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Abstract. The radiation field is calculated in an optically finite, two-dimensional, plane-
parallel, absorbing—emitting but nonscattering grey atmosphere subjected to collimated cosine-

varying incident boundary radiation. As in the optically semi-infinite case, we approximate
the kernel of the integral equation for the emissive power by a sum of exponents. After this

approximation the integral equation can again be solved exactly. The solution may be written

in z and y functions which were introduced for a one-dimensional atmosphere and which are

generalizations of the Chandrasekhar—Ambarzumian X and Y functions. An algorithm to find

these functions is given.
This approximation allowed us to find the accurate values for the temperature distribution

and the radiative flux at arbitrary optical depths in the atmosphere.

Key words: two-dimensional radiative transfer, X and Y functions, emissive power, radiative

flux.

1. INTRODUCTION .

In a previous paper [l] the radiative transfer in a two-dimensional, optically
semi-infinite atmosphere subjected to collimated cosine radiation was studied. By
applying the kernel approximation method to a simplified integral equation for the

temperature distribution (or for the emissive power), it was possible to find the

radiative field at any point in the atmosphere. In the present paper these results

are generalized for an optically finite atmosphere, allowing for collimated cosine

radiation incident on one of its boundaries. Breig and Crosbie, who have found

the external radiation field both for optically semi-infinite and finite atmospheres
[23], have already stressed that the cosine boundary conditions are not physically
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realistic. Nevertheless, these are useful since the solutions for other, more realistic

problems can be expressed in terms of the cosine solutions.

As the main relations of a similar problem were described in [l], below the

respective equations are referred to as Eq. (I,n), where nis the number of an

equation used in that paper.

2. SOLUTION OF THE RADIATIVE TRANSFER EQUATION

The temperature distribution (or the emissive power) and the radiative flux

are looked for in an optically finite, homogeneous, nonscattering but absorbing
and emitting plane-parallel, two-dimensional, grey atmosphere which is in local

thermodynamic equilibrium. The radiative transfer in such an atmosphere is

described by Eq. (1,1).

By applying integrating factor techniques to Eq. (1,1), the formal relation

for the intensity of radiation moving downwards is defined as Eq. (1,2) and the

intensity of radiation moving upwards as

—

1 f et

I (Ty'7 Tz3 lb3 TO) —; / UT4(TZI/7 T,;a TO) exp(—('f; — TZ)/lu')dT„;//J'a (1)
Tz

where 7.f = 7, — T, tanfsin¢, 7, = Ty + (77 —7;) tanßsin¢, u = cosb, I
is the intensity incident on the boundary of the atmosphere, and 7y is the optical
thickness of the atmosphere.

It is required again that the atmosphere be in radiative equilibrium, i.e., the

relation expressed by Eq. (1,4) is effective.

The equation for the emissivepower coincides with the respective equation for

the optically semi-infinite atmosphere, Eq. (1,5), with the only difference that we

have to integrate with respect to 7, from 0 to 7. In the following it is assumed that

no radiation is incident on the lower boundary of the optically finite atmosphere
and the upper boundary is subjected to collimated cosine radiation

If (1)) = I [l+eexp(i6r])] õ(u — uo)õ(6), (2)

where I is a constant, (ug = cosfp,) defines the direction of the incident

collimated radiation, ¢ is the amplitude of the cosine wave, and ¢ is the Dirac

delta function. Boundary condition (2) means that the top of the atmosphere is

illuminated stripwise by a parallel beam at an angle 6, while the strips are parallel
to the z-axis and their widths are defined by the spatial frequency (3 as 7/ in units

of optical length T; . The illumination in the direction parallel to the y-axis varies

according to the cosine law.

By applying the concept of separation of variables to Eq. (1,1), it can be

obtained that

-

1 ,
OT4(Tya Tz, TO) — ZIO [Bfl:O(T, 10, 7-0) + EBfl(Ta 10, TO) eXP(ZIBTy)] )

(3)
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where Bg is the dimensionless emissive power and 7 = 7,. Using Eq. (1,7) in

Eq. (1,5) and taking into account the finiteness of the atmosphere, a simple integral
equation for By is obtained in the form

1 f°

Bg(7, o, 70) = exp(—7/u0) +ž/ EI(T -TÕB6(T',o,To)dT', — (4)
0

where the generalized exponential integral £; is defined as in Eq. (1,9). By
manipulating Eq. (4) in the same manner as in [2], it can be shown that the integral
equation for the resolvent function ®4 has the form

1 1 f7°

Qp(7,70) = 551(7, B) + ž/o EI(T — TI)ÕB(T„To)dT„ (5)

where

1[ Bg (7', VPR + ,32,7'0) dt (6)Õp(7T,TO) = ’2“/1 ——_—\/15—2-—&-_————,32——

Next we introduce two functions z(7, fO, 70) and yg(7, io, 7o) as follows &

( ))/( 7/7')007( ?

and

Yg(T, o, To) = exp(—7/po) + /OT Ds(t, 70) exp(—(7 — t)/po)dt. (8)

The well-known Ambarzumian—Chandrasekhar X and Y functions are limiting
values of these two functions,

Xg(po,7o) = 25(0, po, 10), (9)

and

Y5(p0,70) = ys(7o,po,To)- (10)

According to Sobolev [°], the solution of Eq. (4) may be written in the form

Bo(rypo,m) = Xalpm, ) [exp(=r/po) + [ @(t, ) exp(~(r ~1) /o)

<¥y(o o) [/” tat -tm)erp(-r - t)/uo)dt] |

(11)
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or, in our notation,

Bg(T, 10, 70) = Xa(po, TO)y(T, o, 70) — Ya(to, 70) [2s(7o — T, po, 70) — 1]-
(12)

This is the formal solution of determining the emissive power (and the temperature

distribution) in an optically finite atmosphere subjected to collimated cosine

varying radiation.

Next we find the functions z(7, po, 70) and yg(7, 10, 70). We use the same

technique as in [*]: first we approximate the kernel of Eq. (5) by a sum of exponents
and after that the integral equation can be solved exactly. The solution of Eq. (5) is

N

Õa(7,70) = z la; exp(—sir) + bi exp(—si(7o — 7))]. (13)
i=l

In order to determine the coefficients a;, b;, and s; in Eq. (13), we use Eq. (13) in

Eqg. (5) and by equating the similar exponents we obtain the characteristic equation

I—2; 1 — p?s?
1=

and a linear algebraic system for coefficients a; and b;

ž ož br, exp(—sk7o) 21 0——— ———r — /J/ ==
,

oo
VRS

7
I+pisk

]

L
g exp(—sk7o)

X
b

1)

E:Ä—Ä—l—Z—k =O, i=1,... N.
o

I+HHisk
+

1 Hisk

When analysing Eq. (14) we encounter an interesting feature. While our problem
is completely similar to the respective one-dimensional case with pure scattering,
1.e., no photon perishes in the act of scattering, there is still a remarkable difference.

In the one-dimensional case Eq. (14) has a double zero s; = 0. This is not so in

our case, and that is the reason why there are no polynomial terms in Eq. (13).
We have described in [#] how to solve Egs. (14) and (15). For Eq. (15) we

apply a simple change of unknowns

Uk =Ak+bk, õk =ar — bg, k=1,..., N, (16)

which helps us to substitute a 2N by 2N system by two IV by N systems

X
1 exp(—sk7o)> ae [+TR,

e
Li 1+ pisg

N (17)
> 1 exp(—skTo)

o>bi| -
O

.
— HiSk + HiSk
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These two systems may easily be solved by any of the well-known methods. It

appears that for all 79 < oo coefficients by are negative.
Taking into account Eqgs. (7), (8), and (13), we find the approximations for the

zz and yg functions

N

.

ak [exp(—sBkT) — exp (—sk7To — (To —7) /0)]
$,5(7-7:u'077-0) —,u'()kž:; I+skMo

N
br [exp(—sk(7o —7)) — exp (—-(70 —7) /40)]

D da 0

and

2
0x [exp(—sk7) — exp(—7/ )]— — —

0
80> TN =W agl TSI SJIESTONESAEHITEE 51

S
1 — sgpo

N

Rbt L-1) -exp(cskmo DI (19)
—

1 + sgpo .

Respectively, from Eqgs. (10), (11), and (14) we obtain

N

ax [1 — exp(—7o(sk + 1/4uo))]
Xp(po, oy = po Y, ———AA

+3
1+ skpo

N
b [exp(—sk7o) — exp —(7O/0)]SRAVLRNo TR I 2+/0 š -

(20)

and

—ox [exp(—sk7o) — exp(=o/po)]
V(o0y =o 3 S1D1—270)—2PO/poi

KD
k 0

Y
by [1 — exp(—7o(sk + 1/40))]

Ao PR T 21+Moš 1SLOO
(21)

It is easy to see that the singularities in Eqs. (18)—(21) at ug = 1/si can be

eliminated by substituting the respective term by (79 —7) exp (—sk(7o —7)) /po in

Eq. (18) or by 7 exp (—skT) /o in Eq. (19) or by 79 exp (—sk7o) /1o in Eq. (21).
This concludes the solution of the radiative transfer equation for the case

considered.
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3. AUXILIARY EQUATIONS

In deriving the formula for the radiative flux, we need some auxiliary equations
connecting the zg(7, o, 70) and yg(T, po, 7o) functions. The first set may be

obtained by differentiating Eqgs. (11) and (12) with respect to 7. As a result, we

obtain the following equations

0z (T, 10,T—NO—‘L;O——O—) + z(7, po, 70) = p0®p(7,70) +l, (22)

Oyg (T, o,Tuo—é(—õf—i) + y(7, 0, 70) = Ho Dp(7, 10). (23)

We shall need also the derivatives of the z3(7, jO, 70) and yg(7, o, 7o) functions

with respect to optical thickness. By differentiating Eqs. (11) and (12) with respect
to 79, we obtain

Ox5(T,to, T_fi(a—’]—'uo_i) — Õ,B(T()?TO)y,Ü(TO — T, o 0 TO)) (24)
0

Oys(T, o, T_y_q(a_;:g_o_) = ®4(70,70) [S(TO — T, 10, To) — 1] (25)

and then, writing Eqs. (11) and (12) for the argument 79 — 7 and again
differentiating with respect to 7y, we obtain

Ogaldn —7, Uigs T) 1
BD—103 0)_cois — —1

70 10
[:1:5(10 T, T ]

+®s(7lo,7o)yp(T, o, T0) — Ps(10 — 7,70), (26)

õy,B(TO — T7,U'077-0)
— —iy (TO — 7 jlo 'TO)

019 i i 21

+® (70, 70) [Z4(7, pos 70)— i @g(7o = 7y70). ) (27)

Setting 7 equal to zero in Eq. (24) and in Eq. (27), we obtain the well-known set

for the X 5 and Y} functions

0X(10,70)
Tom Pp(7o, 70) Ya(uo, 70),; (28)

OY,
,

1) - YlO,)+ (10,70)Xy, o,). 29)
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The value of the resolvent function at 7 = 7 can be found from Eq. (11) of [?]
and Eq. (12) in the form

P

By,)= 5 [ Yaloe,o)/ (30)

Equations (28) and (29) may be used to determine the X 5 and Y functions. If we

approximate the integral in Eq. (30) by a Gaussian sum, we obtain a set of ordinary
differential equations together with boundary conditions which we get from Eqgs.
(7) and (8)

Xfi(/u’o7o) — 17

Y5(10,0) = 1.
&

When we solve Egs. (29)—(30) subject to boundary conditions (31), we obtain the

values of the Xz and Y 3 functions at the points of the Gauss quadrature only. If

we are interested in values of these functions at other than Gaussian points, we

may use the approach described by Breig and Crosbie [?]. The essence of this

approach is that we solve the same equations at the values of uy we are interested

in, together with Egs. (28) and (29). This means that if we need to know the values

of Xg(0,70) and Y3(uo, 70) functions at, say 10 values of p, we have to solve

the set of 2V 4 10 ordinary differential equations.

4. RADIATIVE FLUX

In this section we consider the formulation of the equations for the

z-component of radiative flux in the atmosphere and respective calculations.

According to [?], the z-component of radiative flux can be shown to satisfy the

relationship

qz(Ty7T, TO) — IOQ,B:O (Ta MO, TO) + 610Q,8 (T 7 Ko, TO) BXP(?:IBTy), (32)

where the dimensionless radiative flux is given by

Qp (7, 10, 70) = poexp (=7/po)+ 3[y€2 (7 — 7', )Bs(7', pro, 70)d”

- 5 [ & (7' — 7,8) Bg(7', po, 70)d7’. (33)

In Eq. (33) the generalized second exponential integral is given by Eq. (1,56).
Substituting Eq. (1,56) into Eq. (33), changing the order of integration, and taking
into account Egs. (1,2), (1), (22), and (23), we obtain
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Q 3 (T, pos 7o) = poexp (—7/po)

Pui (u, B)du
10X(o, )[ LI4(1 g, ) = s (11 0)]

0 Ko — U

Pup (u, B)du
—IOY3 (10, 70) /uity,Dy [ (a 6 —T, 0,7T0) — Tp(To —7, wy7o)]

0 Ho — U

Pup (u, B)du
10X (o,)[Oby (1, ) (1, )— 1]

o Motu

Pur (u, B)du
oy (o, o)[POI0y g,)+ st )~1,

o Mo TU

(34)

where

1
Yl(u, B) =

W
(35)

and

1

The radiative flux at the boundaries of an atmosphere is thus

Qfl(O,MO,To)

ja —la [7D 5 10

and

OB (TOa,UO, 7'o) = Ko exp(—fo/flo) ;
p

_uo/ M[Yfl (,70) X5 (10, T0) —XS (u,70) Yg (10, 70)]. (38)
0 o= u

The apparent singularities in Egs. (34) and (38) can be eliminated by means of

the L"Hospital rule, since the derivatives of the x 5 and 14 functions (or Xz and Yjg
functions) with respect to py may easily be found. However, the expressions of

these derivatives are rather unwieldy [].
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5. NUMERICAL RESULTS

In the numerical experiments we have used the same quadrature scheme as in

[l], i.e., we divided the integration range (o,p) into four subintervals (0,0.1p
(0.1p,0.9p), (0.9p,0.99p), and (0.99p,p) and in each subinterval we used the

Gaussian rule with N/4 points. To ensure the accuracy of at least five significant

figures in the region 0 < 8 < 10000 we set N = 84.

Contrary to Breig and Crosbie [2] who used the integration range (0,1), we

chose the integration range (0, p), because this approach, though a little bit more

time-consuming in calculations, is free of awkward angle variables of the type
Vl+B%/p.

Using the method described above, the temperature distribution and the

radiative flux were found according to Egs. (3), (12), and (35) for different sets

of input parameters.

Figure 1 shows the temperature distribution as a function of the optical depth
7 and the spatial frequency 3, while the radiation is incident perpendicularly on

the atmosphere of optical thickness 79 = 1. It is clearly seen that for small values

of (3 there exists a maximum of the temperature distribution at quite small optical
depths which disappears when 3 > 10. In the case of optically thicker atmospheres,
this behaviour remains the same, as shown in Fig. 2. The asymptotic behaviour

of the temperature distribution surface indicates that for 3 — 0 the solution is

approaching the one-dimensional solution [®] as it should.

At the grazing incidences only the outermost layers define the radiation field for

optically thicker atmospheres, since the temperature distribution decreases rapidly
towards zero when the optical depth increases (Fig. 2).

The clearly defined maximum at normal incidence disappears for grazing
incidence. Figures 3 and 4 show evidence of maxima at py = 0.3 neither for

70 = 1 nor for 79 = 10. For optically thicker atmospheres (79 = 10) the rapid
fall-off of the temperature distribution is very conspicuous.

If the collimated radiation is incident perpendicularly on the atmosphere, then

the dimensionless radiative flux @Qg(7, 10, 79) shows monotonous behaviour in

optically not so thick atmospheres (79 < 1). There is a strange feature to that

behaviour, though. For small optical depths the radiative flux increases with the

spatial frequency 3 and reaches an asymptotic value at large values of 3, but for

large optical depths this distribution is the opposite: the radiative flux decreases

with 3 and reaches again an (different) asymptotic value. At the same time, the

radiative flux at the values of the spatial frequency log < —0.5 is constant

throughout the atmosphere (Fig. 5).
For oblique incidence (arccos pg = 72°.54) the dimensionless radiative

flux shows a maximum when considering the flux as a function of the spatial
frequency 3. For an atmosphere of optical thickness of 79 = 10 the maximum for

the emerging at 7 = 7 flux occurs at log 8 = —0.2 (Fig. 6).
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Fig. 1. The dimensionless temperature distribution Bg(7, 4,7o) as a function of the optical
depth 7 and the spatial frequency [ for the atmosphere with the optical thickness of 5 = 1.

The collimated radiation is incident on the atmosphere at the angle ofo°. In Figs. (1)—(6) the

index O of the angular variable y is dropped for simplicity.

Fig. 2. Same as Fig. 1, only the optical thickness of the atmosphere is 79 = 10
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Fig. 3. Same as Fig. 1, only the angle of incidence is 72°.54.

Fig. 4. Same as Fig. 1, only the optical thickness of the atmosphere is 79 = 10 and the angle
of incidence is 72°.54.
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Fig. 5. The dimensionless radiative flux Qg(7, i, 7o) as a function of the optical depth 7 and

the spatial frequency3 for the atmosphere with the optical thickness of 7y = 1. The collimated

radiation is incident on the atmosphere at the angle of o°.

Fig. 6. Same as Fig. 5, only the optical thickness is 79 = 10 and the angle of incidence is
72°.54.
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6. CONCLUSION

The approximation of the Sobolev resolvent function by a sum of exponents
can be applied to a special case of two-dimensional radiative transfer in optically
finite atmospheres. This approximation allows of reducing the solution of the

integro-differential equation of transfer to a solution of one nonlinear characteristic

equation with clearly bracketed roots and to two sets of linear algebraic equations.
This simple approach gives accurate and reliable results.
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TEMPERATUURIJAOTUS OPTILISELT LÕPLIKU PAKSUSEGA
ATMOSFÄÄRIS, MILLELE LANGEB KOOSINUSSEADUSE JÄRGI

MUUTUV KOLLIMEERITUD KIIRGUS

Tonu VIIK

On vaadeldud kiirguslevi optiliselt 10pliku paksusega kahemddotmelises tasa-

paralleelses mittehajutavas, kuid neelavas ja kiirgavas atmosfaéris, millele langeb
koosinusseaduse jiargi muutuv kollimeeritud kiirgus. Samuti kui eelmises artiklis

(Eesti TA Toim. Fiilis. Matem., 2000, 49, 40-57) on oletatud, et atmosfaar

on hall ja ta on kiirguslikus tasakaalus. Sel juhul saab kiirguslevi vorrandi

taandada integraalvorrandiks, mille omakorda saab muutujate eraldamise teel

taandada suhteliselt lihtsaks {ihemdotmeliseks integraalvorrandiks, kui oletada, et
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atmosfaari optilised omadused z-telje suunas ei muutu. Taandatud vorrand erineb

tavalisest iithemddtmelise kiirguslevi vorrandist selle poolest, et tema karakteristlik

funktsioon pole enam paarispoliinoom, kuid siiski paarsuse sdilitanud funktsioon.

Nagu iihemdotmeliseljuhulgi, saab selle integraalvorrandi lahendamiseks kasutada

meetodit, mille puhul integraalvorrandi tuum ldhendatakse eksponentide reaga. See

lahend on kahtlemata ebatédpne, sest lildistatud eksponentfunktsioonil on argumendi
vaartusel null logaritmiline singulaarsus, kuid eksponentide rida pole kusagil
singulaarne. Lahendvorrandil on siiski liks suurepdrane omadus, nimelt ta lahendub

tapselt, kusjuures lahendiks on samuti eksponentide rida. Seejérel on funktsioonid

zja y defineeritud nagu ihemdotmelisel juhulgi. Nende funktsioonide abil on

kiirgusvili leitav tilalkirjeldatud atmosféédri igas punktis.
Mis puutub ldhendvorrandi ebatdpsusse, siis vOrrandi lahend — resolvent-

funktsioon — pole eesmérgiks omaette, vaid tavalised huvipakkuvad suurused, nagu

kiirguse intensiivsus, allikfunktsioon voi voog on koik teatud kaalufunktsioonidega
integraalid sellest resolventfunktsioonist. Integreerimine aga silub koordinaatide

alguses oleva singulaarsuse ja tulemuseks on igati rahuldava tépsusega vajalikud
suurused.

Numbrilised eksperimendid parameetrite erinevate vairtuste puhul niitasid, et

temperatuuri jaotusfunktsioon voib iisna véikestel optilistel siigavustel saavutada

maksimumi, kui kiirgus langeb atmosfdéri pinnale risti v6i peaaegu risti ja
langeva kiirguse ruumiline sagedus on vidiksem kui 10. Suuremate ruumiliste

sageduste ja suuremate langemisnurkade puhul maksimum kaob. Temperatuuri
jaotusfunktsioon nditab selgesti asiimptootset ldhenemist iihemdotmelisele

lilesande lahendile, kui ruumilise sageduse viértus ldheneb nullile. Suurte

langemisnurkade ja optiliselt paksude atmosfédédride puhul defineerib kiirgusvilja
vaid Shuke kiht atmosfairi pinna lihedal, sest temperatuur langeb optilise siigavuse
kasvades véga kiiresti.

Dimensioonitu kiirgusvoog kiitub sellistes optiliselt mitte viga paksudes atmo-

sfadrides monotoonselt, kasvades suurte ruumiliste sageduste ja vdikeste optiliste
sigavuste puhul ruumilise sageduse kasvuga ning joudes teatud asiimptootse
vadrtuseni. Suurte optiliste paksuste puhul on kiirgusvoo kiik vastupidine:
kiirgusvoog viheneb ruumilise sageduse kasvuga viikeste ruumiliste sageduste
juures viikestel optilistel siigavustel, joudes jille (teise) asiimptootse vadrtuseni.

Samal ajal on kiirgusvoog ruumiliste sageduste log 8 < —0,5 jaoks konstantne

kogu atmosfaaris.

Suurte langemisnurkade puhul on diménsioonitul kiirgusvool kui ruumilise

sageduse funktsioonil maksimum, niiteks kui atmosfddri optiline paksus on 10,
siis atmosféiri aluspinnal viljuva voo jaoks on maksimum kohal log 8 = —O, 2.
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