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Abstract. An inverse problem fordetermining a time- and space-dependent memory kernel in a

model of compression of poro-viscoelastic medium is considered. The kernel is represented in

a form ofa finite sum of products of known functions of the local coordinates and of unknown

time-dependent functions. An existence and uniqueness theorem is proved.

Key words: integrodifferential equation, inverse problem.

1. INTRODUCTION

In recent years a number of papers have appeared on inverse problems for

identification of time-dependent memory kernels (see, for instance, [1 3] and the

references therein). Particularly, the work [] deals with the determination of four

independent relaxation kernels of poro-viscoelastic materials described by coupled
systems of wave and diffusion equations.

In the present paper an attempt is made to identify the memory kernels of

poro-viscoelastic media which depend both on time and local coordinates. To

simplify this rather complicated problem we consider the case of consolidation

[*] in which only a single kernel appears. Our main idea is to represent (or
approximate) this kernel by a finite sum of products of known functions of the

local coordinates and of unknown time-dependent functions. In this way we arrive

at a certain parabolic inverse problem containing finitely many time-dependent
unknown kernels. Furthermore, as in [°], for this problem an existence and

uniqueness theorem in infinite time interval is stated using the Laplace transform

method.

https://doi.org/10.3176/phys.math.2000.2.02
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Identification problems for other classes of memory kernels in diffusion and

viscoelasticity depending on time and some local coordinates are treated in recent

papers [°—B].

2. FORMULATION OF THE PROBLEM

In the theory of consolidation [%°] the compression of the water saturated

porous medium is governed by the parabolic equation

t :

DMa)us(z,) = Ho)u(z,t) +[/ m(w,t—T)U(x,T)dTL+7(s,t), >
r € D=(0,1), t € (0, 00),

where w 1s the effective stress, 8 > 0 is the instantaneous elastic compressibility,
m 1s the corresponding memory kernel, and -y is the source density. Besides Eq.
(1), the function w satisfies the initial and boundary conditions

u(z,o) =¢(zr) on D, (2)

u(o,t) =u(1,1) =O, t € (0,0) (3)

with the given continuous function ¢.

In the sequel we take the kernel m/(z, t) in the form

N

m(z,t) = z,uk(x)mk(t), 4)
k=]l

where ur, k = 1,..., N, are given functions ofz€ D and mkx, k =1,..., N, are

unknown memory kernels depending on t € (0, 00).
In the inverse problem the unknowns my, k = 1,..., N, are to be determined

by N additional conditions of the form

ul(Tk,t)=hr(t), t€(0,00), k=1,... ,N, (5)

where z1,...,zy are some points in the interior of the interval [o,l] and

hi,... ,hy are given observations.

3. APPLICATION OF THE LAPLACE TRANSFORM

Let us apply the Laplace transform ['°] to Eq. (1) with (2) and (3). Then, for

the image of u,

o 0

Ule,p) = Lptt = / e Plu(z,t)dt, Rep >o
0
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with some real number o, there holds the equation

[Ä(CB)Ux(CU,p)]m = ,B(:I:)pU(x,p)

N

=p Y u(z)Mi(p)U(z,p) + T'(z,p) — Blz)p(z) — (6)
=il

in D, where

My = LtspMk, V = LispY-

The boundary conditions (3) are transformed to

U(o,p) = U(l,p) =O. (7)

Denoting Green’s function of the left-hand differential operator in (6) with

boundary condition (7) by G(z,y,p), we get the solution of Eq. (6) with (7) as

N 1

U(z,p) = šMk(p)/O p G(z,y,p)ur(y)U (y,p)dy + F(z,p),
(8)

OL<zr< ]-7

where

1

Fiz,p) =/0 G(z,y,p (y,p) - Bly)p(y)]dy, o<z2<l. (9)

Further, the additional conditions (5) take the form

U(ZBk,p) — Hk(p)a k = ]-7 r 7Na (10)

where Hy(p) = Li_,phy. Inserting (8) into (10), we have the system

N 1

>i) || PGPVPy= Bip) - Floin), gy

i=1,... ,N.

Defining the coefficients

1
Yik 2= —mflk(wi)so(mi), (12)
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we get Egs. (11) equivalent to the following system ofN equations for the functions

Mk(p), k = ]., 13
N:

N

> ikMy(p)
k=l

+žM<)[i o) + [ 9Oy, W)y2P) ati + ] PGlziy,p (y)p(y)dy
(13)

N 1

+3 ° Mr(p) /0 p G(zi, y,p)ur(y)[pU(y,p) — p(y)]dy = Pi(p),
k=l

i=1,...N,

where

In Egs. (13) the first sum is the main part of the left-hand side for Re p — +OO

since

= / pG(zi, y,p)ur(y)p(y)dy — —l—_uk(xi)<fi(svi) (15)
0 /8(331)

and

pU(y,p) = p(y), o<y <l, (16)

for Re p — +OO.

The asymptotic relation (15) follows from the assertion (19) of Lemma 1 below

and the limit (16) is a conseguence of the known relation p G(p) — g(0) for the

Laplace transform G of a function g (ef. [°]).
The inverse problem (1)-(3), (5) is now reduced to the system of eguations

(13), where U(z, p) is the solution of the integral equation (8), and in the main case

the regularity assumption ,

det(yr)%žo (i;k=1,..., N) (17)

holds.

4. PREPARATIONS

Before stating and proving the existence theorem, we shall make some

preparations. At first we prove a lemma concerning Green’s function G(z, y,p).
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Lemma 1. If \, 8 € C?[o,l] and )\, 3 > 0 in [O, I], then thefollowing estimates

hold

1

IGI| = sup / G(z,y,p)dy < o (18)
O<r<l /O
Re p>o

and for any v € C*[o,l]

1 v(z)

š*š lx/z—?[/o pG(x,y,p)V(y)derb—(;—)]l < Cillvllerp,y (19)

where

lv(z)ety = V(@)e + 11V (@)l
and the constants Cy and ||G|| depend on \, 3, only.

Proof. 1twas shown in [°] that under the assumptions \, 3 € C?[o,l] and ), 3 > 0

in [O, 1] Green’s function G(z, y,p) admits the representation

Ä —l/4 N —l/4

G(-'r,y,p)=(—6—)—%š(?2L—(y—)
shsz-shs(w-1)+01, z<uy (20)

” { shsw-shs(z—l)+os, y <z,

where z, w are given by

LP [V w-t [" 4 (21)Fz/„ \X" z/O \ xm)

respectively,

e

!
/,3(77) 2 Pl—/o Wd?], S —l—2,R9B>o, (22)

the quantities Oy, O possess the following asymptotics

esS(l—w+z) es(w+l—z)
=0 T 6=o e as Rep—oo (23)

uniformly in z, ¥, and

Cb:-ls—shs-l—O(z—Q) as Rep—+>ooo, Cyp#o. (24)



80

Here and in the sequel sh and ch stand for the hyperbolic sine and cosine,

respectively.
Using the representation (20), the asymptotic relations (23), and the obvious

inequalities

|eSt| = eßeS't, |sh st| < ch(Re s -t), |shst| > sh(Res-t), (25)

for ¢ > 0 we deduce that

eßes
1 s

sh(Res) +
W

< AA 21/0 pG(xz,y, p))dy
< 2n, A

(26)

for o<xr<l, Rep>[o

with some positive constant C5. Observe that for Re p > 0 there holds

1 V 2 V 2Res = ?Re\/]_?> "'27\/ |p| = 2—l|s| 2
Thus, the first factor on the right-hand side of (26) is bounded for Re p > 0. Due

to (24) the second factor on the right-hand side of (26) is bounded, too. Therefore,
the assertion (18) holds.

In order to prove (19), we first define the following integrated Green’s function:

y

/ G(zr,r,p)dr, <y

H(z,y,p) ={ "1y (27)

/ G(x, T7p)dT7 y _<_ x'

0

Let us substitute G(z,y,p) by (20) in (27) and integrate by parts the products
(AB)~Y4(y)sh s(w —1) and (A\B)~'/*(y)sh sw. Observing (22) and (23) after

some computations, we obtain the following asymptotic relation for H(z, y, p):

(AB)4(2)A 4(y)H(z,y,p) =

W

shszlehs(w-1)-1]+0O3, z<y
(28)

X { (chsw—l)shs(z—l)+ 04, y <z,

where

es(l-w+z) esS(w+l-2z)
O3 =0

T , O4=o —
as Rep —oo (29)

uniformly in z, y.
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Further, let us split the integral fol G(z,y,p)v(y)dy into the integral from 0 to

z and the one from z to 1. Integrating by parts in view of (24), (28), (29) and the

relation s 2 = L, we have

1
viz

1

VP [/O pG(z,y,p)v(y)dy + %] = —px/z—?/O H(z,y,p)v'(y)dy

+/P [% +pH(z,y,p)v(y)[¥=;" + pH(=, y,p)V(y)lziiw]
1 1

= -/[ Hluphr )y-+ 50 (1) 0) +1)

5(8) shs-}—shs(z—l)—shz—i—O(%S)
shimimd® LBe o T »

(30)
A=)

shs+ O (—B—)
where the O-terms are uniform with respest to z, y. Observing the formula (28), we

can estimate the term p,/p fol H(z,y,p)v'(y)dy in (30) as in the equality (18) for

fol |pG(z,y,p)|dy. The other terms in (30) are obviouslybounded foro < z,y < 1

and Re p > 0. This proves the assertion (19). Lemma 1 is proved. [

In the following we need an estimation of the function

B(zr,p)= 8[M1,...,. Mw](z,p) =pU(z,p) - p(z), (31)

which is the Laplace transform of the derivative u; of the solution wto the direct

problem (1)—(3). By Eq. (8), for U the function Bis the solution of the integral

equation

N 1

Blz,p) = +5 M) / pG(z,y,p)u(y)B(y,p)dy
k=l 0

N 1

+ 3 Milp) | pG(oyD))y
k=l

0

+Fi(z,p), (32)

where

Fl(wap) —:pF(IE,p) — 90(—'15) (33)

with F' given by (9).
Our intention is to estimate the functionB in terms ofthe kernels Ml, ...

,
M.

To this end, we first introduce the following functional spaces for complex-valued
scalar and vector functions:

Ay ={V :V(p) isholomorphicon Rep >o
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and

Vi <ob 3 0.0 =0

where

Villy,e := sup pl'| i)
Re p>o

and

(Ayo)Y = (V = (V1W): Klp) € Ayo, i=1,... NI

with the norm

N

Ve = z IVilly,o or Ve (-A%U)N :

I=l

We note that

Ayo SAyo » (Aroe)” @ (A i)

with || +, S wo F0 >O.

Let y and a be two real numbers such that

1/2<y<l and I<a<l/24+9. (34)

Moreover, let w = (wy, ..., wy)(t) be a real-valued vector function with Laplace
transform W = (Wl, ...,

Wy )(p) = Li,w satisfying the condition

W € (Ayq)N - with some, g >O. (35)

We introduce the space for the kernels M = (M, ..., My)(p)

Mw,e = {M : M(p) = W(p) + Z(p), Z€ (Aa,a)N}a g 2 00

and the space for the scalar functions B(z, p)

B-, = (B:B(z,p) € Ayo fora.e. 2€ (0,1),

B(-,p) € L*°(o,l) for Rep >o}, 0 > oy,

with the norm

|Bl = essup||B(z,-)||y,o = essup sup |p|?|B(z,p)
z€(0,1) z€(0,1) Rep>c

Let us prove the following lemma
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Lemma 2. Let beside (34) and (35) the following assumptions be fulfilled:

A,B € CŽO,l] and A,B >0 in [o,l],

Kk € C[Oa I]7 k = ]-7"'7N7 P € o[o7 1] ) (36)

Fi € By, with o¢ from (35).

Then, for each o > og and M = W + Z € My, such that

Wlyo, IZllao
n(M,O) := llGllHul!(“ Q”’ +a )<l, (37)

o o

where ||G|| as in Lemma 1 and ||p|| = maxi<k<n ||tellcp,l), Eq- (32) has a

unique solution B = B[M| € 8,. This solution satisfies the estimate

1 Za
Blle < ——L o o+m18l <7=[l + 161 l el (191 + 222)]

69

where ||p|| = |¢llcp,l)- Moreover, for each 0 > o 9 and M = W + Z €

Mwo, M =W + Z € My, such that n(M,O) < 1 and n(M,O) < 1, the

difference B[M| — B[M] can be estimated by

- 1 o]l
B[M] — B[Mllle <—— G [—IBIM] — BIMII| _l_77(M,o)|| M

|a

1 1 HZIIC„—)H— ! ||Fls+ |G Wllyo + —+oal_n(M,o){ll e + Gl el (ll lna +—a
x /Z — Žlla.o- (39)

Proof. The integral equation (32) for B = B[M] can be written in the operator
form .

B = b + AoB in Bs, (40)

where

N 1

b="b(z,p) = )My(p) /0 pG(z, y,p)ur(y)p(y)dy +Fi (z,p) (41)
k=l

and the linear operator Ay : B, — B, is defined by

N 1

(40B)(z,p) = 3 Mi(p) /0 pG(z, y o)(BlBl
k=l



84

Provided M € My, the assertion (18) of Lemma 1 with (36) implies b € 8,,.
Analogously, by (18) we have Ayß € B, ifB € 8,. Moreover, the norm of Ag in

L(B,) can be estimated by

Wllye > lZllaeo1Aol < |G|l (—”'„',”' i 12l”a )=n<M,a). (42)
g g

Consequently, in the case n(M, o) < 1, by the contraction principle, Eq. (40) [or,

equivalently, (32)] has a unique solution B € By.
To prove (38) we first estimate b from (41). We have

lblle < 1F
o <

Iy + Gl el (191 +
121

, O_a_,y

Using this inequality and (42) in (40), we obtain (38).
-

It remains to derive the estimate (39) for the difference BIM] — B[M]. From

(32) we have

(B[M] — BlM])(z,p)
N 1

3

= zlt?lk(p)/0 pG(z,y,p)ur(y)(BIM] —B[M])(y,p)dy
N

k=i

-

: |
+3° [2O)- )] | põle,no)uvlßlM(42)+ p(y))dy

k=]

Using here (18) and the definition (37), we obtain

IBM] - B[M]|,
1 1 Il >

< a 6 |imeals + 24| 1z - 21,

Substituting || B[M]||, by (38), we derive (39). Lemma 2is proved. [

5. EXISTENCE THEOREM

We can now state our main result.

Theorem. Let (34), (35), and (36) be fulfilled, where we assume py, and o to satisfy
strongersmoothness conditions

e U T k =1,... N, p€ C'o,l]. (43)
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Moreover, let the regularity condition (17) be satisfied for the matrix I' = (~y;1)
and ® = (®1,... ,Py), defined in (14), have the representation

© =TW + 9 € Mawy, (44)

with some U = (U1 ,UN) € (Aa,)N. Then there exists a 1 > o such that

the system of equations (13) has a unique solution M = (M, ..., My)(p) of the

form M =W + Z € Mw,,.

Proof. The system of equations (13) is equivalent to the operator equation

Z = AZ in (Aao)" (45)

with the operator A = I'"14; : (Aas)Y — (Aa,)Y, where T~ is the inverse

of the matrix I and the operator A; : (Ay»)Y — (Aas)? is defined by

N

(Al2)i(p) = U=)[Wi(p) +Ze(p)]gix(p)
B

—ž M.(p) /IpG(xi, yp)uk(y) BW + Zl(y,p)dy, (46)
0

k=l

where

giklp) =
—— (z;

:

Blzi)”" x“)(?”(“'”i”/o pG(zi, y,p)ur(y)p(y)dy

and B is given by (31).

For the proof of the existence of a unique solution to Eq. (45) we introduce the

balls

Da,cf(P) = {Z € (Aa,a)N : HZHa,a < pi

and show that A is a contraction in such a ball.

First note that by the assertion (19) of Lemma 1 we have

”giklll/2,0' S 037 1 S Zuk SNa (47)

with some constant C 3 depending on A, 3, 4 = (p1
,
un) and .
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Let us fix some o > 0. Using the estimates (18) of Lemma 1, (38) of Lemma

2, and (47) in (46), we obtain

14200 < IP7H[[AlZ]la

< P {H\lfna,ao +C3 (—-—Jm;’_ + %)
16l5+ 22) liW + 2y,|

< G [Pz, +Lz 1[l

- n(wš+ Z,O) (%& + H—Z(;”šg—u) (1 +iWlwoo + II?Z&II%U)]
(48)

provided the quantity n(W + Z, o) given by (37) is less than one. Here the norm

of I'"! is defined by

F—l —
—ly.= lsrgggNl(F )ik

and C}y is a positive constant depending on A, 8, u, p, and Fi
Letnow Z € D,,(p). Then, from (48) we get

Wllyoo , P
lIAZHa;U S C 4 [llwlla,ao + ;I—/—s_:)’—_(; -+— m

”W”’)’,O' ,0 p+(W +
1 (1 + ”W“%cfo + E&jy")
AW PR1 Gt(e 1 2

From this estimate, in view of the assumptions (34) about y and ax, we see that for

every p > po = Cy||¥|a,o, there exists o = o2(p) such that

AZ/a < p for o>o2(p). (49)

Further, by Lemma 2 we have B = B[W + Z] € B,,(p)»> which implies that the

function B = B(y,p) is holomorphic with respect to p on Re p > o2(p). This,

together with the holomorphy of Z in D,,(p) and the other terms in (46), shows

the holomorphy of AZ = I'"!A;Z on the half-plane Re p > o2(p). Hence, by
(49) it follows that

A : Doc(p) — Dac(p) for o >o2(p),p >. (50)
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Next, let Z',Z? € Dg,(p) with some o > o¢. Then, by virtue of the

inequalities (18), (19) of Lemma 1 and (38), (39) of Lemma 2, again we obtain

the estimate

C
42" -APa £ PU 52512 - Pa

g

Wl 1220
+leiul (L +e)o+2l - BW + Z

1HIGI 8+202" — Za|
||W||73oo _fi

<C
1

+ 72717 a + o
S ]o 1-m(p0)

p
1 1 Iyl+ W ly,oo + So—7

x| — +[(—+-—) ——g 5 (0"‘ 07) 1 —mno(p;0)

x Z" — Za (51)

where

mipro) = G] + 2)
and the constant C 5 depends on A, 3, i,¢, and F 7.

From the estimate (51), in view of the assumptions (34) on v and «, again
we see that there exists o 3 = o3(p) such that the operator A is a contraction

for o > o03(p). This, together with (50), implies that Eq. (45) has a unique
solution in every ball D,,(p) when o > o4(p) = max{oz(p), o3(p)} and

p > po = C4||¥|0, Therefore, the existence assertion of Theorem is proved
for o 1 = 04(p1) with some p; > po.

Since any two solutions Z', Z? of Eq. (45) from (A,4,)" are lying in some

common ball D,,(p) with o > 04(p), p > max{||Z |a,o, > |Z%llao: » Ll},
the uniqueness of the solution Z in the space (Aa,al)N follows from the proven

uniqueness in theseballs. Theorem is proved. []

Corollary. Under the assumptions ofTheorem the inverse problem (1)—(3), (5) has

a unigue solution m of the form

L
e?Z(p)dp (€ > o1)mM) = w+]

with Z € (Ao,o1)*.
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Since a > 1 by (34), this follows from a known inversion formula for the

Laplace transform (see ['°], Th. 21.3). A vector function w, often occurring in

applications, contains components with power-type singularities at ¢t = 0, I.e.

ng

w;(t) =

7c cijt Yipe ikl BJž:l ,2=1,... , N
3 )

where Cij, Sij > 0 and 0 < Õij < 1 — Y- Then

7

W) =Da
j=l

(p+sij)' 7%

with I' standing for Euler’s gamma function.
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POORSE VISKOELASTSE KESKKONNA KOKKUSURUMISEL

TEKKIVAST PÖÖRDÜLESANDEST

Jaan JANNO

On vaadeldud poordiilesannet aja- jaruumimuutujast soltuva tuumafunktsiooni

madramiseks mudelist, mis kirjeldab poorse viskoelastse keskkonna kokkusuru-

mist. Tuum on esitatud etteantud ruumimuutujast sdltuvate ja tundmatute ajast
soltuvate funktsioonide korrutiste 10pliku summana. On tdestatud kisitletava

poordiilesande lahendi olemasolu ja iihesus.
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