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Abstract. The procedure of robust controller design by quadratic programming makes use
of a stability measure defined as the minimal distance between a preselected stable simplex
and vertices of the characteristic polynomial of an uncertain system. A constructive procedure
for generating stable simplexes in polynomial coefficients space is given starting from the
unit hypercube of reflection coefficients of monic polynomials. This procedure is quite
straightforward: an appropriate stable point is chosen and then the edges of the stable simplex
will be generated by reflection vectors of this polynomial.
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1. INTRODUCTION

Despite the existence of elegant methods of optimal and robust control [1],
control engineers complain about the gap between theory and practice in control
systems. In part this complaint stems from the fact that many of the design
techniques cannot incorporate realistic constraints such as fixed structure and order
which are present in most practical control systems. An interesting way of solving
this problem by linear programming is proposed in [2].

Another practical issue is that of model uncertainty. If the model uncertainty
is relatively small, then it is possible to use sensitivity-based methods [1]. If the
model uncertainty is large, some robust formulation of the problem is needed, such
as multimodel [3] or polytopic plant model approach [4−6].

In [7] a new concept for robust controller design was introduced: starting
from reflection coefficients of Schur polynomials, a convex approximation of the
stability region in the closed-loop characteristic polynomial coefficients space was
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found and via a preselected stable simplex an output feedback controller was
obtained. This approach is called robust reflection coefficients placement.

In the present paper a similar idea is used. However, the main interest is
concerned, first, with robust controller design by quadratic programming and,
second, with Schur stable convex subsets building in polynomial coefficients space.

The following problems are considered. First, we recall the problem of fixed-
order pole assignment and give a solution by quadratic programming. Then some
convex stable subsets in polynomial coefficients space are defined via reflection
coefficients of polynomials. At last, a procedure is proposed to design a robust
controller for polytopic plants via preselection of an appropriate Schur stable
simplex and quadratic programming.

2. FIXED-ORDER POLE ASSIGNMENT

Consider a discrete-time linear single input/single output system. Let the plant
transfer functionG(z) of dynamic orderm and the controller transfer function
C(z) of dynamic orderr be given, respectively, by

G(z) =
b(z)
a(z)

=
bm−1z

m−1 + · · ·+ b1z + b0

amzm + · · ·+ a1z + a0

and

C(z) =
q(z)
r(z)

=
qrz

r + · · ·+ q1z + q0

rrzr + · · ·+ r1z + r0
.

It means that the closed-loop characteristic polynomial

f(z) = a(z)r(z) + b(z)q(z)

is of degreem + r.
As is known from the literature, in the caser = m−1 the above equation admits

a solution for the controller coefficients for arbitraryf(z) whenever the plant has
no common pole-zero pairs. In general, it is impossible to exactly attain the desired
polynomial forr < m− 1. Here we suggest the following approach.

Let us relax the requirement of attaining the desired polynomialf(z) exactly
and enlarge the target to a simplexS in the coefficients space containing the point
representing the desired characteristic polynomial. Without any restrictions we can
assume thatam = rr = 1 and deal with monic polynomials.

Let us now introduce a stability measureρ in accordance with the simplexS

ρ = cT c,

where
c = S−1f
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andS is the(m + r + 1) × (m + r + 1) matrix of vertices of the target simplex.
Obviously, for monic polynomials

n+1∑
i=1

ci = 1,

wheren = m + r. If all coefficientsci > 0, i = 1, ..., n + 1, then the pointf is
placed inside the simplexS.

It is easy to see that the minimum ofρ is obtained by

c1 = c2 = ... = cn+1 =
1

n + 1
.

Then the pointf is placed in the centre of the simplexS.
Now we can formulate the following problem of controller design: find a

controllerC(z) such that the stability measureρ is minimal. In other words, we
are looking for a controller which places the closed-loop characteristic polynomial
f(z) as close as possible to the centre of the target simplexS.

In matrix form we have
f = Gx, (1)

whereG is the plant Sylvester matrix

G =



a0 0 ... 0 b0 0 ... 0
a1 a0 ... 0 b1 b0 ... 0
. . . . . . . .

an−1 an−2 ... a0 bn−1 bn−2 ... b0

0 an−1 ... a1 0 bn−1 ... b1

. . . . . . . .
0 0 ... an−1 0 0 ... bn−1


of dimensions(m + r + 1) × (2r + 1) andx is the(2r + 1)-vector of controller
parametersx = [q0, ..., qr−1, r0, ..., rr]T .

The above controller design problem is equivalent to the quadratic
programming problem: findx such that the minimum

min
x

xT GT (SST )−1Gx

is obtained by the linear restrictions

S−1Gx > 0,

1T S−1Gx = 1,

where1T = [1...1] is ann-vector. Here the first restriction (inequality) follows
from the positivity requirement of coefficientsci, i = 1, ..., n.
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3. STABLE SIMPLEX BUILDING BY REFLECTION VECTORS OF
POLYNOMIALS

The problem is how to find a stable simplex in polynomial coefficients space.
Let a(z) be a Schur polynomial of degreen. To build a stable simplex such that the
pointa is a vertex of it, we can use the edge theorem [3]. To put it more precisely,
we can proceed as follows.

1. Choosen arbitrary stable pointsai, i = 1, ..., n.
2. Check the stability of the line segments conv(a, ai), i = 1, ..., n, by positivity

of all real eigenvalues of the matrixSi [8]:

Si = T−1Ti,

where
T = X − Y,

Ti = Xi − Yi.

The matricesX andXi are of the right-upper triangular form

X =


an an−1 an−2 ... a2

0 an an−1 ... a3

0 0 an ... a4

. . . . .
0 0 0 ... an

 ,

the matricesY andYi are of the left-lower triangular form

Y =


0 0 0 ... an

. . . . .
0 0 a0 ... an−4

0 a0 a1 ... an−3

a0 a1 a2 ... an−2


with elements of proper subscriptsi.

3. If the matrixSi has a nonpositive real eigenvalue, then the line segment
conv(a, ai), i ∈ [1, ..., n], crosses the stability boundary and we have to choose an
inner point of the line segment conv(a, ai) and go to step 2.

4. If all the line segments conv(a, ai), i ∈ [1, ..., n], are stable, then check the
stability of the line segments conv(ai, aj), i, j = 1, ..., n.

5. If a line segment conv(ai, aj), i, j ∈ [1, ..., n], crosses the stability boundary,
then choose an inner pointai∗ (or aj∗) of the line segment conv(a, bi) (or
conv(a, bj)) and go to step 4.

6. If all the line segments conv(a, ai) and conv(ai, aj), i, j = 1, ..., n, are
stable, then by edge theorem the simplexS = conv(a, a1, ..., an) is stable.
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Obviously, by the above procedure we can find a Schur stable simplex for
an arbitrary inner point of the stability region. Yet, the procedure is quite time-
consuming for high-degree polynomials, because the directions of edges are not
fixed and the number of edges increases rapidly:N = n(n + 1)/2.

The procedure of stable simplex building can be simplified considerably by the
use of reflection coefficients and reflection vectors of polynomials.

The recursive definition of reflection coefficientski ∈ R of a polynomiala(z)
is as follows [9]:

a
(n)
i =

an−i

an
, i = 1, ..., n;

a
(i−1)
j =

a
(i)
j + kia

(i)
i−j

1− k2
i

, j = 1, ..., i− 1;

ki = −a
(i)
i .

(2)

Lemma 1. A necessary and sufficient condition for all the roots ofa(z) to be inside
the unit circle is[9]

|ki| < 1, i = 1, ..., n.

The inverse of relations (1) defines a multilinear mapping from reflection
coefficients space into monic polynomial coefficients space

an−i = a
(n)
i

a
(i)
i = −ki, i = 1, ..., n;

a
(i)
j = a

(i−1)
j − kia

(i−1)
i−j , j = 1, ..., i− 1.

(3)

Lemma 2 [7]. Through an arbitrary stable pointa = [a0, a1, ..., an−1] with
reflection coefficientska

i ∈ (−1, 1), i = 1, ..., n, we can putn stable line segments

ai(±1) = conv{a|ka
i = ±1}

whereconv{a|ka
i = ±1} denotes the convex hull obtained by varying the reflection

coefficientka
i between−1 and1.

Now let us introduce the reflection vectors of a monic polynomiala(z). They
will be useful for convex stable subsets building in polynomial coefficients space.

Definition. Let us call the vectors

ai(1) = (a|ki = 1), i = 1, ..., n,
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positive reflection vectorsand

ai(−1) = (a|ki = −1), i = 1, ..., n,

negative reflection vectorsof a monic polynomiala(z).

It means that reflection vectors are the extreme points of the Schur stable line
segmentai(±1) through the pointa defined by Lemma 2. Due to the definition and
Lemmas 1 and 2 the following assertions hold:

1. Every Schur polynomial has2n reflection vectorsai(1) andai(−1), i =
1, ..., n.

2. All the reflection vectors lie on the stability boundary (ki = ±1).
3. The line segments between reflection vectorsai(1) andai(−1) are Schur

stable.
Three different approaches can be used for stable simplex (or polytope)

building via reflection vectors:
1. Choose such a stable point that the linear cover of its reflection vectors is

stable.
2. Choose an arbitrary stable point and build the stable simplex byn edges in

directions of reflection vectors of the starting-point.
3. Choose an arbitrary stable starting-point and build the stable simplex by

n edges in the directions of reflection vectors of successive vertices of it. It
means: start from an arbitrary stable pointa in the direction of the first reflection
vector of ita1(±1) and choose a pointb ∈ conv(a, a1(±1)); then find the points
c ∈ conv(b, b2(±1)), d ∈ conv(c, c3(±1)), etc.

The possibility of the first approach is confirmed by the following lemma.

Lemma 3. The inner points of the polytopeS0 generated by reflection vectors of
the origina = 0

S0 = conv{0|ki = ±1, i = 1, ..., n} (4)

are Schur stable.

Proof. From (1) we obtain fora = 0

ai(±1) = conv{[0, ..., 0, 1, 0, ..., 0︸ ︷︷ ︸
i−1

], [0, ..., 0,−1, 0, ..., 0︸ ︷︷ ︸
i−1

]}

andS0 = conv{ai(1), ai(−1), i = 1, ..., n}. Obviously the Cohn stability criterion
[10]

n−1∑
i=0

|ai| < 1

holds forS0.
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Lemma 3 (or Cohn stability condition) is quite conservative. The question is:
is it possible to relax the initial condition of Lemma 3 in some neighbourhood of
the origin? The answer is given by the following theorem.

Theorem 1.Letka
1 ∈ (−1, 1) andka

2 = ... = ka
n = 0. Then the inner points of the

polytopeSa generated by the reflection vectors of the pointa

Sa = conv{a|ka
i = ±1, i = 1, ..., n} (5)

are Schur stable.

To prove the theorem we use the following lemma [11].

Lemma 4. Consider the polytope in the coefficients space where each pair(ai, aj),
0 ≤ i ≤ n, n − i ≤ j ≤ n, is varying inside a polytope with edges sloped in the
closed interval[π/4, 3π/4] and where eachai can be combined with only oneaj

and vice versa. Then every polynomial in the polygon will be stable if and only if
all the polynomials obtained by combining all the polygon corners are stable.

Proof of Theorem1. By (1) we obtain

ā1 = a[k1 = k̄1 = ± (1− δ)]
= [0, ..., 0, 0, 0, 0, k̄1 ],

ā2 = a[k2 = k̄2 = ± (1− δ)]
= [0, ..., 0, 0, 0, −k̄2, −ka

1(1− k̄2) ],

ā3 = a[k3 = k̄3 = ± (1− δ)]
= [0, ..., 0, 0, −k̄3, ka

1 k̄3, −ka
1 ],

ā4 = a[k4 = k̄4 = ± (1− δ)]
= [0, ..., 0, −k̄4, ka

1 k̄4, 0, −ka
1 ],

... ... ... ... ...
ān = a[kn = k̄n = ± (1− δ)]

= [−k̄n, ka
1 k̄n, 0, ..., 0, 0, −ka

1 ],

where0 < δ < 1. Let now for somen the polytopeSa(n) be stable. We have to
prove that the polytopeSa(n + 1) will be stable.

Obviously,
āi(n + 1) = [0, āi(n)], i = 1, ..., n,

and
ān+1(n + 1) = [−k̄n+1, k

a
1 k̄n+1, 0, ..., 0,−ka

1 ].

The polytope generated by the pointsāi(n+1), i = 1, ..., n, will be stable because
the polynomials

āi(z, n + 1) = zāi(z, n)
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will be stable only if the polynomials̄ai(z, n) are stable (they have an
extra root in the origin). So we have to prove the stability of the edges
conv{ān+1(n + 1, δ), āi(n + 1, δ)}, i = 1, ..., n, for 0 < δ < 1. Taking into
account the multilinearity of transformation (1), we obtainSa(δ1) ⊂ Sa(δ2)
if δ2 < δ1. It means that we have to check the stability of the edges
conv{ān+1(n + 1, δ), āi(n + 1, δ)}, i = 1, ..., n, for δ → 0. This can be easily
done by Lemma 4.

Let n = 4. Then the vertices of the polytopeSa are the following:

a1(−1) = [ 0 0 0 1 ],
a1(1) = [ 0 0 0 −1 ],
a2(−1) = [ 0 0 1 −2k1 ],
a2(1) = [ 0 0 −1 0 ],
a3(−1) = [ 0 1 −k1 −k1 ],
a3(1) = [ 0 −1 k1 −k1 ],
a4(−1) = [ 1 −k1 0 −k1 ],
a4(1) = [ −1 k1 0 −k1 ].

Because the3-dimensional polytope conv{a1(1), a1(−1), a2(1), a2(−1), a3(1),
a3(−1)} is stable [7], only the edges conv[a4(±1), aj(±1)] for i = 1, 2, 3 have
to be checked for stability. Let now0 < k1 < 1 and let us choose according
to Lemma 4 the following pairs of coordinates:(a0, a2) and (a1, a3) for
the edges conv[a4(±1), aj(±1)], j = 2, 3; (a0, a3) and (a1, a2) for the edges
conv[a4(±1), a1(1)]. Then all the2-dimensional projections of these edges are
sloped in the interval[π/4, 3π/4] and by Lemma 4 these edges are stable.

The stability of the edges conv[a4(±1), a1(−1)] can be proved by the Schur–
Cohn stability criterion [3]. Indeed, the edge conv[a4(−1), a1 − (1)] or the
polynomial

a(z) = z4 + [(1− λ)− λk1]z3 − λk1z + λ, 0 < λ < 1,

is stable because
detS(λ) > 0, 0 < λ < 1,

where

S(λ) =

 a4 a3 a2 − a0

0 a4 − a3 a3 − a1

−a0 −a1 a4 − a2

 =

 1 1− λ− λk1 −λ
0 1− λ 1− λ
−λ −λk1 1

 .

Similarly we can prove that the edges conv[a4(±1), aj(±1)], j = 1, 2, 3, are stable
for −1 < k1 < 0. Hence, the polytopeSa is stable forn = 4.

It is even easier to prove the theorem forn > 4, because one has more
possibilities of choosing the pairs(ai, aj) according to Lemma 4.
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Example 1. Let a(z) = z3 − 0.75z2. The reflection coefficients and reflection
vectors of the polynomiala(z) are the following:

ka
1 = 0.75, a1(1) = [1 −1 0 0 ]T , a1(−1) = [1 1 0 0 ]T ,

ka
2 = 0, a2(1) = [1 0 −1 0 ]T , a2(−1) = [1 −1.5 1 0 ]T ,

ka
3 = 0, a3(1) = [1 −0.75 0.75 −1 ]T , a3(−1) = [1 −0.75 −0.75 1 ]T .

By Theorem 1 the polytopeSa = conv{a1(1), a1(−1), a2(1), a2(−1), a3(1),
a3(−1)} is stable.

Remark. Theorem 1 is less conservative than Lemma 3, because forSa we have

n−1∑
i=0

|ai| < 3.

Theorem 2. Let ka
1 ∈ (−1, 1), ka

2 ∈ (−1, 1), andka
3 = ... = ka

n = 0. Then the
inner points of the simplex̃Sa generated by the reflection vectors of the pointa

S̃a = conv{a, ai(ki)| ki = (−1)i−1, i = 1, ..., n} (6)

is Schur stable.

Proof is similar to that of Theorem 1.

Example 2. Let a(z) = z3 + 0.25z2 − 0.5z. The reflection coefficients and
reflection vectors of the polynomiala(z) are the following:

ka
1 = −0.5, a1(1) = [ 1 −0.5 −0.5 0 ]T ,

ka
2 = 0.5, a2(−1) = [ 1 1 1 0 ]T ,

ka
3 = 0, a3(1) = [ 1 0.75 −0.75 −1 ]T .

By Theorem 2 the simplex̃Sa = conv{a, a1(1), a2(−1), a3(1)} is stable.
However, the restrictions of Theorems 1 and 2 for a starting-pointa(z) are quite

strong. That is why we are interested in stable simplex building around an arbitrary
stable point.

4. LOW-DIMENSIONAL CONVEX STABLE SUBSETS VIA
REFLECTION COEFFICIENTS

In this section we use the reflection vectors to build some low-dimensional
convex stable subsets around an arbitrary Schur stable pointa(z). The following
theorem holds [7].
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Theorem 3. Let a(z) and b(z) be monic Schur polynomials of degreen with the
reflection coefficientska

i andkb
i , respectively; ka

i , kb
i ∈ (−1, 1). The polynomial

c(z) = αa(z) + (1− α)b(z), α ∈ [0, 1],

will be Schur stable if the reflection coefficientska
i andkb

i of polynomialsa(z) and
b(z) are equal except for:
1) one arbitrary reflection coefficient

ka
i = kb

i , i = 1, ..., n, i 6= j,

ka
j 6= kb

j ;

2) two neighbouring reflection coefficients

ka
i = kb

i , i = 1, ..., n, i 6= j,

ka
j 6= kb

j , j = 1, 2,

ka
j+1 6= kb

j+1;

3) first three reflection coefficients

ka
i = kb

i , i = 4, ..., n,

ka
j 6= kb

j , j = 1, ..., 3,

with restrictions {
−1 < k1k2 − k1 − k2 < β

β − 2 < k1k2 − k1 + k2 < 1
(7)

for the both polynomialsa(z) andb(z).

Let us denote bya(k∗j ) the coefficient vector of the polynomial with the
reflection coefficientsk = [ka

1 , ..., ka
j−1, k

∗, ka
j+1, ..., k

a
n].

Theorem 3 enables us to simplify considerably the procedure of stable simplex
building:

1. Directions ofn primary edgessi(a) are fixed by reflection vectors of the
pointa, si(a) = conv(a, a(k∗i )), k∗i ∈ (−1, 1).

2. The stability of primary edgessi(a) and part of the secondary edgessi,j =
conv(bi, bj), bi ∈ si(a), bj ∈ sj(a) with i− j < 4 is guaranteed by Theorem 3.

3. The number of secondary edgessi,j to be checked and adapted for stability
drops fromN = n(n + 1)/2 to M = (n− 3)(n− 2)/2.

4. Usually the most critical edgesi,j is the one with maximal difference of the
reflection coefficient numbers|i− j| → max.

It means that it is reasonable to start with checking and adapting for stability
from the edges1,n. If s1,n is stable for somek∗1, k

∗
n ∈ (−1, 1), then quite often the

whole simplexS = conv{a, a(k∗1), ..., a(k∗n)} is stable. Nevertheless, we have to
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check the edgess1,n−1 ands2,n and adapt the values ofk∗n−1 andk∗2, respectively.
The procedure ends in checking the edges with difference|i− j| = 3.

Example 3. Let a(z) = z4 + 0.56z3 + 0.432z2 − 0.176z + 0.2. We are looking
for a stable simplex with edges in the directions of the positive reflection vectors of
a(z). The reflection coefficients and the positive reflection vectors ofa(z) are as
follows:

ka
1 = −0.5, a1(1) = [ 1 −1.84 1.296 −0.656 0.2 ]T ,

ka
2 = −0.6, a2(1) = [ 1 0.24 −1.2 −0.24 0.2 ]T ,

ka
3 = 0.3, a3(1) = [ 1 0 −0.24 −0.96 0.2 ]T ,

ka
4 = −0.2, a4(1) = [ 1 0.92 0 −0.92 −1 ]T .

First, we choose maximal values for reflection coefficientsk∗1 andk∗4 so that the
line segment conv{a1(k∗1), a

4(k∗4)} is stable

k∗1 = 0.6, a1(0.6) = [ 1 −1.2 1.0656 −0.528 0.2 ]T ,

k∗4 = 0.536, a4(0.536) = [ 1 0.7808 0.167 −0.6323 −0.536 ]T .

Now we check the stability of line segments conv{a1(k∗1), a
3(1)} and

conv{a2(1), a4(k∗4)}. Both of them are stable. Taking into account that by the
first assertion of Theorem 3 the line segments conv{a, a1(k∗1)}, conv{a, a2(1)},
conv{a, a3(1)}, and conv{a, a4(k∗4)} are stable and by the second assertion
of Theorem 3 the line segments conv{a1(k∗1), a

2(1)}, conv{a2(1), a3(1)}, and
conv{a3(1), a4(k∗4)} are stable, we can claim that the simplex

S = conv{a, a1(k∗1), a
2(1), a3(1), a4(k∗4)}

is stable.

5. ROBUST CONTROLLER DESIGN

Let us now consider the case where the plant is subject to parameter uncertainty.
We represent this by supposing that the given plant transfer function coefficients
a0, ..., am−1 andb0, ..., bm−1 are placed in a polytopeP with verticesp1, ..., pM

P = conv{pj , j = 1, ...,M}.

Because the relations (1) are linear in plant parameters, we can claim that for an
arbitrary fixed controllerx the vectorf of closed-loop characteristic polynomial
coefficients is placed in a polytopeF with verticesf1, ..., fM

F = conv{f j , j = 1, ...,M},
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where
f j = P jx

and P j is a 2m × 2m matrix composed by the vertex plantpj =
[aj

0, ..., a
j
m−1, b

j
0, ..., b

j
m−1].

The problem of robust controller design can be formulated as follows: find a
controllerx such that all verticesf j , j = 1, ...,M, are placed inside the simplexS.

This problem can be solved by the quadratic programming task: findx which
minimizes

J = min
x

xT P̃ T (I ⊗ (ST )−1)(I ⊗ S−1)P̃ x

by linear restrictions
S−1P jx > 0,

1T S−1P jx = 1, j = 1, ...,M.

Here I is the unit matrix, ⊗ denotes the Kronecker product, and̃P T =
[P T

1 , ..., P T
M ].

Example 4.Let us consider an uncertain second-order interval plant

G(z) =
b0

z2 + a1z + a0

with parameters in the intervals1.85 ≤ b0 ≤ 1.95, −1.525 ≤ a1 ≤ −1.475,
a0 = 0.55 and look for a first-order robust controller.

Let the nominal closed-loop characteristic polynomial be

f0 = z3 − 0.25z2 + 0.03z − 0.001.

Then by the pole placement algorithm we can easily find the controller

C0(z) =
0.7132z − 0.3624

z + 1.25

for the nominal plant

G0(z) =
1.9

z2 − 1.5z + 0.55
.

The simplexS will be chosen according to considerations of Section 4. Starting
from the origin a = 0, we first decrease the reflection coefficientka

1 , where
ka

1 ∈ (−1, 0), to find
ρ0(k∗1) = min

k1

ρ0,

where ρ0 is the stability measure for the nominal closed-loop characteristic
polynomialf0 with respect to the simplex̃S(k1). Then we increase the reflection
coefficientka

2 , whereka
2 ∈ (0, 1), to find

ρ0(k∗1, k
∗
2) = min

k2

ρ0(k∗1).
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For the above example we obtaink∗1 = −0.5, k∗2 = 0.2, and

S = S̃(k∗1, k
∗
2) =


0 0 0 −1

−0.2 −0.2 1 −0.6
0.4 −0.8 1 0.6
1 1 1 1

 .

Using MATLAB Optimization Toolbox and above quadratic programming
formulation, we have found a robust controller

C(z) =
1.0993z − 0.6403

z + 1.7685
.

The minimum of the criterionJmin = 0.5467 indicates that the closed-loop
characteristic polynomial is placed in the given simplexS with a considerable
stability margin.

6. CONCLUSIONS

To find a robust controller by quadratic programming, a stable simplex must
be preselected in the closed-loop characteristic polynomial coefficients space. In
the present study a constructive procedure for generating simplexes in polynomial
coefficients space is given. This procedure of stable simplex (or polytope) building
is quite straightforward because we need to choose only one stable point with some
restrictions for its reflection coefficients. Then all vertices of the simplex will be
generated by reflection vectors of this point.

Another procedure for stable simplex building by the use of low-dimensional
stable subsets generated via reflection vectors of an arbitrary starting-point is
suggested. This approach for robust controller design is called robust reflection
coefficients placement, since it starts from a preselected hyperrectangle of
reflection coefficients of closed-loop characteristic polynomials.

The procedure of controller design by quadratic programming is based on a
stability measureρ which indicates the placement of a (vertex) point against the
preselected stable simplex.
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ROBUSTSE REGULAATORI SÜNTEES RUUTPLANEERIMISE
MEETODIL

Ülo NURGES

On välja töötatud ruutplaneerimisel põhinev meetod robustse regulaatori
sünteesiks. Selleks on eelkõige vaja valida sobiv stabiilne simpleks suletud süs-
teemi karakteristliku polünoomi kordajate ruumis. Töös on esitatud konstruktiivne
protseduur stabiilse simpleksi leidmiseks sobivalt valitud punkti peegeldusvektorite
baasil. Robustse regulaatori süntees tugineb stabiilsusvarul, mis on defineeritud
minimaalse kaugusena valitud simpleksi ja süsteemi ebatäpse mudeli tippude vahel.
On näidatud, et nii väljundregulaatori kui ka robustse regulaatori sünteesi ülesande
võib püstitada ruutplaneerimise ülesandena.
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