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Abstract. The procedure of robust controller design by quadratic programming makes use
of a stability measure defined as the minimal distance between a preselected stable simplex
and vertices of the characteristic polynomial of an uncertain system. A constructive procedure
for generating stable simplexes in polynomial coefficients space is given starting from the
unit hypercube of reflection coefficients of monic polynomials. This procedure is quite
straightforward: an appropriate stable point is chosen and then the edges of the stable simplex
will be generated by reflection vectors of this polynomial.

Key words: robust stability, discrete-time systems, pole placement, quadratic programming.

1. INTRODUCTION

Despite the existence of elegant methods of optimal and robust cohfrol [
control engineers complain about the gap between theory and practice in control
systems. In part this complaint stems from the fact that many of the design
techniques cannot incorporate realistic constraints such as fixed structure and order
which are present in most practical control systems. An interesting way of solving
this problem by linear programming is proposedih [

Another practical issue is that of model uncertainty. If the model uncertainty
is relatively small, then it is possible to use sensitivity-based methdddf[the
model uncertainty is large, some robust formulation of the problem is needed, such
as multimodel {] or polytopic plant model approach{°].

In ["] a new concept for robust controller design was introduced: starting
from reflection coefficients of Schur polynomials, a convex approximation of the
stability region in the closed-loop characteristic polynomial coefficients space was
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found and via a preselected stable simplex an output feedback controller was
obtained. This approach is called robust reflection coefficients placement.

In the present paper a similar idea is used. However, the main interest is
concerned, first, with robust controller design by quadratic programming and,
second, with Schur stable convex subsets building in polynomial coefficients space.

The following problems are considered. First, we recall the problem of fixed-
order pole assignment and give a solution by quadratic programming. Then some
convex stable subsets in polynomial coefficients space are defined via reflection
coefficients of polynomials. At last, a procedure is proposed to design a robust
controller for polytopic plants via preselection of an appropriate Schur stable
simplex and quadratic programming.

2. FIXED-ORDER POLE ASSIGNMENT

Consider a discrete-time linear single input/single output system. Let the plant
transfer functionG(z) of dynamic orderm and the controller transfer function
C(z) of dynamic order be given, respectively, by

b(z) - bm_lzm_l 4+ -+ biz+ b
a(z) am2™ + -+ a1z +ag

and
q(z) @+ +qaz+q

r(z)  rRt 4tz

It means that the closed-loop characteristic polynomial

C(z) =

f(z) =a(z)r(z) + b(2)q(2)

is of degreen + r.

As is known from the literature, in the case- m—1 the above equation admits
a solution for the controller coefficients for arbitrafyz) whenever the plant has
no common pole-zero pairs. In general, it is impossible to exactly attain the desired
polynomial forr < m — 1. Here we suggest the following approach.

Let us relax the requirement of attaining the desired polynorfiia) exactly
and enlarge the target to a simpléxn the coefficients space containing the point
representing the desired characteristic polynomial. Without any restrictions we can
assume thai,,, = r. = 1 and deal with monic polynomials.

Let us now introduce a stability measuyrén accordance with the simplex

p=cle

where
c=S8"1f

99



andS is the(m + r + 1) x (m + r + 1) matrix of vertices of the target simplex.
Obviously, for monic polynomials

wheren = m + r. If all coefficientse; > 0, i = 1,...,n + 1, then the poinff is
placed inside the simpleX.
It is easy to see that the minimum pfs obtained by
1
n+1

Cl =C = ...=Cpy1 =

Then the pointf is placed in the centre of the simpl&x

Now we can formulate the following problem of controller design: find a
controllerC(z) such that the stability measupeis minimal. In other words, we
are looking for a controller which places the closed-loop characteristic polynomial
f(2) as close as possible to the centre of the target simglex

In matrix form we have

[ =Gz, 1)
whered is the plant Sylvester matrix
[ ao 0 .. 0 bo 0 .. 0 ]
aq ag ... 0 by bo ... 0
G=| an-1 apn_o ... ag bp_1 by .. by
0 an—1 ... ai 0 bn_1 b1
| 0 0 .. a1 O 0 . bp1 |

of dimensiongm + r 4+ 1) x (2r + 1) andz is the (2r + 1)-vector of controller
parameters: = [qo, ..., Gr—1,70, .-, 77| -

The above controller design problem is equivalent to the quadratic
programming problem: find such that the minimum

minz? GT(SST)"'Gx
is obtained by the linear restrictions
S~'Gz >0,

175Gz =1,

where1” = [1...1] is ann-vector. Here the first restriction (inequality) follows
from the positivity requirement of coefficients i = 1, ..., n.
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3. STABLE SIMPLEX BUILDING BY REFLECTION VECTORS OF
POLYNOMIALS

The problem is how to find a stable simplex in polynomial coefficients space.
Leta(z) be a Schur polynomial of degree To build a stable simplex such that the
pointa is a vertex of it, we can use the edge theorémTo put it more precisely,
we can proceed as follows.

1. Choose: arbitrary stable points’, i = 1, ..., n.

2. Check the stability of the line segments conw’), i = 1, ..., n, by positivity
of all real eigenvalues of the matri [*]:

Si=T7'T;,
where

T=X-Y,

I, =X; - Y

The matricesX and.X; are of the right-upper triangular form

Ap Anp—1 ap—2 ... a2

0 ap  QAp_1 ... a3
X=10 0 an .. a4 |,

0 0 0 e Qp

the matrice§” andY; are of the left-lower triangular form

0O 0 0 .. an
Y=|0 0 ayp .. an-a

0 ap aip ... Qap-—3

ayp a1 a2 ... Ap—2

with elements of proper subscripts

3. If the matrix.S; has a nonpositive real eigenvalue, then the line segment
conV(a,a’), i € [1,...,n], crosses the stability boundary and we have to choose an
inner point of the line segment cofay a*) and go to step 2.

4. If all the line segments cotw, a*), i € [1, ..., n], are stable, then check the
stability of the line segments cofw/,a’),i,j = 1, ..., n.

5. If aline segment coriv’, a’), i, j € [1, ..., n], crosses the stability boundary,
then choose an inner point’ (or a/") of the line segment corfw, b’) (or
conv(a, b)) and go to step 4.

6. If all the line segments cofw, a’) and conya’,a’), i,j = 1,...,n, are
stable, then by edge theorem the simpex: conv(a, a', ..., a") is stable.
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Obviously, by the above procedure we can find a Schur stable simplex for
an arbitrary inner point of the stability region. Yet, the procedure is quite time-
consuming for high-degree polynomials, because the directions of edges are not
fixed and the number of edges increases rapitily= n(n + 1) /2.

The procedure of stable simplex building can be simplified considerably by the
use of reflection coefficients and reflection vectors of polynomials.

The recursive definition of reflection coefficieriise R of a polynomiala(z)
is as follows f]:

az(n) - anilv v = 17 , 13
an
(@) (4)
(-1 _ 4 thia; _ @)
a; = =2 j=1,.,i—-1

Lemma 1. A necessary and sufficient condition for all the roots @f) to be inside
the unit circle is[”]

’kz| <1, 1=1,..,n.

The inverse of relations (1) defines a multilinear mapping from reflection
coefficients space into monic polynomial coefficients space

an—j = agn)
al) = —k;, i=1,..n 3)
ol =al™V —kal), j=1,0 1

Lemma 2 [7]. Through an arbitrary stable point = [ag,ar, ..., a,_1] With
reflection coefficients{ € (—1,1),¢ = 1,...,n, we can put: stable line segments

a'(£1) = conv{alk{ = +1}

whereconv{al|k{ = +1} denotes the convex hull obtained by varying the reflection
coefficientt} between-1 and1.

Now let us introduce the reflection vectors of a monic polynomial). They
will be useful for convex stable subsets building in polynomial coefficients space.

Definition. Let us call the vectors
a'(1) = (alk; = 1), i =1,...,n,
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positive reflection vectorand
al(=1) = (alk; = —1), i = 1,...,n,

negative reflection vectorsf a monic polynomiad(z).

It means that reflection vectors are the extreme points of the Schur stable line
segment’(41) through the point defined by Lemma 2. Due to the definition and
Lemmas 1 and 2 the following assertions hold:

1. Every Schur polynomial hag» reflection vectors:(1) anda’(—1), i =
1,...,n.

2. All the reflection vectors lie on the stability boundaky € +1).

3. The line segments between reflection vectdd) anda’(—1) are Schur
stable.

Three different approaches can be used for stable simplex (or polytope)
building via reflection vectors:

1. Choose such a stable point that the linear cover of its reflection vectors is
stable.

2. Choose an arbitrary stable point and build the stable simplexdxges in
directions of reflection vectors of the starting-point.

3. Choose an arbitrary stable starting-point and build the stable simplex by
n edges in the directions of reflection vectors of successive vertices of it. It
means: start from an arbitrary stable pairin the direction of the first reflection
vector of ita'(41) and choose a poirit € conv(a,a'(£1)); then find the points
c € conv (b, b?(£1)), d € conv(c, c3(£1)), etc.

The possibility of the first approach is confirmed by the following lemma.

Lemma 3. The inner points of the polytops® generated by reflection vectors of
the origina =0

SO = conv{0|k; = +1, i=1,..,n} (4)

are Schur stable

Proof. From (1) we obtain for = 0

a’(£1) = conv{[0,...,0, 1,0,...,0], [0,...,0,—1,0,...,0]}
i—1

i—1

andS® = conv{a’(1),a’(—1),i = 1, ...,n}. Obviously the Cohn stability criterion
[*]

n—1

Z\az| <1

=0
holds forS°. O
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Lemma 3 (or Cohn stability condition) is quite conservative. The question is:
is it possible to relax the initial condition of Lemma 3 in some neighbourhood of
the origin? The answer is given by the following theorem.

Theorem 1.Letk{ € (—1,1) andk§ = ... = k2 = 0. Then the inner points of the
polytopeS“ generated by the reflection vectors of the paint

S = conv{alk{ = £1, i =1,...,n} (5)

are Schur stable

To prove the theorem we use the following lemm.[
Lemma 4. Consider the polytope in the coefficients space where eaclipair; ),
0<i<mn,n—1i<j<n,isvarying inside a polytope with edges sloped in the
closed intervalr /4, 37 /4] and where each; can be combined with only ong

and vice versa. Then every polynomial in the polygon will be stable if and only if
all the polynomials obtained by combining all the polygon corners are stable

Proof of Theorenmi.. By (1) we obtain

at = a[lﬂ = ]_fl =+ (1- 5)} _

= [07 707 07 07 07 kl ]7
a> = alky =k =% (1-0)] )

=[0,..,0, 0, 0, —kg,  —k{(1—k2) ],
a’l = a[k:3 = ]_ﬂg =_:|: (1 —_5)}

=[0,..,0, 0,  —ks, KOs, —k¢ ]
at =alky =ks =+ (1-9)]

= [0, ...,0, —k4, kilk‘zl, 0, _k% ]7
@ Zalke =k =% (10

= [—kn, k{k,, O,...,0, 0, —k¢ ],

where0 < § < 1. Let now for some: the polytopeS®(n) be stable. We have to
prove that the polytop8®(n + 1) will be stable.
Obviously,
a'(n+1) = [0,a"(n)], i=1,..,n,

and
a" ' (n+1) = [~kng1, k¢kn11,0, ..., 0, —k%].

The polytope generated by the pointén + 1), i = 1, ..., n, will be stable because
the polynomials ' ‘
a'(z,n+1) = za'(z,n)
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will be stable only if the polynomialsa’(z,n) are stable (they have an
extra root in the origin). So we have to prove the stability of the edges
con{a"*(n +1,9),a'(n+1,0)},i = 1,..,n, for 0 < § < 1. Taking into
account the multilinearity of transformation (1), we obtéifi(6;) C S*(d2)
if o < ¢;. It means that we have to check the stability of the edges
confa"t'(n +1,6),a(n+1,0)},i = 1,...,n, for 6 — 0. This can be easily
done by Lemma 4.

Letn = 4. Then the vertices of the polytop# are the following:

at(=1) = [0 0 0 1],
at(1) =10 0 0 -1],
a’(-1) = [0 0 1 =2k,
a’(1) =10 0 -1 0],
a}(-=1) =10 1 k1 =k
a(1) =10 -1 k —k]
at(=1) =1 —k 0  —k]
at(l) =[-1 k 0 —k]

Because the&-dimensional polytope codw!(1),a!(—1), a®(1), a?(—1),a3(1),
a®(—1)} is stable ], only the edges comu*(£1),a’(41)] for i = 1,2,3 have
to be checked for stability. Let noWw < k1 < 1 and let us choose according
to Lemma 4 the following pairs of coordinates(ag,a2) and (a;,as) for
the edges conu?(+1),a’(£1)], j =2,3; (ao,a3) and (a1, az) for the edges
cona*(£1),a'(1)]. Then all the2-dimensional projections of these edges are
sloped in the intervdlr /4, 37 /4] and by Lemma 4 these edges are stable.

The stability of the edges cofw(+1),a!(—1)] can be proved by the Schur—
Cohn stability criterion {]. Indeed, the edge cofw!(—1),a' — (1)] or the
polynomial

a(z) =2t +[(1 = X) — Ak1]2® = Aerz + A, 0<A<1,
is stable because
detS(\) > 0, 0< A<,
where
a4 as az — ag 1 1-=X=Xkp =X
S()\): 0 as —a3z a3z —ag = 0 1—AX 1—AX
—a —aj a4 — ag - —)\kl 1

Similarly we can prove that the edges cr\(+1),a’/(+1)], j = 1,2, 3, are stable
for —1 < k1 < 0. Hence, the polytop8? is stable fom = 4.

It is even easier to prove the theorem for> 4, because one has more
possibilities of choosing the pai(a;, a;) according to Lemma 4. O
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Example 1. Let a(z) = 23 — 0.752%. The reflection coefficients and reflection
vectors of the polynomial(z) are the following:

k¢ =075, o'(1)=01 -1 0 0]%, &(-1)=01 1 0o 0],
kg =0, a2()=1 0 -1 01", &?(-1)=1 -15 1 0]%
k$ =0, a®(1)=[1 -0.75 0.75 —1]7, a*(-1)=[1 —-0.75 —0.75 1]7.

By Theorem 1 the polytop&® = conv{a'(1),a'(—1),a%(1), a®(-1),a3(1),
a®(—1)} is stable.

Remark. Theorem 1 is less conservative than Lemma 3, becaus&*fare have

n—1
Z |CL1’ < 3.
=0
Theorem 2. Letk$ € (—1,1), k§ € (—1,1), andk§ = ... = k2 = 0. Then the

inner points of the simple%” generated by the reflection vectors of the paint
5% = convi{a,a'(k;)| ki = (=11 i=1,..,n} (6)

is Schur stable
Proofis similar to that of Theorem 1.

Example 2. Leta(z) = 2% + 0.2522 — 0.5z. The reflection coefficients and
reflection vectors of the polynomial z) are the following:

k¢ = —0.5, al(l)=[1 —-05 -05 0 %,
kg = 0.5, a?2(-1)=[1 1 10 7,
k¢ =0, a(1)=[1 075 -075 —1]T.

By Theorem 2 the simpleX® = conv{a,a'(1),a%(—1),a*(1)} is stable.

However, the restrictions of Theorems 1 and 2 for a starting-pgintare quite
strong. That is why we are interested in stable simplex building around an arbitrary
stable point.

4. LOW-DIMENSIONAL CONVEX STABLE SUBSETS VIA
REFLECTION COEFFICIENTS

In this section we use the reflection vectors to build some low-dimensional
convex stable subsets around an arbitrary Schur stable @aint The following
theorem holds].
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Theorem 3. Leta(z) andb(z) be monic Schur polynomials of degreevith the
reflection coefficients? and k?, respectivelyk?, k! € (—1,1). The polynomial

c(z) = aa(z) + (1 — a)b(z), a € [0,1],

will be Schur stable if the reflection coefficierfsand k? of polynomials:(z) and
b(z) are equal except for
1) one arbitrary reflection coefficient

k¢ =kb, i=1,..,n, i#j,
b.
kg # kS

2) two neighbouring reflection coefficients

k¢ = K, i=1,...,n, 1i#j,
b -
k? 75 kj’ ] - ]-a 25
Ry # K
3) first three reflection coefficients

ke =kb, i=4, . n,

b s
K #KY, j=1,..3,

with restrictions
1< kiko—k1— ko <0

7
B—2< kikg—ki+k <1 ()

for the both polynomials(z) andb(z).

Let us denote by (k%) the coefficient vector of the polynomial with the
reflection coefficientg = [7 T k1 K R s k2.

Theorem 3 enables us to simplify considerably the procedure of stable simplex
building:

1. Directions ofn primary edgess;(a) are fixed by reflection vectors of the
pointa, s;(a) = conv(a,a(k))), kF € (—1,1).

2. The stability of primary edges (a) and part of the secondary edges =
conv(b', b7), b* € s;(a), b’ € s;(a) withi — j < 4 is guaranteed by Theorem 3.

3. The number of secondary edgeg to be checked and adapted for stability
drops fromN =n(n +1)/2t0 M = (n — 3)(n — 2)/2.

4. Usually the most critical edgs ; is the one with maximal difference of the
reflection coefficient numbets — j| — max.

It means that it is reasonable to start with checking and adapting for stability
from the edges; .. If 51, is stable for somé7, k;; € (—1, 1), then quite often the

n

whole simplexS = conv{a,a(k}), ..., a(k})} is stable. Nevertheless, we have to
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check the edges; ,—; ands;, and adapt the values &f_, andk3, respectively.
The procedure ends in checking the edges with differéneej| = 3.

Example 3. Leta(z) = 2* + 0.562% + 0.43222 — 0.1762 + 0.2. We are looking

for a stable simplex with edges in the directions of the positive reflection vectors of
a(z). The reflection coefficients and the positive reflection vectors(of are as
follows:

k¢ = —0.5, al(l)=[1 -1.84 1.296 —0.656 0.2]7,
k$ = —0.6, a?(1)=[1 024 -12 -024 02]7,
k¢ = 0.3, a(1l)=[1 0 -024 -096 0.2]7,
k§ = —0.2, at(1)=[1 0.92 0 -092 -1]7.

First, we choose maximal values for reflection coefficiéfitandk; so that the
line segment confa’ (k7), a*(k})} is stable

ki = 0.6, a'(0.6)=[1 -1.2 1.0656 —0.528 0.2 |7,
k; = 0.536, a*(0.536) = [1 0.7808 0.167 —0.6323 —0.536]T.

Now we check the stability of line segments céa¥(k;),a®(1)} and
conv{a®(1),a*(k})}. Both of them are stable. Taking into account that by the
first assertion of Theorem 3 the line segments ¢anw! (k})}, cona, a?(1)},
conv{a,a®(1)}, and conya,a*(k})} are stable and by the second assertion
of Theorem 3 the line segments cdav(k;),a(1)}, cona?(1),a3(1)}, and
conv{a3(1),a*(k})} are stable, we can claim that the simplex

S = conv{a,a' (k}),a*(1),a®(1),a*(k})}

is stable.

5. ROBUST CONTROLLER DESIGN

Let us now consider the case where the plant is subject to parameter uncertainty.
We represent this by supposing that the given plant transfer function coefficients
o, ..., am—1 andby, ..., by, are placed in a polytop® with verticesp', ..., p™

P =conv{p/,j=1,..,M}.
Because the relations (1) are linear in plant parameters, we can claim that for an
arbitrary fixed controller: the vectorf of closed-loop characteristic polynomial
coefficients is placed in a polytoge with verticesf!, ..., fM

F=conv{f),j=1,..,M},
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where

fi=Pig
and P/ is a 2m x 2m matrix composed by the vertex planty =
ad), ..oal, 1,0, .. 0]

The problem of robust controller design can be formulated as follows: find a
controllerz such that all verticeg’, j = 1, ..., M, are placed inside the simple&k

This problem can be solved by the quadratic programming task:fiwtich
minimizes R R

J=minz" PT(I® (ST)™ (I ® S™)Px
x
by linear restrictions _
S~iPiz >0,
1781 pig =1, j=1,..,M.

Here I is the unit matrix, ® denotes the Kronecker product, adef =
(PL ..., PL.
Example 4. Let us consider an uncertain second-order interval plant

bo
Gz)= 0
(2) 22 + a1z + ag

with parameters in the intervalls85 < by < 1.95, —1.525 < a7 < —1.475,
ap = 0.55 and look for a first-order robust controller.
Let the nominal closed-loop characteristic polynomial be

1O =2%—0.252% 4 0.03z — 0.001.

Then by the pole placement algorithm we can easily find the controller

0.71322 — 0.3624
Colz) = =135

for the nominal plant
1.9

22 —1.52+0.55"

The simplexS will be chosen according to considerations of Section 4. Starting
from the origina = 0, we first decrease the reflection coefficiéeft, where
k¢ € (—1,0), to find

Go(z) =

p°(k}) = min p°,
k1
where p° is the stability measure for the nominal closed-loop characteristic
polynomial £ with respect to the simpleg(k;). Then we increase the reflection
coefficientks, wherek§ € (0, 1), to find
P (K7 k) = min pO (7).
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For the above example we obtdih = —0.5, k5 = 0.2, and

0 0O 0 -1

L 02 —-02 1 —06
S=5kk) = 04 _08 1 06
1 1 1 1

Using MATLAB Optimization Toolbox and above quadratic programming
formulation, we have found a robust controller

~ 1.0993z — 0.6403
- z+ 17685

C(z)

The minimum of the criterion/,;, = 0.5467 indicates that the closed-loop
characteristic polynomial is placed in the given simpkexwith a considerable
stability margin.

6. CONCLUSIONS

To find a robust controller by quadratic programming, a stable simplex must
be preselected in the closed-loop characteristic polynomial coefficients space. In
the present study a constructive procedure for generating simplexes in polynomial
coefficients space is given. This procedure of stable simplex (or polytope) building
is quite straightforward because we need to choose only one stable point with some
restrictions for its reflection coefficients. Then all vertices of the simplex will be
generated by reflection vectors of this point.

Another procedure for stable simplex building by the use of low-dimensional
stable subsets generated via reflection vectors of an arbitrary starting-point is
suggested. This approach for robust controller design is called robust reflection
coefficients placement, since it starts from a preselected hyperrectangle of
reflection coefficients of closed-loop characteristic polynomials.

The procedure of controller design by quadratic programming is based on a
stability measurep which indicates the placement of a (vertex) point against the
preselected stable simplex.
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ROBUSTSE REGULAATORI SUNTEES RUUTPLANEERIMISE
MEETODIL

Ulo NURGES

On vélja to6tatud ruutplaneerimisel p8hinev meetod robustse regulaatori
stinteesiks. Selleks on eelkdige vaja valida sobiv stabiilne simpleks suletud sus-
teemi karakteristliku poliinoomi kordajate ruumis. T68ds on esitatud konstruktiivhe
protseduur stabiilse simpleksi leidmiseks sobivalt valitud punkti peegeldusvektorite
baasil. Robustse regulaatori siintees tugineb stabiilsusvarul, mis on defineeritud
minimaalse kaugusena valitud simpleksi ja slisteemi ebatdpse mudeli tippude vahel.
On néidatud, et nii valjundregulaatori kui ka robustse regulaatori siinteesi tlesande
vOib pustitada ruutplaneerimise tlesandena.
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