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Abstract. An example of one-step memory control of the linear-quadratic grouped system is

presented. It is shown that in the case of unidirectional interconnections between cost functions,

one subsystem can indirectly control the behaviour of the whole system and can establish the

trajectory it desires only through a properly chosen equivalent representation of its control law in

cost functions of other subsystems.
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1. INTRODUCTION

The control actions performed by layered controllers depend on the

information available. The open-loop information structure means that only the

initial state is known. To distinguish between the actions depending on the

nonzero and the zero memory information, the former are produced by closed-

loop control laws (may use all past state vectors) and the latter by a feedback

control law (uses only the current state). The information structures with nonzero

memory are rarely used in deterministic control strategies.
In this paper a linear-quadratic example of one-step memory intervention in

the local cost functions of the grouped system is presented. It is shown that in the

case of unidirectional interconnections between cost functions, one subsystem
can establish the trajectory it desires for the whole system only through properly
chosen equivalent representation of its (unchanged) control law. The selected

representation of the control law may be implemented in the cost function of

other subsystems, in the state equation, or in both of them. In this paper only the

first possibility is considered. The algorithm is based on a short
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communication [']. A similar problem has been discussed in [’] and [*] in the

context of closed-loop Stackelberg solution of two-person nonzero-sum dynamic

games. In [>’] conditions are obtained under which a one-step memory strategy
of the leader (implemented in the state equation and in the cost function) forces

the follower to a team-optimal solution.

In the present communication the group of subsystems with no decision-

making priorities is studied. The problem is posed in the context of an arbitrary
desired trajectory of the whole system. The situation shows some similarity to the

sponsoring system (where the grant-holder’s behaviour is also controlled

indirectly by the attached prescriptions) and to intelligent controllers (multi-
layered architecture like [*] may cause problems with the coordination of goals).

2. DESCRIPTION OF THE PROBLEM

Consider a linear discrete-time object governed by m controllers

n

Xes = Axy +By, + ) By 2.1)
=2

The controls u,, are unconstrained and minimize the local cost function

n—l

Ji = x;lQixn + Z(x„(glxk + u;,lelul,k + u;,le-Ltl-,k), = 2,..., m,

k=o

n—l (2.2)
, ’ ,

Jl=x,ol%, + z(kulxk tupg Ryugy)
k=o

at a given initial state x,. The matrices A,B;, Q;2O, R, >O, R; >0 are of

appropriate dimensions; they are prescribed to all controllers by the higher level

of decision-making.
Suppose the controllers are currently involved in the determination of the

optimal trajectory under the restriction that the minimization of cost functions

must be accomplished with no priorities in the order of decision-making. As is

known from the basic literature, the optimal controls for this open-loop problem
are linear functions of the current state. In other words, the open-loop optimal
controls are represented in the feedback form:

Ui ==Ke k=0)....051, (2.3)

Also, the implementation of (2.3) establishes the Nash-type equilibrium in the

grouped system.
The main goal of this paper is to expose the additional possibilities of the first

subsystem to control the trajectory x,, k=0,1,...,n—1, by changing the

representation (2.3) of u;, in local cost functions (2.2). Since R, >0for
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i=2,.,m and R, =O, the first subsystem actually possesses the formal ability

for such kind of intervention.

Suppose the controller of the first subsystem (as well as of all others) can

model the behaviour of the grouped system (2.1) subject to the changes of the

parameters of local goals (2.2) and can create feasible trajectories of the system.
Suppose now the first subsystem decides to establish in the system one of these

trajectories, say x,, k=0,1,2,...,n, which is obtained by the feedback control

law

u,k =—K;kxk. (2.4)

In other words, it decides to establish in the whole system the trajectory

X, SAX, Xg =X,

where

m

Al = A zBKio,k—l :
i=l

It 1s assumed henceforth that each set of selected controls admits a unique desired

trajectory and a unique final value of each J..
As was stated in (2.2), the first subsystem must expose its control law in the

local cost functions of other subsystems. It can use different ways, for example,
pick up some equivalent nonzero-memory form. We adopt the one-step memory

representation

”li,ok =-KjyXxy +Py%% A 1X0). (2.5)

This equation is also used as one-step-ahead expectation in systems with filters

[]. In the current nonstochastic case it is simply an identity. The index i points
to the subsystem, for the cost function of which the particular representation (2.5)
is prepared, and P, is an arbitrary nonzero weight matrix.

Now each subsystem i=2,...,m, must (independently of other subsystems)
find the optimal controls Ur» k=0,12,...,n—1, such that the local cost function

n—ll

g’ , O xt jo ’

Ji =%, 0%, + Z(kuixk + (Ui )'R; (ul,k)+ui,kßi”i,k)
k=]

A ! /0 o !

+ x0O;xo + X 0 KioRiKi oXo +U; oßiuio (2.6)

1s minimal subject to

m

Xesy = Axy =YBKi+B,gy oxig =g k=l2sm=l, (2.1)

.



103

where

[o
—

° *

U, ==K x, + P (x 5 —Ap %)

and

m

Ak—l =A- z B_]Kj,k—l
j=

All design parameters, the initial state and controls but u,, are known and fixed.

The weight matrices P,, must cause significant loss in the final value of the

local cost function ifany deviation from the desired trajectory takes place, i.e.,

o o o o o .Jl (ui’o,...,ui’N_l) < ‘]l (ui,0,...,ui,k,ui,k+1,...,ui,N_l ), 1= 2,. c,M

If the first subsystem can find such weight matrices, then it is able to force other

subsystems to choose exactly the prescribed control laws and implement the

desired trajectory.

3. DETERMINATION OF OPTIMAL WEIGHT MATRICES

We assume that for every subsystem thereexists a sequence of optimal weight
matrices P, under which the final value of the local cost function J,,
calculated along the desired trajectory, is minimal. In this case at every stage k

of the n-stage process the value of the vector of partial derivatives of J,, with

respect to the control at the desired trajectory is equal to zero:

aJi,k/aui,k =oatu,, =K, x;, k=n-2,n—3,.,10,i=23,.,m.

Suppose for a moment that all optimal weight matrices P.,_,, P,;,...P5, P,

are already found except for the last one, P.
The local cost function (2.6) is exposed as a function of the free control

variable u;, :

n-l
’ jojo ooJi=x, Qix, +Z(xl’chxk + (uyy) Ri (ulk) +L£;,kßiLti,k)

k=]

/ jojo .
+ xOQixO + (ul„lo )/Rll (ull,()) + u;,Oßiul-,O ,

L= 2,..., m, (31)

where
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i°
—

° °

U 0 — —Kl,OxO7
o—* ° *

Uk = (Pi,k — K],kPt Pi,k A 1 %5

U;r :_Ki,kxk ,

and

m

e 2 BjKj,Oxo +Bi“i,o’ X 0 = Xo»

B (3.2)

Xk+l 7 Akxk ,
k=n-2,n-3,...,2],

where

A »

m

k=A- -2B
j=

Õ

The cost function J; is a quadratic function of the initial state x, and the

control variableu, . Its partial derivative dJ, /du;
o =W,(P )x, must be zero

at any initial state x; #O, so W,,(P)=o. This equation determines F;; if all

other weight matrices are known and W, ,(P;) =0 has a solution.

As the desired trajectory is optimal (with respect to some linear-quadratic
control problem), then its remaining part is also optimal. So the weight matrices

could be found stage by stage from the end of the process by using the described

approach. At the last, nth stage, the cost function does not depend on the

controls, so the corresponding weight matrices are missing. At the (n—l)th

stage the weight matrices cannot influencethe final value of the cost function and

are also absent.

At the next stage we can find the expression W, _,(P,,;) we are searching

for. The problem(3.1), (3.2) at the last stages is

! !

‘]i,n—2 — anixn + xn—-lQi'xn—l
!

+ ((Pi,n—l — Kl,n—l)xn—l — Pi,n—l A„—zx„—z) Ra ((Pi,n—l — Kl,n—l)xn—l — Pi,n—l An—2xn—2)
+x KS R.K° +xMO KRR WD) ,» +u., ,RUuXBgGBGIXy TX,0 Y IL,n-2 1 Al,n-2) Xn-2 in-2 iÜi n-2*

The restrictions in hand are

B= A AL+ BELs)Xok A (B
S,

X = Ay, +BK, 535,58,5,

Xn-2 7 Xn-2:*
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After using —K;,,x, ,
instead of optimal u,,, in dJ,, ,/du;,, and

substantial simplifications, we get the condition W, _,(P,, ) in the following

form:

Bi,Pi:n—l (Bl’QiAn—l — RilKlo,n—l)An—Z —

RiKio,n—Z -B;(0; +A 1O;Ar1 F Kl„on—lßilKlo,n—l + Ki„on—lßiKio,n—l YA, 5.

Repeating the same steps at other stages, we will obtain the relatively simple
matrix equation

Bi,(Si,k 7 Pt,kR; Klo,k VA =R.K s (3.3)

which determines the optimal F,,. The matrix S;, is calculated recursively
from the end of the process:

Sik =0; + AuS; Ay +K3RyKi + KRK;y, S, =0;,
(3.4)

E=n—-1.1 I=7 m

We can conclude that if R; >O, K;, >O, and B;S,A, #R,K;,_,, then there

exists a sequence of optimal weight matrices P, given by (3.4) and (3.3) such

that o/,,[du;, =0 atu,, =—K;,x;.
As expected, P is a constant matrix if n is sufficiently large.

4. ILLUSTRATIVE EXAMPLE

Let us take a scalar system consisting of three subsystems

Ki x +USx +U3k= axk =

YXk+l

n—l

k=o

where

ui =—K;x, +P’ (xk sl KKg)xk_l),
and

xy =3O, a=o.9, n=l6

Table1 gives the final wvalues of J,(aK;)—2x2 (calculated at

a={0.8;0.9;1.0;1.1;1.2}) for six different desired trajectories (determined by
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the values of K;, K;, K;, and x,). Optimal weights P, satisfy Egs. (3.3) and

(3.4).

The first subsystemcan actually manipulate the trajectory of the whole system
and the behaviour of other subsystems in a wide range only by carefully selected

weights in the equivalent representation of the same control law.

5. CONCLUDING REMARKS

It was shown that in the case of unidirectional interconnections between the

cost functions of one subsystem and of the other subsystems, the former

subsystem can cause significant loss in the final values of the local cost functions

of other subsystems. That subsystem is able to force other subsystems to choose

the control laws which establish the trajectory it desires for a grouped system.
Moreover, the desired trajectory can be enforced only through the properly
chosen equivalent representation of the (same) closed-loop control law of that

subsystem. It was also shown that in the case of one-step memory representations
the sequence of optimal weight matrices for any desired trajectory is determined

step by step from the end of the process by one matrix equation.
The equivalent representation of a control law can be inserted also into the

state equation. In this case the optimal weights are determined by the system of

recursive matrix equations [']. Implementation of equivalent representations in

the state equation means, in fact, direct intervention of the first subsystem if any

(unintentional) deviation from the desired trajectory takes place.
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kK| | K P) K3 Py J(AKS)— 2xg

0.2 0.05 7.24 0.1 7.04 949 910 897 909 946

0.2 0.05 6.69 0.15 6.26 810 744 723 743 803
0.2 0.05 6.25 0.2 5.53 707 620 592 619 697

0.2 0.15 5.76 0.1 6.00 591 567 558 567 590
0.2 0.15 5.32 0.15 5.32 508 466 453 466 505

0.2 0.15 4.92 0.2 4.61 446 391 374 391 442

Table 1. Results ofcalculations
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LINEAARSETE ALAMSÜSTEEMIDE KOGUMI JUHTIMINE
ÜHESAMMULISE MÄLUGA MÕJUTUSTE ABIL

Ingmar RANDVEE

On kisitletud lineaarsete seostatud alamsiisteemide kogumi juhtimist, kus iihe

(néiteks esimese) alamsiisteemi juhttoime soltub kaudselt kdigi teiste alamsiistee-

mide juhttoimetest. Kuna see alamsiisteem on teadlik iilejddnute reageeringutest,
siis vOib ta oma juhttoime valikuga mdjutada kogu siisteemi kéditumist soovitud

suunas. On vaadeldud kaudse juhtimise sellist varianti, kus esimene alamsiisteem

voib valida liitsiisteemi suvalise trajektoori ning sundida teisi sellest kinni

pidama, muutes vaid oma juhtimisseaduse esitust iilejdanute sihifunktsioonides.

On leitud algoritm juhtimisseaduse ekvivalentse esituse optimaalse variandi maa-

ramiseks.
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