — Nwb = hpysw?, (3.4)
s b u s b p—- 1 u
Awp = hsw’ + hpysw®,  pwy, = hpysw” + 1fqhsw , (3.5)

whereh, = hji T andhy,s = b1, Therefore the corresponding eigendistribu-
tions7™, 70, andT®) of |1+ || are foliations. From the first equation of (3.4)
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it follows after exterior differentiation that,; = 0, thusw® = 0, and from here
after exterior differentiation

Z RE =\ (3.6)

- 1
s=p+q+1 q

Here the relatiorp + ¢ = m cannot hold, because then the left-hand side is zero,
but the right-hand side is nonzero. Hence at least one zero eigenvalye must
exist. Thus the case = 4 is here impossible.

The Ricci tensor has here a diagonal form with diagonal elements

p—1

2 _
=N <0 =0 (3.7)

Pb = Pu =

The further proof in {®] deals with the geometrical interpretation of the
consequences from the differential system which determines the considered
hypersurfacél/™ in E™*! in the case wherg > 2 andq > 2.

Let us show now how the known results about the P. J. Ryan’s problem for the
Euclidean spac&™"! can be deduced from V. A. Mirzoyan's Theorem 3.1.

First, let us recall that the hypersurfaces (1)—(4) are semiparallel and thus
semisymmetric, but the hypersurfaces (5) are intrinsically the manifolds of
conullity two (in the sense off]) and also semisymmetric. Therefore only the
hypersurfaces (6) and (7) are interesting from the point of view of this problem.

Corollary 3.2. Every Ric-semisymmetric hypersurfakE™ with positive scalar
curvature inE™*! is semisymmetric.

Indeed, from (3.7) it is seen that the cases (6) and (7) are here excluded. This
is the result of [].

The same argument shows that in this corollpogitive scalar curvaturean
be replaced byion-negative scalar curvaturdhis is the result of'[].

Corollary 3.3. Every Ric-semisymmetric hypersurfatE™ with constant scalar
curvature inE™*! is semisymmetric.

Indeed, itis seen from (3.4) that= const impliesh; = 0, but due to (3.6) this
is impossible for (6) and (7). So follows another result'df.[

Corollary 3.4. If Ric-semisymmetric hypersurfadé™ in E™*! is completethen
it is semisymmetric.

Indeed, from the geometrical description of hypersurfaces (6) and (7) it is seen
that they, as some cones, are incomplete. This gives the restil{.of |

Corollary 3.5. Every Ric-semisymmetric hypersurfddé in E° is semisymmetric.

Indeed, as shown above, it follows from (3.6) that the ease 4 is impossible
for (6) and (7). This is the result ofq].
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4. THE EXISTENCE OF RIC-SEMISYMMETRIC BUT
NON-SEMISYMMETRIC HYPERSURFACES

P. J. Ryan’s problem is finding its final solution in the research work of
F. Defever, who has announced i][ based on his still unpublished preprints,
that there exist Ric-semisymmetric but not semisymmetric hypersurfaéesn
EmHLifm > 4.

First, he constructed an example for the case= 5 and then generalized
it for the casem > 7. This last example has been obtained by a completely
integrable system of partial differential equations and actually gives a family of
needed hypersurfaces, depending on constant parameters.

In the present section we show that the existence of such hypersurfaces can
be proved also in the framework df] using Cartan’s exterior differential calculus
and the Frobenius theorem for totally integrable differential systems (see the second
version of this theorem ir’{]).

The hypersurface of Theorem 3.1, as noted above, can be non-semisymmetric
only if it is one of the cases (6) and (7). Thus it must be determined by the
differential system consisting of

WL =0, Wt =t Wl = g, WP =0, ()
and of (3.4), (3.5), where, as was showp,; = 0, so of
dh = hw®, w2 =0, Iwi=h’, M =hw (4.2)

Here (4.2) can be obtained by exterior differentiation from (4.1) (and from the first
equations of (3.4)).

In their turn, (4.2) give by differential prolongation, i.e. by exterior
differentiation and then using Cartan’s lemma, the following: the first equation
of (4.2) gives

dhs — htwi = Astwt, Ast = At57 (43)

the second equation gives (3.6), but the last two equations of (4.2) imply
Agt = 2X T hshy.

Let us consider the vectar= ) esh,. Due to (4.3)

dn ==X\ h2(epw’ + eqw”) + 2n(hyw’).

If we fix arbitrarily the pointz € M™, then allw® = w* = w! = 0, and thus
n IS an invariant vector at. The orthonormal frame at can be taken so that
n = ven,. Thenh,, = v, wherev? = X“;%} due to (3.6), andhy = 0 for

s =p+q+1,..,m— 1. Hence (4.2) reduces to
dh=vw™, Mt =wl A" =Y, Wb = wlf/ —w =0, (4.4)

u
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and (4.3) to

dv =22 "120™, W = 0. (4.5)

S

Exchanginge,, by —e,,, if needed, we can obtain = c\?, wherec = , /{1’%} =

const. Using alsge = —c?\, we can reduce the differential system (4.1), (4.4),
(4.5) to
W' =0, Wt =20 W = A, W =W =0, (4.6)

dA =X, W' =, W=t W =wf =wd =Wl =0. (4.7)
It is easy to check that the exterior equations, obtained by exterior differentiation
from the equations of this last system, are satisfied due to the equations of the same
system. Therefore, due to the Frobenius theorem, this system is totally integrable
and determines the considered hypersurface up to some constants.

If we takei = k£ = 1 andj =p+1, sothat\;, = \p =X and); = p =
11’%2)\ £ )\, we see that (3.2) is not satisfied, becasé 0.
As a result, the following statement can be formulated.

Theorem 4.1. There exist Ric-semisymmetric but non-semisymmetric hyper-
surfacesM™ in Em+1,

The geometrical construction of these hypersurfaces is described by Mirzoyan
['8], and is reproduced here as points (6) and (7) of Theorem 3.1. Note tH&} in [
the existence of these hypersurfaces is not established explicitly, although it is seen
indirectly from the construction.

For a particular case, namely for the hypersurfaces (6), the theorem has been
announced by DefevetT]. Note that from the deduction which led to Theorem 4.1
it can be concluded that the example given by Theorem 3.¥ptpincides with
one of hypersurfaces (6).

Indeed, it follows from (4.6) and (4.7) thdb™ = 0, therefore a function exists
on the hypersurfac&/™ of (6) (note that for this hypersurface the set of values of
s’ is empty). Let us denote this function by, so thatw™ = dz™. Now the
first equation of (4.7) can be integrated, which gives™! = c(z™ 4 O). If we
introduce a constarit so thatC' = ¢", and for positiver™ the variablex! so that

z™ = e*', thenz™ + C = e, Recall thate = f]’%}. If we now denote

B=(y/(p—1)(g— 1)), we obtain the example of Theorem 3.2 bf|[ the only
difference is thah, ¢, r stand instead af, p, q.

Therefore, it can be concluded that Theorem 3.2 Gfdives the most general
hypersurfaces of (6) of Theorem 3.1 above.
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5. EXTENSION OF P.J. RYAN's PROBLEM

As we have now the complete solution of P. J. Ryan’s problem in its classical
setting, it is natural to pose the problem in a more general setting, namely
to ask whether a Ric-semisymmetric normally flat submanifdbld® in E” is
semisymmetric. Section 2 of this paper concludes with the statement that for
dimensionm = 3 the answer is positive. Therefore, next the case= 4 is to
be considered. ThetH = ki + ko + k3 + k4, therefore the Ric-semisymmetricity
condition(2.9") reduces to

<ki, k]><k2 — kj, k. + kl> =0 (5.1)

for every four different values af j, k, [. Taking (5.1) also fok, 5, 4, [ and then for
1,1, k, 7, we can see that the set of (5.1) is equivalent to the set of

(Kiy kj) = (b, ki),
soform =4to
(k1,k2) = (ks ka), (k1,k3) = (ka,ka), (k1,ka) = (Ko, k3). (5.2)

The set of the last three conditions is symmetric with respect to interchanging of
1,2, also of 3,4, as well as of the pairs 2} and{3,4}.

Suppose that the semisymmetricity conditi@®') is not satisfied for at least
one triple of different values, j, k. After renumbering, if needed, this can be
achieved by = 1, j = 2, so that

(k1, k2) (k1 — ko, ki) # 0, (5.3)

where the subscrigt is either 3 or 4. In particulakky, ko) # 0.

Let us call thenk; and k5 the distinguishedprincipal curvature vectors for a
normally flat Ric-semisymmetric but not semisymmetric submanifgitlin £,

Let us consider further the case where= 6 and the distinguished principal
curvature vectors are collinear. This leadsk® = kk; #* 0, and now
(1 — k)(k1, ki) # 0 due to (5.3). On the other hantks, k1) = r(k1,ks) and
(k1,kq) = r{ky,k3), as follows from (5.2). This impliegky, k) = x2(k1, ki),
which is equivalent tdl+«)(1—x)(k1, ki) = 0, and therefore = —1. Moreover,
<k1, ks + ki4> = 0.

The normal to the considered* frame vectors:s andeg in E° can be taken
at an arbitrary point: € M* so thatk; = —ky = Aes. Thenks = pes + v3eq,
ks = —pes + vqeq. Thus, thish/* is determined by the differential system

W’ =wb =0,
4

W =Ml Wl = —M?, wg = uw?, Wi = —pwt, (5.4)
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4

W=w§=0, w§=ww? ws=wt (5.5)

Here, due to (5.2),

6
1

—A = —p® + v

and in general there exists such a functidihatys = v(u— \), vs = v+ A).
By exterior differentiation Eq. (5.4) give the following exterior equations:

AANA W' F 2200 Aw? + (A — p)wd Awd + (A + pwi Awt =0, (5.6)

2200 Awt —dAAW? — (A + p)ws Aw? — (A — pws Awt =0, (5.7)

(A= p)w Aw' — A+ p)wi Aw? +[dp+v(A— p)wS] Awd +2uwi Aw? = 0, (5.8)

(M) wiAw! —( A= p)wi Aw? +2pwi Aw® = [dp+v (A4 p)w] Aw? = 0. (5.9)
The same procedure by (5.5) leads to

M Awh — v\ — p)wi Aw? + v+ p)wi Awt =0, (5.10)

Mo Aw? —v(N = p)ws Awd + v A+ pws Awt =0, (5.11)

v\ — p)[w? A w! + Wi AW+
[—(\ — p)dv — v(d\ — dp) + pwl] Aw?® 4 (13 — v)ws Aw? =0, (5.12)

v O ) [wi Awt 4wy AW+
v3 —vg)wi Awd + [ 2\ + p)dv + v dXA + dp) — pwl] Awt = 0. (5.13
3 5

From (5.6), due to Cartan’s lemma,
d\ = Aw!' + Buw? 4+ Cw?3 4+ Duw?,
20w? = Bw! + Ew? + Fw3 + Guw?,
(A — p)w? = Cw' + Fw? + Hw? + Tw?,
A+ pwi = Dw! + Gw? 4+ Tw? + Jw?.
Similarly, from (5.7) it follows thatt? = — A and
—\ + p)ws = Ful — Cw? + Kw® + Lw?,

—(\ = pwi = Gw' — DW? + Lw? + Mw.
H)wa
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Now substitution into (5.10) giveB = G = I = 0 and
/\wg = Qu' — vCwW? + v Dw*,

but substitution into (5.11) adds =D = L =@ = 0.
The result is:

d\ = Aw' + Buw?, 2)w? = Bu' — Aw?, W8 =0, (5.14)
A —p)w? = Ho®, —(A+ p)ws = Kw?,

A+ pwt = Juwt,  —(\ — p)ws = Mw?.
Now (5.8) and (5.9) reduce to

(5.15)

(du—Hw' - Kw?) AP 42uwirw? =0,  2uwinw®—(dp+Jw'+Mw?)Awt =0,
and from here, due to Cartan’s lemma= —H, M = — K,
dp = Ho' + Kw? + Rw® + Swt,  2uwi = Sw? + Tw?, (5.16)

so that
A+ pw! = —Hwt, (A= pws = Kw'. (5.17)

Finally, (5.12) and (5.13) lead together, after some calculation$,40B = 0;
therefore, from (5.14),? = 0. This last equation gives by exterior differentiation,
due to (5.15), (5.17), and (5.4), a contradictiofcw® A w? = 0!

Hence the following statement holds.

Theorem 5.1. In ES there exists no normally flat Ric-semisymmetric but not
semisymmetric submanifold* whose distinguished principal curvature vectors
are collinear.

Of course, this theorem does not solve the extended P. J. Ryan’s
problem in general (i.e. without the assumption about the collinearity of the
distinguished principal curvature vectors): do there exist Ric-semisymmetric but
not semisymmetric normally flat submanifoldg® in £6? All the more, this
extended problem is open for general dimensionandrn.

6. SEMISYMMETRIC BUT NOT SEMIPARALLEL NORMALLY FLAT
SUBMANIFOLDS OF CODIMENSION TWO

Let us turn now to the other problem indicated in the introduction. Namely,
let us ask if there exist among the normally flat submanifdlffg in E+2 those
which are semisymmetric but not semiparallel. Recall that every semiparaltel
in E™*2 s, due to Lemma 2.1, normally flat. All of them are classifiecin [
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From (2.7') it follows immediately

Lemma 6.1 A normally flat submanifold/™ in E™ is semiparallel if and only if
every two principal curvature vectors are either equal or orthogonal.

Forn = m + 2, when there cannot exist more than two mutually orthogonal
nonzero normal tad/™ vectors, this means that amohg ..., k,,

(1) there is either only one nonzekaf multiplicity p and the remaining: — p
are zero or

(2) there are two orthogonal nonzekg and k;; of multiplicities p and g,
respectively, and the remainimg — p — ¢ are zero.

The classification in%] (where classes (1) and (2) are denoted, in more detail,
by (A,) and(By, q)), respectively) can be complemented by the characterization
of the inner metric as follows.

Proposition 6.2. A semiparallel submanifold/™ in E™*+2 of class (1) is
intrinsically

for p = 0 andp = 1 locally Euclidean

for p = m of positive constant curvature

for 2 < p < m a product of an elliptic cone and a locally Euclidean manifold
(where this cone can degenerate into a product of elliptic space and line

for p = 2 a manifold of conullity two of planar typ@ccording to[24]).

A semiparalleld/™ in E™2 of class(2) is intrinsically

for p = ¢ = 1 locally Euclidean

forp > 1andq > 1 aproduct of three manifolds, one of whicl{is—p—g—2)-
dimensional and locally Euclideathe other two are the elliptic conésne or both
of which can degenerate into the productlefand p- (or ¢-)-dimensional spaces
the latter of which are of constant positive curvafyre

for p > 2 andg = 1 a product of a(p + 1)-dimensional elliptic cone and
an (m — p — 1)-dimensional locally Euclidean manifol@vhere this cone can
degenerate into a product df- and p-dimensional spaceshe latter being of
constant positive curvatuye

for p = 2 andq = 1 a manifold of conullity two of planar type.

Proof. The first two statements about class (1), like the first statement about
class (2), follow immediately fromi2.4).

For1l < p < m, let the first normal ta\/™ unit vectore,,.; be taken so that
ki =..=k,=kent1,k #0. Then

m+1 __ a m+2 . m+1l . m+2 _
W' =RW, wy Tt =w, T =w, =0, (6.1)

wherea runs ovef{ 1, ..., p} andu runs ove{p + 1, ..., m}. From here, by exterior
differentiation,

dink Aw® +w" Awl =0, w* AwlT? =0, Zwﬁ/\w“:O.
a
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Hence, due to Cartan’s lemma

dlnk = K*w® + Z )\uwua _WZ = Auwa + Z M?vay’
U v

+2 _ _ b
w1 = VW, wy = Z Papw” -
b
Considering this for different values af we obtain

dlnk = Z A, —wl = A, wit? =0. (6.2)
u

The last statement about class (1) can be verified by comparing the middle
formulae in (6.2) with Egs. (5.2) and (5.7) 6f, which gives that a Riemannian
manifold of conullity two is of planar type if and only #w$ = \,w®, where now
a€{1,2}.

The penultimate statement about class (1) can be verified by geometrical
interpretation of the corresponding deduction madéjin [

The same is true of the first three statements about class (2). For the last
statement about class (2), let us consider the case wherel andg = 1. If
we take here normal td/™ frame vectors,,,+1 ande,, s collinear tok; andk;y,
respectively, so thak; = kren,1 andkrr = Krremgs, thenM™ in Em+2 is
determined by the differential system

wm—‘rl — wm+2 =0

)

2 m+2 __ m-+2
wmt =0,

o =w Wyt

_ 1
1 = krwPt,

m+1 _ a
wint = g

m+1 _  m+2 __
wy Tt =Wt =0,

wherea runs over{1,...,p} andwu runs over{p + 2,...,m}. From the last two
eqguations, after exterior differentiation and using Cartan’s lemma, it follows that

a __ b +1 _ +1
Wy, = )\uabw ) wﬁ - ,U/uwp )

whereA o = A\uba-
Similarly, usingp > 1 as a particular case, we get from the other equations

dink; = —Apw",  wy = Anuw?, (6.3)

dinky; = —pw", wﬁ“ = ,uupr, (6.4)
_ +2 -1 +1

Wy = vwt, Wi = Kk vwP T (6.5)

These equations imply that the differential systefn= 0 is totally integrable,
due to Frobenius theorem. Its leaves are locally Euclidean, because their curvature
2-forms vanish due to (2.4) and (2.6), as is easy to check.
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For p = 2 this means thai\/™ is intrinsically a Riemannian manifold of
conullity two, which is of planar type, as is seen from the comparison of the last
equation of (6.3) and the first equation of (6.5) with Egs. (5.2) and (5.2 pf [

This verifies the last statement about class (2) and completes the proof.

For the purposes of the present paper the following consequence is important.

Corollary 6.3. If a semiparallel submanifold/™ in E™*2 is intrinsically a
Riemannian manifold of conullity twthen it is of planar type.

Let us consider now the problem stated at the beginning of this section. The
negative answer follows from

Proposition 6.4. Among the non-semiparallel normally flat submanifoldg™
in E™*+2 there exist intrinsically semisymmetrit/™ of conullity twq whose
Euclidean leaves of codimension two are the— 2)-dimensional planes if/™ 2
and which are of hyperbolic type.

Proof. For such an\/™ there holdg2.8’) but not(2.7'), i.e. (k; — k;)(ki, k;) # 0
for at least one pair(i,j). After renumbering, if needed, this gives
(k1 — k2)(k1, ko) # 0. Due to(2.8), all ks, ..., k;,, must be orthogonal to this
nonzero vector.

The orthonormal frame aD(M™, E™*+2) can be adapted further so that at an
arbitrary pointz € M™ the unit normal vectoe,,; is collinear tok; — ko # 0.
Then

kl = )\16m+1 + KRE€m+2, kg = )\2€m+1 + RE€m+2, ()\1 — AQ)()\l/\Q + /432) 7& 0,

andk, = pyem+2, Where the index. runs over{3, ..., m}. (00
Now (2.8'), used for the triple$l, u,2) and(2,u, 1), leads to
Ky (A1 A2 + K2 — Kiy) = 0, (6.7)
but, by (u,v,1) and(u, v, 2), to
Ky — po) fuplo = 0. (6.8)

It is sufficient to take here the subcase when = 0 for every valueu €
{3,...,m}. Then Eqs(2.1") reduce to

wm—‘rl — wm+2 — 0,
wTH = \w!, w%nﬂ = \ow?, WMt =0, (6.9)
w{n+2 = rwt, wg”rz = kw?, WM =0, (6.10)

The last equations of (6.9) and (6.10) give by exterior differentiation

WA MW+ w2 AXw? =0, Klwl Awt 4+ w2 Aw?) =0. (6.11)

82



The first two equations of (6.9) give by exterior differentiation

(d\1 — /iw;’;if) Awl + (A = A)wiAw? — )\ Zwi Aw' =0, (6.12)

(A1 — A)wi Awh + (dAg — /ﬂumﬁ) Aw? — Ao Zwi Aw" =0, (6.13)
but the first two equations of (6.10) lead to

(dr + Alwmif) Aw' =k Zw}t Aw" =0, (6.14)
(di + Xow ) Aw? — K ng Aw® =0. (6.15)

Let the essential codimension 8™ be two. Therx # 0, due to (6.5), and
now the second equation of (6.11) gives

1

w =

aywt + byw?, wz = byw' + eyw?, (6.16)

w,
due to Cartan’s lemma, but substitution into the first equation of (6.11) leads to
()\1 — )\2)bu =0, thus tObu =0.

The differential systemw! = w? = 0 is totally integrable becausés! and
dw? vanish as algebraic consequences of the equations of this system. For the
leaves of the foliation determined by this system there hbld= )" e,w",
de, = ), eswy, thus these leaves are generating — 2)-planes. The analysis
of the system of exterior equations (6.11)—(6.15) shows that the characters are here
s1 = 2m andse = 1, and the Cartan’s numbé} = s; + 2s9 = 2(m + 1) is equal
to the number of new coefficients after developing these exterior equations by the
Cartan’s lemma. Hence (se&}?]) the considered/™ exists and depends on one
real analytic function of two real arguments. The generating- 2)-planes are its
Euclidean leaves, so thaf™ is intrinsically of conullity two. Now (6.16) are EQs.
(5.2) of 4] with ¢, = b, but since heré, = 0, the comparison with Egs. (5.7) of
[>4] shows that this\/™ is of hyperbolic type in general, wher # a, for at least
one value ofu. This completes the proof.

Corollary 6.5. There exist Riemannian manifoldd™ of conullity twq which
can be immersed isometrically inf6™+2 as normally flat semisymmetric but not
semiparallel submanifolds.

Note that the investigations in this Sec. 6 give additional support for a
conjecture arisen irff:2’]: among the Riemannian manifold$™ of conullity two
only those of planar type can be immersed isometrically iifoas semiparallel
submanifolds.
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_ Semiparalleelsus, semisimmeetrilisus ja
Ric-semisimmeetrilisus normaaltasaste alammuutkondade
puhul Eukleidilises ruumis

Ulo Lumiste

On tdestatud, et kbik senised tulemused kaua pusinud ja hiljuti lahendatud
P. J. Ryani probleemi kohta on kaetavad V. A. Mirzojani asjase teoreemiga, mis
annab koigi Ric-semisimmeetriliste alammuutkondade taieliku klassifikatsiooni.
See probleem on laiendatud normaaltasaste alammuutkondade juhule ja antud
lahendus uhel erijuhul. On naidatud, et eksisteerivad semisimmeetrilised normaal-
tasased kodimensiooniga kaks alammuutkonnad, mis pole semiparalleelsed.
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