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Abstract. DNA computing is a method of solving mathematical problems with the help of

biological operations on DNA strands. The paper gives an overview of the existing formal models

of DNA computing. The biological and mathematical background is briefly described; splicing
systems, insertion—deletion systems, and a model of DNA computing based on equality checking,
DNA-EC, are considered more closely.
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1. INTRODUCTION

DNA computing was introduced by Adleman in 1994 ['] who showed how to

use tools of molecular biology to solve difficult computational problems. In his

experiment he solved an instance of the Directed Hamiltonian Path Problem,
using DNA strands to encode the problem and biological operations to simulate

the computation. Since then, Adleman’s results have motivated much research in

the area.

The advantages of DNA computing are its high speed, energy efficiency, and

economical information storing. For example, at the moment when Adleman

carried out his experiment, DNA computing was approximately 1 200 000 times

faster than the fastest supercomputers. A DNA computer could permit
information storing 10'* times more effectively and take 10'® times less energy
than the existing computers.

In the beginning there appeared two fundamental questions about DNA

computing:
1. Can any algorithm be simulated by means of DNA computing? In other

words, 1s the DNA computing computationally complete?
2.1 s 1t possible to design a programmable molecular computer? In other

words, does there exist a universal DNA system in the same sense as a universal

Turing Machine: given a computable function, it can simulate the actions of that

function for any argument?
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To answer these questions, several models of DNA computing, which in

general can be divided into two classes, have been proposed. The first class

includes the models that use operations similar to those of Adleman and are

successfully implemented already in the laboratory. Models of the second class

are more formal. Their properties are much easier to study, but only the first steps
have been taken towards their practical implementation. In this paper we focus

mostly on models of the second class.

In Section 2 we summarize the basic biological concepts necessary to

understand DNA computing. In Section 3 we describe shortly Adleman’s model

as an example of models of the first class, while in the next three sections we

focus on the models of the second class. Splicing systems are introduced in

Section 4 and insertion—deletion systems in Section 5. Section 6 is addressed to a

model based on equality checking, DNA-EC.

In the following we will need some notations of formal language theory. An

alphabet X is a finite nonempty set and its elements are called letters or symbols.
The free monoid X* generated by the alphabet X consists of all sequences which

can be obtained by catenating the letters of X. The elements of 2* are called

words. The empty word is denoted with A. A language over the alphabet X is

defined as a subset of X*.

The union, intersection, difference, and complement of languages are defined

as usual. The catenation of the languages L, and L, is the set of words

LiL, = {pqlp € Ly, g € L,}. With FIN, REG, and RE respectively the families of

finite, regular, and recursively enumerable languages are denoted.

2. BIOLOGICAL PRELIMINARIES

DNA is a basic substance where the genetic information of all living beings is

recorded. A double helix molecule of DNA is a (double) sequence of units called

nucleotides. There are four types of nucleotides which differ in the chemical

group called base. The four bases are adenine (A), guanine (G), cytosine (C), and

thymine (T). Usually the names of bases are used when the nucleotides are

mentioned. The pairs A, T and G, C are called complementary. The nucleotides

form DNA strands which possess polarity, it means that beside the sequence also

the direction of the strand is important. For example, AGC and CGA are different

strands. The DNA molecule is a double spiral, formed by two complementary
nucleotide strands with opposite polarity. The joining of two strands into one

double helix is called annealing and the opposite process melting.
Complementarity means that in the annealing process A bonds only with T and G

only with C. So the annealing can take place only when in the strands there are

the complementary nucleotides in the corresponding places.
We can think of DNA strands as of sequences represented by a combination

of four symbols, A, G, C, and T. In mathematical terms it means that we have the
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alphabet of four letters {A, G, C, T}. In models which deal with double strands

an alphabet {[A/T], [C/G], [G/C], [T/A]} is used as well.

The models of DNA computing are based on different combinations of the

following biological operations on DNA strands.

1. Melting/annealing: break apart/bond together two single DNA strands

with complementary sequences.
2. Synthesis of a desired DNA strand of polynomial length.
3. Separation of the strands by length.
4. Merging: pour two (or more) test tubes into one.

5. Extraction: extract the strands that contain a given pattern as a substring.
6. Amplifying: make copies of DNA strands by using the Polymerase Chain

Reaction (PCR).
7. Polymerization: transform a single strand that has a portion of double-

stranded subsequence into an entire double-stranded molecule.

8. Cutting: cut DNA strands by using restriction enzymes.

9. Ligation: paste DNA strands with complementary sticky ends by using
ligases.

10. Substitution: substitute, insert, or delete DNA sequences by using PCR

site-specific oligonucleotide mutagenesis.
11. Marking single strands by hybridization.
12. Destroying the marked strands.

13. Detection: given a tube, check if it contains at least one DNA strand.
These operations are used to write “molecular programs”, whose input is a

tube with DNA strands or molecules and output is “yes”, “no” or (set of) tube(s).

3. ADLEMAN’S MODEL

The first model successfully realized in practice was presented by Adleman

['] in 1994. It gives a solution to an instance of the Directed Hamiltonian Path

Problem', which is known as NP-complete®. The (nondeterministic polynomial)
algorithm used by Adleman to solve the problem is as follows.

Given a graph G = (V, E) (with n vertices) and two vertices v, Vou € V,
1. generate random paths through G;

2. keep only those graphs that begin in v;, and end in Vau;

3. keep only those paths that enter exactly n vertices;
4. keep only those paths that enter each vertex of G at least once;

5. if any paths remain, the answer is “yes”, otherwise “no”.

! A directed graph with designated vertices v;, and v, has a Hamiltonian path if and only ifthere

exists a path that begins in v;, , ends in v, and enters every other vertex exactly once.
*

A problem is NP-complete if all NP problems can be efficiently reduced toit. A computational
problem is in the class NP if there is not known polynomial-time algorithm solving it, but there

exists a nondeterministic algorithm for it.
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To implement the algorithm, each vertex of the graph was encoded as a

random DNA strand of 20 nucleotides. Then, for every edge i —j in G, a

suitable strand was created, where the second half of the sequence encoding i and

the first half of the sequence encoding j were concatenated. Next, copies of

sequences complementary to strands encoding vertices of G were added into the

test tube containing the strands encoding edges of G. As a result, double strands

were created that encode all paths through G. To implement the steps of the

algorithm, biological operations, such as ligation, amplification, separation, and

extraction were used. For details we refer the reader to ['].
Adleman’s ideas have been extended to solve some other difficult problems

[*]. Similar models have also been proposed by different authors as a base for

the construction of the molecular computer (for example, [°7)).

4. SPLICING SYSTEMS

In 1987 Head [*] introduced a generative formalism called the splicing system
to analyse the generative capacity of the recombinant behaviour of DNA

molecules in terms of formal languages. Later, in 1995, splicing systems were

suggested to represent DNA computations. For performing computations they
use only the splicing operation, which is a combination of cutting and pasting
and can be viewed as a mathemathical generalization of the DNA recombination.

The splicing systems and their extensions have been studied by many authors

(for example, PPD. n [°] wee splicing systems are presented and it is shown

that the splicing operation can be performed in a single-step laboratory
procedure.

Before giving a formal definition of splicing systems, we have to clarify the

notion of splicing operation. A splicing rule is a word in the form a#bsc#d,
where a, b, ¢, d € £* and the symbols #, $ do not belong to X. Let x, y € £*. In

splicing the words x and y according to the rule 7, both x and y are cut in the place
determined by r and the first parts of x and y obtained in this way will be merged
with the end parts of y and x, respectively.

To enable application of the splicing rule a#bSsc#d to the words x and y, the

word x must contain ab and the word y must contain c¢d. The symbol $ separates
the parts of the rule which apply to the first and the second word, respectively,
and # marks the places of cutting.

We say that the words z and w are obtained by splicing the words x and y

according to the splicing rule r and write

(x, y) — (Z, W)
1f

x=xabx", z=xady”,

y= y’Cdy”, w=y'cbx”,
for s

x"

esV,
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We must notice that ab can appear in the word x more than once, as can cd in

the word y. In such case the cutting place is selected nondeterministically and the

result of splicing the words x and y may be a set containing more than one pair
(z, w).

Informally, a splicing system consists of a set of words (axioms) and a set of

splicing rules. The splicing language, that is the language generated by the

splicing system, is formed by all words, which can be derived from axioms

and/or words obtained in the previous steps by using splicing rules.

As the system uses only cutting and pasting, we have only a restricted number

of every DNA strand. So it is proper to use multisets in the system. A multiset M

on X* can be viewed as the set X* with a function M : £* — N U {e} (N is the

set of natural numbers), where M(w) represents the number of occurrences of the

word w € X* in the multiset M. The set supp(M) = {we X* : M(w) #o} Cc X* is

the support of M.

Definition 1. A splicing system is the quadruple 6 = (Z, T, A, R), where X is an

alphabet, T C X is the terminal alphabet, A is a multiset on X* (axioms), and

R C X*HX*SX*HX"* is the set of splicing rules.

Remark. Splicing systems are also referred to as H systems. In the literature, the

systems that we have defined here are known as extended H systems, which

means that the alphabet X includes some nonterminals (# and $). Sometimes it is

stressed that the set of axioms is a multiset, and such systems are indicated as mH

systems. The systems where A is not a multiset have been studied as well.

A splicing system o defines a binary relation =>; on multisets. Let M and M’

be multisets. The relation M =>;M’ holds iff there exist the words

X,y € supp(M) and z, w € supp(M") so that

L. M(x).= 1, M(y) = 1, i x# y]M(x).2.2. if 2 =3, respectively];
2. (x, ¥) = (z, w) according to the splicing rule r € R;

3 Mx)=Mx) -1, M'(y) = M@y) -1, if x#y [M'(x) = M(x) -2, ifx=y,

respectively];
A M@ =M2+l, Mw)=Mw)+ 1, if z#w [M'(z) =M(z) + 2, if z =w,

respectively].
> Informally, 1f we apply splicing to the existing words (both have multiplicity
at least 1), these words are consumed (their multiplicity decreases by 1) and the

products of splicing are added to the multiset (their multiplicity increases by 1).
The splicing language is defined as

L(o)={we TIA =>;* M and w € supp(M)},

where A is the set of axioms and =>;* is the reflective and transitive closure of

=>s. So L contains all terminal words which can be obtained from axioms with a

final number of steps.
In order to give some basic results about the properties and the computational

power of splicing systems, we will need a classification of splicing systems
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according to the type of the sets A and R. For the families F; and F, we will

denote the family of languages that can be generated by extended H systems by

EH(F,, F;) = {L(o)loc=(2, T,A, R),A € Fy, R € F,} (A 1s not a multiset)

EH(mFl’ F 2) = {L(G)IG = (za T, A’ R), Supp(A) € Fl, Re F2}

EH(m[k], F,) = {L(c)loc = (2, T, A, R), card(supp(A)) <k, R € F,}

The following results are obtained:

1. EH(mF;, F;) = EH(m[2], F;) = RE, for all families F;, F, such that

FINcF, cRE,FINCF,cßE[’].
2. EH(FIN, REG) =RE [''].
3. For every given alphabet T there exists a splicing system, with finitely

many axioms and finitely many rules, that is universal for the class of systems
with the terminal alphabet 7 [’]. It means that thoretically a molecular computer
can be designed based on splicing.

5. INSERTION-DELETION SYSTEMS

As a model of DNA computing an insertion—deletion (insdel) system was

introduced by Kari and Thierrin [*'] in 1996. An insdel system is a generative
mechanism based only on two operations, (contextual) insertion and (contextual)
deletion, which can also be implemented in the laboratory, using standard

techniques of molecular biology.
Let u and v be words over the alphabet £ and (x, y) € £* X X* be a pair of

words called a context. The (x, y)-contextual insertion of v into u is defined as

U <y v = {mxvyulu = upxyu,, uy, u, € X*}.

So the insertion of a word takes place only if certain contexts are present. If the

word u does not contain xy as a subword, the result of the (x, y)-contextual
insertion is the empty set.

In a similar manner the contextual deletion is defined. Let (x, y) € Z* X X* be

a context. The (x, y)-contextual deletion of v € X* from u € X* is defined as

UyV= {uxyupluy, up € Ž*, u = uixvyus}.

An insertion (deletion) rule is a triple (x, z, y) where (x, y) is the context and z

is the word to be inserted (deleted).

Definition 2. An insdel system is a quintuple

D =(> T,A, [, D),

where X is an alphabet, T C ¥ is the terminal alphabet of ID, A C X* is the set of
axioms, I © X2* xX* x X* is the set of insertion rules, and DcX* xX* xD* is

the set ofdeletion rules.
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We say that v € X* is directly derived from u € X* and write u => v iff one of

the following cases holds:

1. u = uyxyu,, v = uixzyu,, for some u;, u, € 2* and (x, z, v) € I (an insertion

step);
2. u = uxXZyuy, v = uixyu,, for some uy, u € X* and (x, z, v) € D (a deletion

step).
Denoting by =>* the reflexive and transitive closure of the relation =>, we

define the language generated by ID as follows:

L(lD)={we T*lu=>* wforsomeu e A}.

An insdel system ID is of weight (n, m, p, q) if

| max{lzl: (u,z,v)€ I} =n,

max{lul: (u,z,v) € lor(v,z? u)e I} =m,

max{lzl: (u,z,v)€D} =p,

max{lul : (u,z,v)e Dor (v,z,u) € D} =q.

INS(m, n)DEL(p, g) denotes the family of languages L(/D) generated by insdel

systems of weight (n’, m’, p’, ¢") such that n’<n, m"<m, p’<p, ¢’ <q. The

family of all insdel languages is INS(ee, co)DEL(eO, o). |
Various results about the properties and characterizations can be found in [**].

For example,
1. RE = INS(eo, »)DEL(>, =), RE = INS(2, 1)DEL(1, 1). Also, the insdel

systems that insert and delete only strings over a one-letter alphabet, are

computationally complete.
2. There exist universal insdel systems.

6. DNA-EC

The model of DNA computation based on equality checking, DNA-EC, was

proposed by Yokomori and Kobayashi [*]. DNA-EC makes use of the test

operations and set operations that we are going to describe below. Beside these

operations, in the model only amplification mentioned in Section 2 is applied.
~ Let T denote a test tube containing a set of strings over a fixed alphabet and

I(T) be its contents. We define two set test operations:
1. Emptiness Test (EM): Given a test tube T, return “yes” if it contains a string

and “no” otherwise.

2. Equivalence Test (EQ): Given a test tube 7 that may contain double-

stranded strings, return “yes” if I(T) contains at least one complete double-

stranded string and “no” otherwise.

Also, we consider the following set operations (here k>o, T, T’ are set

variables for test tubes used in DNA-EC and a, b, ¢c,d € X, u, v, w € Ž*):
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1. Union: T=T'UT" KT) = KT) V KTD
2. Left cut: T=a\T KT) = {u |aue (T}
3. Left adding: T=aT7'" KT) = (a(T7)
4. Extraction: T=Ex(T', w) KT) = KT) MX*(w]2*
5. Deletion: T=De(T',w) KT) = (uy | uwve (T}
6. 2-bit replacement. T=Rb(T’,ab,cd) IT)= {xcdy Ixabye )
7. Replacement: T=Re(T', u, v) KT) = (xyy lxuye KTSY
8. Reversal: T =(T)*° KT) = f(u* | ue KTÕY
9. Right cut: T=Tla KT) = {u | uae KT}

10. Right adding: T=T'a KT) = KTÕ(a)
11. Cut: T=Cu(T’, a) KT) = (u, v |uave KTY)
12. Initialization: =X k) I(T) = >"

With DNA(O, T)-EC we denote the class of languages recognized by DNA-

EC, with collections of set operations O and test operations 7. In 7
computational completeness of DNA-EC is proved. More precisely,

1. DNA(O, EM)-EC = RE, where O = {union, left cut, left adding, extraction,

replacement}.
2. DNA(O, EQ)-EC = RE, where O = {union, 2-bit replacement, left adding,

left cut, reversal, extraction, cut}.
3. DNA(O, EQ)-EC = RE, where O = {union, left adding, left cut, extraction}.

7. CONCLUSIONS

We have seen that from the beginning there have existed quite different

models of DNA computing. Some models are first implemented in the

laboratory, latermodified and studied to make themcomputationally complete or

to find operations that are more error-free and easier to carry out. On the other

hand, much work has been done to find better ways to describe DNA operations
and to take advantage of the existing knowledge of mathematics and molecular

biology. Most of the work done is theoretical, but such a diversity of models

gives a hope that the DNA computers can be constructed.
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FORMAALSED MUDELID DNA-ARVUTUSES: ÜLEVAADE

Tiina ZINGEL

DNA-arvutuseks nimetatakse meetodit, mis vOimaldab matemaatilisi prob-
leeme lahendada bioloogiliste operatsioonide abil, mida sooritatakse DNA ahe-

latel. Siinses artiklis on kirjeldatud DNA-arvutuse matemaatilisi ja bioloogilisi
aluseid ning antud iilevaade olemasolevatest formaalsetest mudelitest. Lihemalt

on vaadeldud osavahetussiisteeme, lisamis-kustutamissiisteeme ning hulkade vor-

duse kontrollil pdhinevat mudelit DNA-EC.
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