TWO-BASED DUPLICATE-CLONES

Ellen REDI
Department of Mathematics and Informatics, Tallinn Pedagogical University, Narva mnt. 25, 10120 Tallinn, Estonia; eredi@tpu.ee

Received 15 May 2000, in revised form 2 February 2001

Abstract

The notion "two-based clone" on a pair of sets (universes) is defined. Some properties of two-based duplicate-clones are proved. The lattice of all double-dually closed duplicate-clones on a pair of 2-element sets is described.

Key words: two-based clone, lattice, two-based duplicate-clone, double-dually closed clone.

1. INTRODUCTION

The notion "clone on A " was introduced for classifying algebras on a fixed universe A. Two algebras on A are term equivalent if and only if the clones generated by all fundamental operations of them coincide. A review of the results on clones is given by Sichler and Trnková ($\left.\left[^{1}\right]\right)$. Under inclusion the set of all clones on A forms the lattice \mathcal{L}_{A}. The structure of the lattice \mathcal{L}_{A} has been studied in general (see, e.g., $\left.{ }^{2}\right]$) and for some $k=|A|$. The lattice \mathcal{L}_{A} is completely known for Boolean functions, i.e. for $|A|=2$ (see [$\left.{ }^{3}\right]$). As for $|A| \geqslant 3$ the lattice \mathcal{L}_{A} is uncountable, it seems hopeless to find a satisfactory description of \mathcal{L}_{A} in general. Special parts of \mathcal{L}_{A} (with $|A|=k>2$) are described, for example, by Burle [${ }^{4}$] and Hoa [${ }^{5}$].

Let S_{A} be the full symmetric group on A. The notion " S_{A}-clone" was introduced in $\left[{ }^{6}\right]$. From $\left[^{[6,7}\right]$ we know that the lattice of all S_{A}-clones is finite if $|A|=2,3$. In the present paper we define the notion "two-based clone". This notion is justified by the fact that many algebraic structures (acts, modules, linear spaces, etc.) are two-based (called also "two-sorted"). The set of all two-based clones on a fixed pair \mathbf{A} forms (with respect to the set inclusion) the lattice $\mathcal{L}_{\mathbf{A}}$. As expected, the lattice \mathcal{L}_{A} has a very complicated structure.

In Section 3 we define the notions "two-based duplicate-clone", "1-component" and " 2 -component" of a two-based clone. We prove some properties of two-based duplicate-clones and describe the 1-component and 2-component of a two-based duplicate-clone.

In Section 4 we apply these results to the 2 -Boolean clones, i.e. to two-based clones on a pair of 2-element sets. The first results in this direction were obtained by Kudrjavcev and Burosch $\left[{ }^{8}\right]$ who studied generating sets of closed classes of the two-based full iterative algebra on a pair of 2-element sets. Here, for any doubledually closed 2 -Boolean clone the subset of all unary functions is described (see Proposition 3.3).

The main result of the present paper is a full description of the sublattice consisting of all duplicate- $d d^{\prime}$-clones in $\mathcal{L}_{2 \times 2}$ (see Theorem 4.1).

2. NOTATIONS AND PRELIMINARIES

Let $\mathbf{A}:=\left(A_{1}, A_{2}\right)$ be a pair of (finite) disjoint sets containing at least two elements each. The sets A_{1}, A_{2} will be called the first and the second universe, respectively. Let us denote

$$
O_{\mathbf{A}}:=\left\{f: A_{i_{1}} \times \ldots \times A_{i_{n}} \rightarrow A_{i_{n+1}} \mid i_{1}, \ldots, i_{n+1} \in\{1,2\}, \quad n \in \mathbf{N}^{+}\right\}
$$

and let $\tau=\left(i_{1}, \ldots, i_{n} ; i_{n+1}\right)$ be called the signature of the mapping f. We denote by $J_{\mathbf{A}}$ the set of all projections

$$
e_{k}^{i_{1} \cdots i_{n}}: A_{i_{1}} \times \ldots \times A_{i_{n}} \rightarrow A_{i_{k}}:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{k}
$$

with $k \in\{1, \ldots, n\}, i_{1}, \ldots, i_{n} \in\{1,2\}$. Let all five Mal'tsev's operations (see [${ }^{9}$]) be acting on $O_{\mathbf{A}}$. Then superposition, composition, and linearized composition of mappings are defined on $O_{\mathbf{A}}$ too.

Definition 2.1. If a subset $F \subseteq O_{\mathbf{A}}$ contains $J_{\mathbf{A}}$ and is closed under composition, then we write $F \leqslant O_{\mathbf{A}}$ and call F a two-based clone on \mathbf{A}. We denote by $\langle F\rangle_{O_{\mathbf{A}}}$ (or simply by $\langle F\rangle$) the two-based clone generated by $F \subseteq O_{\mathbf{A}}$.

For any subset $F \subseteq O_{\mathbf{A}}$ and any signature $\tau \in\{1,2\}^{n+1}$ we introduce the set

$$
F^{\tau}=\left\{f^{\tau} \in F \mid f \text { is of signature } \tau\right\} .
$$

Functions with values in A_{1} (or in A_{2}) are called 1-functions (or 2-functions). We denote by F_{1} and F_{2} the subsets of all 1-functions and 2-functions of a set $F \subseteq O_{\mathbf{A}}$. Let $O_{A_{1}}$ and $O_{A_{2}}$ be the sets of all functions on the first universe A_{1} and on the second universe A_{2}, respectively. Then

$$
F_{A_{1}}:=F \bigcap O_{A_{1}}, \quad F_{A_{2}}:=F \bigcap O_{A_{2}}
$$

will be called the 1-component and the 2-component of $F \subseteq O_{\mathbf{A}}$, respectively.

Example 2.1. Let both universes be 2-element sets:

$$
A_{1}=E_{2}:=\{0,1\}, \quad A_{2}=E_{2}^{\prime}:=\left\{0^{\prime}, 1^{\prime}\right\}
$$

The set of all functions on this pair will be denoted by $O_{2 \times 2}$. A two-based clone $F \leqslant O_{\mathbf{2 \times 2}}$ will be called a 2-Boolean clone. The 1-component (2-component) of a 2 -Boolean clone is the clone of Boolean functions over $\{0,1\}$ (over $\left\{0^{\prime}, 1^{\prime}\right\}$, respectively).

Let \neg be the negation on E_{2}, i.e. $\neg(0)=1, \neg(1)=0$, and \neg be the negation on E_{2}^{\prime}. Besides the identity functions and negations there are only four other unary nonconstant functions

$$
d_{1}\left(0^{\prime}\right)=0, \quad d_{1}\left(1^{\prime}\right)=1 ; \quad d_{2}(0)=0^{\prime}, d_{2}(1)=1^{\prime}
$$

and their negations $\neg d_{1}, \neg^{\prime} d_{2}$. An nary function ($n \geqslant 1$) is called essentially unary if it depends only on one of the variables.

Kudrjavcev and Burosch [${ }^{8}$] investigated closed under composition classes of functions over a pair of 2-element sets. They found the subset of all unary nonconstant functions for all closed classes. Let us remark that all closed classes containing $J_{\mathbf{A}}$, and only such classes, are 2 -Boolean clones. The results about 2 -Boolean clones contained in $\left[{ }^{8}\right]$ can be systematized and represented as in the next Proposition 2.1.
Proposition 2.1. There are 19 2-Boolean clones generated by a subset of unary nonconstant functions in $O_{\mathbf{2} \times 2}$:
$J_{\mathbf{A}}=\left\langle G_{4}\right\rangle$
$\langle\neg\rangle=\left\langle G_{2}\right\rangle \quad$ (1-negations of projections)
$\left\langle\neg^{\prime}\right\rangle=\left\langle G_{3}\right\rangle$
$\left\langle\neg, \neg^{\prime}\right\rangle=\left\langle G_{1}\right\rangle$
$\left\langle d_{1}\right\rangle=\left\langle F_{14}\right\rangle$
$\left\langle d_{2}\right\rangle=\left\langle F_{12}\right\rangle$
$\left\langle\neg d_{1}\right\rangle=\left\langle F_{15}\right\rangle$
$\left\langle\neg^{\prime} d_{2}\right\rangle=\left\langle F_{13}\right\rangle$
$\left\langle d_{1}, \neg d_{1}\right\rangle=\left\langle F_{11}\right\rangle$
$\left\langle d_{2}, \neg^{\prime} d_{2}\right\rangle=\left\langle F_{10}\right\rangle$
$\left\langle d_{1}, d_{2}\right\rangle=\left\langle F_{8}\right\rangle$
$\left\langle\neg d_{1}, \neg^{\prime} d_{2}\right\rangle=\left\langle F_{9}\right\rangle$
$\left\langle\neg, d_{1},\left(\neg d_{1}\right)\right\rangle=\left\langle F_{5}\right\rangle$
$\left\langle\neg, d_{2},\left(\neg^{\prime} d_{2}\right)\right\rangle=\left\langle F_{4}\right\rangle$
(1-duplicates and neg-1-duplicates of 2-projections),
(2-duplicates and neg-2-duplicates of 1-projections),
(duplicates of projections),
(neg-duplicates of projections), (all (essentially) unary 1-functions),
$\left\langle\neg^{\prime}, d_{2},\left(\neg^{\prime} d_{2}\right)\right\rangle=\left\langle F_{7}\right\rangle$
$\left\langle\neg^{\prime}, d_{1},\left(\neg d_{1}\right)\right\rangle=\left\langle F_{6}\right\rangle$ (1-negations of projections), (2-negations of projections),
(negations of projections), (1-duplicates of 2-projections),
(2-duplicates of 1-projections),
(neg-1-duplicates of 2-projections),
(neg-2-duplicates of 1-projections),

$$
2-\cdots+2+2
$$

(negations, 2-duplicates and neg-2-duplicates of 1-projections),
(all (essentially) unary 2-functions),
(negations, 1-duplicates and neg-1-duplicates of 2-projections),

$$
\begin{array}{lr}
\left\langle\neg, \neg^{\prime}, d_{1},\left(\neg d_{1}\right)\right\rangle=\left\langle F_{3}\right\rangle & \text { (negations; all (essentially) unary 1-functions), } \\
\left\langle\neg, \neg^{\prime}, d_{2},\left(\neg^{\prime} d_{2}\right)\right\rangle=\left\langle F_{2}\right\rangle & \text { (negations; } \\
\left\langle\neg, \neg^{\prime}, d_{1},\left(\neg d_{1}\right), d_{2},\left(\neg^{\prime} d_{2}\right)\right\rangle=\left\langle F_{1}\right\rangle & \text { (all (essentially) unary 2-functions), } \\
\text { (esstially) unary functions). }
\end{array}
$$

Remark 2.1. Here the functions in round brackets may be omitted (for example, the parts $\left(\neg d_{1}\right)$ and $\left(\neg d_{2}\right)$ in the last line).

3. DUPLICATE-CLONES AND $d d^{\prime}$-CLONES

We define the notion of duplication over a pair $\mathbf{A}=\left(A_{1}, A_{2}\right)$ as follows.
Definition 3.1. Let both universes have the same power, i.e. $\left|A_{1}\right|=\left|A_{2}\right|$ and assume that a two-based clone F contains bijections $d_{1}: A_{2} \rightarrow A_{1}, d_{2}: A_{1} \rightarrow A_{2}$ which are inverses of each other. Then we say that F is a two-based duplicate-clone (for short, $d_{1} d_{2}$-clone). The functions d_{1} and d_{2} will be called 1-duplication and 2-duplication, respectively.

Proposition 3.1. The 1-component $F_{A_{1}}$ and the 2-component $F_{A_{2}}$ of a $d_{1} d_{2}$-clone $F \leqslant O_{\mathbf{A}}$ are clones on A_{1} and A_{2}, respectively, and they are isomorphic.

Proof. The 1-component $F_{A_{1}}$ and the 2-component $F_{A_{2}}$ are both closed under composition. So they are clones on A_{1} and on A_{2}, respectively. An isomorphism from $F_{A_{1}}$ to $F_{A_{2}}$ can be given by the correspondence

$$
\begin{equation*}
f \mapsto f^{d_{2}}, \quad \text { where } \quad f^{d_{2}}\left(y_{1}, \ldots, y_{n}\right)=d_{2}\left(f\left(d_{1}\left(y_{1}\right), \ldots, d_{1}\left(y_{n}\right)\right)\right) . \tag{1}
\end{equation*}
$$

Proposition 3.2. For any two signatures

$$
\tau_{1}=\left(i_{1}, \ldots, i_{n} ; i_{n+1}\right), \tau_{2}=\left(j_{1}, \ldots, j_{n} ; j_{n+1}\right)
$$

of the same length, and for any $d_{1} d_{2}$-clone F we have

$$
\left|F^{\tau_{1}}\right|=\left|F^{\tau_{2}}\right|,
$$

where both sets determine each other uniquely.
Proof. Let F be a $d_{1} d_{2}$-clone and let

$$
\tau_{1}=\left(i_{1}, \ldots, i_{n} ; i_{n+1}\right), \tau_{2}=\left(j_{1}, \ldots, j_{n} ; j_{n+1}\right)
$$

be signatures of the same length. Let

$$
u=\left\{\begin{array}{rc}
\operatorname{id} A_{l} & \text { if } i_{k+1}=j_{k+1}=l, \\
d_{j_{k+1}} & \text { if } i_{k+1} \neq j_{k+1} ;
\end{array} \quad v=\left\{\begin{array}{rr}
\operatorname{id} A_{l} & \text { if } i_{k+1}=j_{k+1}=l, \\
d_{i_{k+1}} & \text { if } i_{k+1} \neq j_{k+1}
\end{array}\right.\right.
$$

and for all $k=1, \ldots, n$ let us have the mappings

$$
u_{k}=\left\{\begin{array}{rr}
\operatorname{id} A_{l} & \text { if } i_{k}=j_{k}=l, \\
d_{i_{k}} & \text { if } i_{k} \neq j_{k} ;
\end{array} \quad v_{k}=\left\{\begin{array}{rr}
\operatorname{id} A_{l} & \text { if } i_{k}=j_{k}=l, \\
d_{j_{k}} & \text { if } i_{k} \neq j_{k} .
\end{array}\right.\right.
$$

For any $f \in F^{\tau_{1}}$ and any $g \in F^{\tau_{2}}$ we define functions $f^{\prime} \in F^{\tau_{2}}, g^{\prime} \in F^{\tau_{1}}$ as follows:

$$
\begin{align*}
f^{\prime}\left(y_{1}, \ldots, y_{n}\right) & =u\left(f\left(u_{1}\left(y_{1}\right), \ldots, u_{n}\left(y_{n}\right)\right)\right) \tag{2}\\
g^{\prime}\left(x_{1}, \ldots, x_{n}\right) & =v\left(g\left(v_{1}\left(x_{1}\right), \ldots, v_{n}\left(x_{n}\right)\right)\right) \tag{3}
\end{align*}
$$

for all $y_{1} \in A_{j_{1}}, \ldots, y_{n} \in A_{j_{n}}, x_{1} \in A_{i_{1}}, \ldots, x_{n} \in A_{i_{n}}$.
The correspondences $f \mapsto f^{\prime}$ and $g \mapsto g^{\prime}$, defined by formulas (2) and (3), respectively, are bijections between the sets $F^{\tau_{1}}$ and $F^{\tau_{2}}$.

Let F be again a 2 -Boolean clone and let s denote the pair of negations, i.e. $\mathbf{s}:=\left(\neg, \neg^{\prime}\right)$. For the functions

$$
f: E_{2}^{m} \times E_{2}^{\prime k} \rightarrow E_{2} \text { and } g: E_{2}^{m} \times E_{2}^{\prime k} \rightarrow E_{2}^{\prime}
$$

the s-dual functions are defined by the formulas

$$
f^{\mathbf{s}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right):=\neg f\left(\neg x_{1}, \ldots, \neg x_{n}, \neg^{\prime} y_{1}, \ldots, \neg^{\prime} y_{m}\right)
$$

and

$$
g^{\mathbf{s}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right):=\neg^{\prime} g\left(\neg x_{1}, \ldots, \neg x_{n}, \neg^{\prime} y_{1}, \ldots, \neg^{\prime} y_{m}\right) .
$$

For functions f and g with a different order of variables the functions $f^{\mathbf{s}}$ and $g^{\mathbf{s}}$ are defined similarly. For a set $F \subseteq O_{\mathbf{2} \times \mathbf{2}}$, let $F^{\mathbf{s}}:=\left\{f^{\text {s }} \mid f \in F\right\}$.

Definition 3.2. A two-based clone $F \leqslant O_{2 \times 2}$ is called a double-dually closed 2 -Boolean clone (in short, $d d^{\prime}$-clone) if $F^{\mathbf{s}}=F$.

Proposition 3.3. The subset of all unary nonconstant functions of a dd'-clone has one of the 19 forms $\left(Q_{1}, \ldots, Q_{4}, F_{1}, \ldots, F_{15}\right)$ listed in Proposition 2.1. The subset of all unary nonconstant functions of a duplicate-dd'-clone is F_{1}, F_{8}, or F_{9}.

Proof. Any $d d^{\prime}$-clone contains a minimal two-based clone listed in Proposition 2.1, because any unary nonconstant function is s-dual to itself. It is easy to verify that just the subset F_{8} is closed under both duplications (d_{1} and d_{2}), the subset F_{9} is closed under negations of both duplications ($\neg d_{1}$ and $\left.\neg^{\prime} d_{2}\right)$, and F_{1} is closed under all four of these functions.

4. LATTICE OF DUPLICATE- $d d^{\prime}$-CLONES

Now we will focus on the most interesting part of the lattice $\mathcal{L}_{2 \times 2}$ consisting of all duplicate- $d d^{\prime}$-clones F. In such a $d d^{\prime}$-clone F the set F_{1} depends on F_{2} and vice versa. Gorlov and Pöschel described in [${ }^{6}$] the lattice $\mathcal{L}_{2, S_{2}}$ of all dually closed clones (i.e. S_{2}-clones) of Boolean functions (on one universe). This lattice consists of 14 elements and has the structure pictured in Fig. 1.

The list of clones shown in Fig. 1 and sets generating them (in notations of [${ }^{10}$] and $\left.\left[{ }^{6}\right]\right)$ is as follows:
$\mathbf{O}_{\mathbf{1}}=J_{\mathbf{A}}$
(projections),
$\mathbf{O}_{\mathbf{4}}=\langle\neg\rangle$
$\mathbf{O}_{\mathbf{8}}=\left\langle c_{0}, c_{1}\right\rangle$
$\mathbf{O}_{\mathbf{9}}=\left\langle c_{0}, c_{1}, \neg\right\rangle$
$\mathbf{L}_{\mathbf{1}}=\left\langle c_{1},+\right\rangle$
$\mathbf{L}_{4}=\langle g\rangle$
(projections and their negations),
(constants),
(essentially unary functions),
(all linear functions),
(linear idempotent functions (where

$$
g(x, y, z):=x+y+z)),
$$

$\mathbf{L}_{\mathbf{3}}=\langle g, \neg\rangle \quad$ (linear self-dual functions),
$\mathbf{D}_{\mathbf{2}}=\langle h\rangle \quad$ (self-dual monotone functions (where
$h(x, y, z):=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)))$, (self-dual idempotent functions), (self-dual functions),
$\mathbf{D}_{\mathbf{1}}=\langle g, h\rangle$
$\mathbf{D}_{\mathbf{3}}=\langle h, \neg\rangle$ (monotone idempotent functions),
$\mathbf{A}_{\mathbf{1}}=\left\langle c_{0}, c_{1}, \wedge, \vee\right\rangle$
(monotone functions),
$\mathbf{C}_{\mathbf{4}}=\langle g, \wedge, \vee\rangle$
$\mathbf{C}_{\mathbf{1}}=O_{\mathbf{A}}$
(idempotent functions), (all functions).

Theorem 4.1. There are exactly 22 duplicate-dd'-clones in $\mathcal{L}_{2 \times 2}$. Together with the minimal 2-Boolean clone \mathbf{O}_{1} they form a lattice pictured in Fig. 2.

Proof. Let F be a duplicate- $d d^{\prime}$-clone. There are three possibilities for the duplication functions: 1) d_{1} and $\left.d_{2}, 2\right) \neg d_{1}$ and $\left.\neg^{\prime} d_{2}, 3\right) d_{1}, d_{2}, \neg d_{1}$, and $\neg^{\prime} d_{2}$. In case of 1,2 , or 3 we will say that F has type 1,2 , or 3 , respectively. By Proposition 3.1 the 1-component $F_{E_{2}}$ and the 2-component $F_{E_{2}^{\prime}}$ of the duplicate$d d^{\prime}$-clone F are clones of Boolean functions on E_{2} and E_{2}^{\prime}, respectively, and these clones are isomorphic. It follows immediately from the definitions of $d d^{\prime}$-clones and S_{2}-clones that $F_{E_{2}}$ and $F_{E_{2}^{\prime}}$ are S_{2}-clones. The set of 1-components $F_{E_{2}}$ (2-components $F_{E_{2}^{\prime}}$) of all duplicate- $d d^{\prime}$-clones F of type 1 (or 2 or 3) under inclusion forms a lattice which is isomorphic to a sublattice of the lattice $\mathcal{L}_{2, S_{2}}$ (given in Fig. 1).

An immediate calculation shows that any of these 14 clones on E_{2} is the 1-component for some duplicate- $d d^{\prime}$-clone of type 1 . Namely, we get from a fixed clone \mathbf{C} on E_{2} a duplicate- $d d^{\prime}$-clone F of type 1 if we construct all subsets $F^{\tau_{2}}$ for all signatures $\tau_{2} \in\{1,2\}^{n+1}$ by the formulas (2), (3) with the condition $F_{A_{1}}=\mathbf{C}$. The duplicate- $d d^{\prime}$-clone of type 1 , just constructed, will be denoted by $\mathbf{C}_{\mathbf{d}}$. It follows from Proposition 3.2 that $\mathbf{C}_{\mathbf{d}}$ is uniquely determined by \mathbf{C}. It is easy to

Fig. 1. The lattice $\mathcal{L}_{2, S_{2}}$ of S_{2}-clones.

Fig. 2. The lattice of duplicate- $d d^{\prime}$-clones.
verify that $\mathbf{C}_{\mathbf{d}}$ is a $d d^{\prime}$-clone. Hence the lattice of all duplicate- $d d^{\prime}$-clones of type 1 is isomorphic to the lattice $\mathcal{L}_{2, S_{2}}$.

Similarly, in order to describe all duplicate- $d d^{\prime}$-clones of type 2, we have to use the functions $\neg d_{1}$ and $\neg^{\prime} d_{2}$ instead of the functions d_{1} and d_{2}, respectively, in the formulas (2), (3). By $\mathbf{C}_{\mathbf{n}}$ we denote the duplicate- $d d^{\prime}$-clone of type 2 , constructed from a fixed clone \mathbf{C} on E_{2} in the same way as $\mathbf{C}_{\mathbf{d}}$ (but using $\neg d_{1}$ and $\neg^{\prime} d_{2}$). We see that the lattice of all duplicate- $d d^{\prime}$-clones of type 2 is also isomorphic to the lattice $\mathcal{L}_{2, S_{2}}$.

Now we consider duplicate- $d d^{\prime}$-clones F of type 3 . First we notice that the set of unary nonconstant functions of F consists of all such functions. In particular it contains the negation \neg. Thus the 1-component of a duplicate- $d d^{\prime}$-clone of type 3 can be one of the following: $\mathbf{O}_{4}, \mathbf{O}_{9}, \mathbf{L}_{1}, \mathbf{L}_{3}, \mathbf{D}_{3}$, and \mathbf{C}_{1}. If we take all duplicates (or all neg-duplicates) of all functions of these clones, then we get a uniquely determined duplicate- $d d^{\prime}$-clone of type 3. The duplicate- $d d^{\prime}$-clone of type 3, just constructed, we denote also by $\mathrm{O}_{4}, \mathrm{O}_{9}, \mathrm{~L}_{1}, \mathrm{~L}_{3}, \mathrm{D}_{3}$, and C_{1}, respectively. Hence they form the lattice of all duplicate- $d d^{\prime}$-clones of type 3 , which is shown in Fig. 2 by bold lines.

By an easy checking we see that the equations $\mathrm{O}_{4 \mathrm{~d}}=\mathrm{O}_{4 \mathrm{n}}=\mathrm{O}_{4}, \mathrm{O}_{9 \mathrm{~d}}=$ $\mathbf{O}_{9 \mathrm{n}}=\mathbf{O}_{9}, \mathbf{L}_{1 \mathrm{~d}}=\mathbf{L}_{1 \mathrm{n}}=\mathbf{L}_{1}, \mathbf{L}_{3 \mathrm{~d}}=\mathbf{L}_{3 \mathrm{n}}=\mathbf{L}_{3}, \mathbf{D}_{3 \mathrm{~d}}=\mathbf{D}_{3 \mathrm{n}}=\mathbf{D}_{3}$, and $\mathbf{C}_{\mathbf{1 d}}=\mathbf{C}_{\mathbf{1 n}}=\mathbf{C}_{\mathbf{1}}$ hold. Altogether we got 22 different duplicate- $d d^{\prime}$-clones. We have to add $\mathbf{O}_{\mathbf{1}}$ to the set of all duplicate- $d d^{\prime}$-clones to get a lattice because $\mathbf{O}_{1 \mathrm{~d}} \cap \mathbf{O}_{1 \mathrm{n}}=\mathbf{O}_{\mathbf{1}}$. But the minimal 2-Boolean clone $\mathbf{O}_{\mathbf{1}}=J_{\mathbf{A}}$ is not a duplicateclone. Hence we got the lattice graphed in Fig. 2. This completes our proof.

Two-based clones that are not duplicate-clones will be considered in a forthcoming paper.

ACKNOWLEDGEMENT

This investigation was supported by the Estonian Science Foundation under grant No. 2951.

REFERENCES

1. Sichler, J. and Trnková, V. Clones in topology and algebra. Acta Math. Univ. Comenian. (N.S), 1997, 66, 243-260.
2. Bulatov, A., Krokhin, A., Safin, K. and Sukhanov, E. On the structure of clone lattices. In General Algebra and Discrete Mathematics (Denecke, K. and Lüders, O., eds.). Heldermann-Verlag, Berlin, 1995, 27-34.
3. Post, E. L. Two Valued Iterative Systems of Mathematical Logic. Princeton Univ. Pr., 1941.
4. Burle, G. A. Classes of k-valued logic containing all unary functions. Diskret. Anal., 1967, 10, 3-7 (in Russian).
5. Hoa, Nguen Van. Description of the family of G-complete classes of k-valued logic. Cybernetics, 1990, 26, 629-634.
6. Gorlov, V. V. and Pöschel, R. Clones closed with respect to permutation groups or transformation semigroups. Beiträge Algebra Geom., 1998, 39, 181-204.
7. Hoa, Nguen Van. On the structure of self-dual closed classes of three-valued logic P_{3}. Diskret. Mat., 1992, 4, 82-95 (in Russian).
8. Kudrjavcev, W. B. and Burosch, G. Das Problem der Vollständigkeit für Boolesche Funktionen über zwei Dualmengen. Math. Ann., 1972, 54, 105-125.
9. $\mathrm{Mal}^{\prime} \mathrm{tsev}$, A. I. Iterative algebras and Post's varieties. Algebra i Logika, 1966, 5, 5-24 (in Russian).
10. Jablonski, S. W., Gawrilow, G. P. and Kudrjawzew, W. B. Boolesche Funktionen und Postsche Klassen. Akademie-Verlag, Berlin, 1970.

KAHEALUSELISED DUBLIKAATKLOONID

Ellen REDI

On defineeritud kahealuselise klooni mõiste ühisosata hulkade paaril, tehtud kindlaks kahealuseliste dublikaatkloonide omadusi ja esitatud topeltduaalsete dublikaatkloonide võre täielik kirjeldus.

