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Abstract. We analyze the numerical solution of a class of weakly singular neutral functional

integro-differential equations and related Volterra integral equations with delay arguments by
collocation methods in spaces of piecewise polynomials. It is shown that many problems
(choice of collocation points, local superconvergence) remain open.
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1. INTRODUCTION

It is well known that “classical” numerical methods like linear multistep
methods and collocation methods on uniform meshes exhibit a drastic reduction

of their orders when applied to Volterra integral or integro-differential equations
whose kernels contain a weak (integrable) singularity (see, for example, [l7s]).
This order reduction occurs also in second-kind Fredholm integral equations with

weakly singular kernels ([®]; compare also references in [4]). This is due to the fact

that solutions corresponding to (nontrivial) smooth data have low regularity at the

endpoint(s) of the interval of integration.
During the last 15 years various ways of designing high-order methods for the

discretization of weakly singular functional equations of Volterra type have been

explored. Here, we mention the fractional linear multistep methods on uniform

meshes ([3]), the piecewise polynomial collocation methods on graded meshes

([*%s7] and their references), and the nonpolynomial spline collocation methods
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on uniform meshes ([3°]). The theory of fractional linear multistep methods for

weakly singular Volterra integral equations is now well understood. While this

is true also for piecewise polynomial collocation methods applied to second-kind

Volterra integral equations and Volterra integro-differential equations with weakly
singular kernels ([#°] and their references), the situation is far less satisfactory
for first-kind Volterra integral equations and certain Volterra functional integro-
differential equations (["*'°~l2]) where many questions remain to be answered.

In this survey paper we shall study the numerical solution of a class of neutral

functional integro-differential equations (NFIDE:),

d 0

% (aofc(t) + /_r al(s)z(t +s) ds) =f(t), o<t<T,

and the related delay Volterra integral equations,

t

apz(t) + /t—r ai(s —t)z(s)ds=F(t), o<t<T,

where typically a;(s) = (—s)™%, 0 < a < 1. The right-hand side of the integrated
form (1.2)of (1.1) is

t 0

F(t) = /0 f(s) d3+oos(o)+/_r a1(s)p(s) ds =: g(t) +a0z(0) +Da9.

On [—r, 0] the solution is subject to the initial condition z(s) = ¢(s) where ¢ is a

given (continuous) function. .
Functional integro-differential eguations of the form (1.1) arise, for example, in

the mathematical modelling of the elastic motions of an airfoil section with flap in

a 2-dimensional incompressible flow (see [l3—'6] for the underlying mathematical

theory and references on applications; compare also [l7]). When solving NFIDEs

of the form (1.1), the greatest challenge arises in the case where ag = 0 on which

we will focus in the following.
When designing high-order methods for the numerical solution of (1.1) and

(1.2), one has to deal with the following problems:
(i) The weakly singular nature of the kernel in the integral operator leads to

solutions with low regularity at the point ¢ = 0: for smooth f and ¢ the analytical
solution z behaves like Ct!~ (if ag # 0), or Ct® (if ag = 0) att = 0.

(ii) The constant (finite) delay » > 0 leads in general to low regularity at the

points £, = pr (u = 1,2,...): if ap = 0, then, typically, one has |z(t)| <

C(t—¢,)*att =¢F.
(iii) If ag = 0, Eq. (1.2) is a Volterra integral equation of the first kind with

constant delay r. The collocation solution approximating = will converge uniformly
to only for certain choices of the collocation points.

In Section 2 we shall describe the framework for the piecewise collocation

methods for the delay integral equation (1.2). Section 3 begins with a brief

(1.1)

(1.2)

(1.3)
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review of convergence results in the case where ag # 0; here, the theory is now

essentially complete. We then turn to the more difficult case ag = 0: while there

are convergence results for collocation by piecewise constant functions, the general
theory remains to be established. The final Section 4 deals with additional questions
and future work: for example, should one solve (1.1) directly or indirectly, using
(1.2)?

2. COLLOCATION METHODS FOR DELAY VOLTERRA INTEGRAL

EQUATIONS

We begin by describing the framework for the piecewise polynomialcollocation

method which underlies the discretization for the delay integral equation (1.2). Set

E» = pr (u € Np) and assume without loss of generality that T = €x4l for

some M > 1. In analogy to delay differential equations (see ['B]), we shall refer

to the points {£, } as primary discontinuities of the solution to (1.2) (or (1.1)). Let

I, = (§u,€u+l] (v = 0,1,..., M), and denote by HS\‘,‘) the mesh for the closed

interval I, given by the points

tS{‘) := Ey + (n/N)ir (n=0,1,..., N),

where the grading exponent ¢ satisfies ¢ > 1; it will depend on « and be governed
by the degree of regularity of the solution at ¢t = 5;.

An approximation u to the solution of the Volterra integral equation (1.2) on the

interval I, will be sought in the linear space S,(,:_l{(H%‘)) of discontinuous (real)
piecewise polynomials of degree not exceeding m — 1 > 0,

SSHMW) = fu=u®: ulp€mmy (n=0,1,...,N = 1)},

whose dimension is N'm. This collocation solution u € S,(n—jš(HSf;) ) is to satisfy
the integral eguation on a suitable set X,(\’,‘) C I, of collocation points, namely,

Xl(\’}‘) = ftsl").*.c,ih'(zu): o<Cl<...<Cmsl(n=o,l3--°aN—l)];

here, hfi,“V= tf{:zl - t,({‘). This set is completely determinedby the given mesh Hg\’,‘)
and the prescribed collocation parameters {c;}.

A commonly wused local representation of the collocation solution

u € 5,(,:_1% (Hgf;)) is given by

w(t™ + sh(¥)
B

shi)) = 3 LSU
2

njr S€E (0, I],

where U,(,’,‘j) = u(tš„” )
+ cjh,({‘ )); the L;(s) denote the Lagrange fundamental

polynomials with respect to the set {c;}.

(2.1)

(22)

(2.3)



93

Detailed background information on the discretization of various types of

differential and integral equations by spline collocation methods, as well as on the

use of graded meshes for weakly singular Volterra equations, may be found, for

example, in [l>7].
On I, the collocation solution u = u, € S,šn——lš(l'lgf;) ) is determined from the

collocation eguation

t

avult) + / ar(s—tyu(s) ds = F(8), teX®,
t—r

with F'(t) given by (1.3) and with values u(s) = ¢(s) if s € [—r,o]. This equation
may be written as

t

agu(t) + / aj(s-t)u(s)ds = Gu(t;u), te X}(\’,‘),
Ep

where
€u

Gultiu) = F(f) - /t
—

a1(8 — ü)u(s) ds.

For later reference (compare Section 3.2) we write down explicitly the collocation

equation for the case ag = 0 in (1.2); it reads

t

/ ai(s —t)u(s) ds = Gu(t;u), te€ XI(#),
Eu

with
» fEu

Gyult;u) := g(t) + Daf — /t_ al(s — t)u(s) ds.

Using the local representation (2.3) for the collocation solution

u € S,(n__lz(Hg\’,‘)), the collocation method for (1.2) is described by the equations
(2.9) and (2.10) below: for given pu=0,1,..., M,

determine the solution

U = (U,(l’fl), ~ UM)T € R™ of the linear system

n n / (( )
]

L ž al „'n (S c't))LJ(S) ds Ln( )

1 n n n
+

**3 ),

where

(k)
ft

õ = ez% /t(„) al(s— 1) — cihM)u(s) ds.
= t

Then,

m

u(t) + 5h9) = ZLi(S)U,(If?, s€ (o,l] (n=0,1,...,N=1).
=1

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)
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If aa £ 0 (we will assume, for simplicity, that ag = 1), then the so-called

iterated collocation solution u;; corresponding to the collocation solution u on I,
is also of interest; it is given by

t

uig(t) := Gu(t;u) -/£ ai(s—t)u(s) ds, tel,

(see also [>'9]). We shall return to its importance in Section 3.1.

It is easy to verify that each of the linear systems (2.9) has a unique solution

Uf(,” )
e R™: if ap = 1, this holds (by the contraction mapping principle) whenever

hg{” ) is sufficiently small; for ag = 0 the statement is true for any hg,“ ) >0 (recall
that a; = (—s)7%).

3. CONVERGENCE RESULTS FOR WEAKLY SINGULAR DELAY

VOLTERRA INTEGRAL EQUATIONS

3.1. Thecase ag =1

Foreach u = 0,1,..., M, Eq. (2.5) represents a collocation equation for the

second-kind Volterra integral equation

z(t) +/; ail(s —t)z(s) ds = Gu(t;z), tE€ Iy,

where, according to (2.6) and (1.3), G, is given by

Gu(t;z) := g(t) + z(0") + Daf — /:: ai(s — t)z(s) ds
.

If f € C%lO,T] (implying F € C9[o,T] in (1.2)), the regularity of G, in

(3.1) on I, is described by

GP() <Ct-&)' (I<k<4d).

Hence, f0ru=0,1,...,M,

l2®@)| <Ot -€)%* on I,

(see, for example, [2] or [*]). Thus, we obtain results on the (optimal) order

of (uniform) convergence of the collocation solution u € .S',(n—„lš(Hgf;)) on each

subinterval 7 (1 = 0,1,..., M) by adapting the arguments used in [*] and [2°].
We summarize these results in the following theorem but leave the details of its

(2.11)

3.1)

(3.2)
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Gylt;z) = 9() + Dad — /t

"

(s~ t)a(s) ds (3.4)
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proof to thereader. Recall that the graded meshes Hg\’,‘) characterized by the grading
exponent ¢ > 1 were introduced in (2.1).

Theorem 3.1. Let ag = 1 in (1.2), and assume that the given data satisfy ¢ €

C4-r,o], f € C*lO,T) (d > I),and a1(s) = (=B)™@ (0 < & < 1). If
u € S,(n—_lz (Hg{,‘)) (m > 1; 0 < p < M) denotes the collocation solution to (1.2)
(¢f. (2.9), (2.10)), then, for any set {c;} witho < cy < c 3 < ... < Cm < 1 and

u=0,1,...M:
(1)

hl-a if g=l,
sup |z(t) — u(t)| <C{ hal=e) —if g€(ll,m/(1-0a)),
tEIu h™ if g>m/(1-a),

provided that d > m. Here, we have set h := r/N.
(ii) If the {c;} are the m Gauss points in (0,1) and if d > m + 1, we obtain

sup |z(t) — uit(t)] < CA™H'7%
if ¢ >m/(1 -a),

tel,

where the iterated collocation solution u;; corresponding to u is defined in (2.11).
This holds whenever d > m + 1.

Remark. Using the approach of [], it is also possible to derive convergenceresults

for LP norms. Moreover, convergence results for (1.2) with ap # 0 and kernel

a 1 = log(—s) can be obtained, too, again by suitably adapting the analysis in [*] and

[?°]. Thus, the theory of piecewise polynomial collocation for (1.2) with ag # 0 is

now essentially complete (as for classical second-kind Volterra integral equations,
the analysis of numerical stability is still largely open). This situation is in stark

contrast to that for (1.2) with ap = 0 which will be discussed in the following
section.

3.2. The case ag = 0

Recall that the first-kind Volterra integral equation corresponding to (1.2) with

a = 0 is

t

/E al(s = t)z(s) ds = Gu(tsz), tely O<p<M),

with

83
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Since, by (1.3),

GO(O; -'B) = GO(O; Ö) = 9(0) + Da¢p — Do =O,

(3.3) has a (unique) continuous solution z on [£o, £l] = [O, ], whenever ¢ and f are

continuous on [—7, 0] and [O, 7], respectively.

Using arguments from [2!], it can be shown that

Gu(€u;z) = 9(€y) + Dadp - DPz=o (u=1,...,M),

where we have set

(W) g .= /Efl ai(s —€u)z(s) ds.Dy .=

L

Hence, for 1 < p < M, the corresponding weakly singular first-kind Volterra

integral equation (3.3) has a continuous solution on I, := [Eu; €u+l]-
According to the inversion formula for (3.3),

1 d t

z(t) =

d (/&„ (t — 8)* 'Gu(s; ) ds)
1

= Yo ((t = fu)a_lGu(gu;m) + /E: (= s)a_lG:u(s;m) déj),
where G,(§,;2) = 0 and v, := I'(a)T'(1 —a) = 7/ sin(ar), the regularity ofz
at the primary discontinuity points £,, depends on the regularity of G,(t;z) on I,
(compare also [>?2]). It is easy to verify (recall (3.4)) that for t € 1,,,

l <Clt-E)**, k2T (u=01.... M),

whenever ¢ and f are sufficiently smooth.

It is well known that collocation solutions to regular first-kind Volterra integral

equations in (discontinuous or continuous) piecewise polynomial spaces do not

converge uniformly to the exact solution ofthe equation for everychoice of the {c;}
(see [>7] and, especially, [?%]): for example, in S,(n——lš(H ~) uniform convergence
holds forany >1 ifand only if the condition

H(l — Ci)/Ci S 1

i=]

is satisfied. A similar result exists for spaces of continuous piecewise polynomials
()}

For first-kind Volterra integral equations with weakly singular kernels (and
hence for (1.2) with ag = 0) a result of the above type is not yet known, except

when m = 1 (see [>1%11L17:24]) If (1.2) (ap = 0) is solved in S,(,L—_l%(HS\’,‘)) with

(3.5)

(3.6)
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m = 1 and if ¢; = 1, then uniform convergence of u to z on I, can be proved

by combining the analysis of [2°] (and [%], Section 6.4). More generally, uniform

convergence is obtained for all ¢; < 1 satisfying

1
1/(1-a)

c 2 cj(a) := 5 (a(1 —2)Ya)

(see [']). Note that cj(0) = 3 and ¢ci(a) < $ foro < a < 1, with cž(a)
strictly monotone decreasing. A necessary and sufficient condition analogous to

(3.6) (which, for m = 1, reduces to c; > %) remains to be found.

Instead of explicitly stating theseresults when m = 1 we present a more general
theorem indicating that for feasible choices of the collocation parameters (c;) with

o<ec <... <CmC 1, order results analogous to those of Theorem 3.1 hold.

Theorem 3.2. Let ag = 0 in (1.2), and assume that the givenfunctions satisfy p €

C™[-r,o], f € C™[o,T], and a1(s) = (—s)™® (0 < a < 1). Suppose that the

collocation parameters {c;} are such that the corresponding collocation solution

u € S,(n__lg(l'lg\’,‘) ) (¢f. (2.9), (2.10)) converges uniformly on I, := [£,,,&,41] to the

solution x of (3.3). Then, for u =0,1,..., M,

h* — f g=l,
sup|r(t)-u(8)]<CX ht — jf g€(l,m/a],
tel, h o f 9>m/a,

where we have set h :=r/N.

Proof. 1t is sufficient to establish theorder results on the initial interval Iy: the

collocation error e = e, := x —uon I, (u > 1) satisfies

t

/ ai(s - t)e,(s) ds = E(t;eu—l), tE€ X](\’,‘),
&

where, by (3.4), we have set

§u
E(t;ey_l)= - /t—r ai(s —t)e,—l(s) ds.

If, on 1,,_1, we have

leu-11100 = sup le(t)] < ChP (p>o)
tel,—

then

£
-

[B(t;ep-1)] < Ilea-illoo /” ar(s-b)ds <CIo)W, te I
t—r

The proof of the attainable order on I, follows by a straightforward adaptation
of the proof for a result in [l7] (Theorem 3.2).



98

4. DIRECT VERSUS INDIRECT COLLOCATION

We conclude by pointing to some possible future work in the numerical

analysis and computational solution of the weakly singular NFIDE (1.1) and

the equivalent delay Volterra equation (1.2). While the piecewise polynomial
collocation method described in this paper is a very powerful and accurate

tool for solving such equations, especially when used in an adaptive way, it is

quite expensive (reminiscent of Runge—Kutta methods for ordinary differential

equations). A very promising but yet to be studied alternative is given by the

fractional linearmultistep methods ofLubich [®]: these methods take into account,

through theircoefficients and a special starting procedure (which may be interpreted
as collocation in acertain nonpolynomial spline space; see [2]), the weakly singular
nature ofthe kernel a; and thus yield high-order approximations on uniform meshes.

So far, all the methods for computing the solutions of weakly singular NFIDEs

ofthe form (1.1) were based on some equivalent reformulation of the given problem.
For example, in the recent paper ['?] the semigroup framework ([}3~ls]; also [%!])
underlying the functional equation (1.1) with ap = 0 was used to rewrite the

problem as a linear hyperbolic partial differential equation with nonlocal boundary
conditions. However, the low regularity of the analytical solution at the points
(Eu : u 2 0} leads to low-order numerical approximations if the discretization
of the partial differential equation is based on uniform meshes. The analysis and

computational implementation of the method for this equivalent initial-boundary-
value problem on graded meshes remain to be explored.

We also mention the work in [°]: here, the given weakly singular NFIDE is
rewritten as a weakly singular second-kind Volterra integral equation which is then

solved by collocation in certain nonpolynomial spline spaces (see also [®]). Here,
it would be of interest to study the question of possible (local) superconvergence of

iterated collocation solutions in such spaces.

Are there “direct” (collocation) methods for numerically solving (1.1) which

possess the local superconvergence property at the mesh points Hg(,‘)? In other

words, are there collocation spaces and corresponding sets of collocation points
such that the collocation solution u to (1.1) satisfies

sup |z(t) — u(t)] < Ch?" (0 <p < M),
tel,

with p* > p, where p denotes the attainable order of uniform convergence on I,
of u to z? The answer to this question is of particular interest in the case a 9 = 0,
since ([%23]) local superconvergence ofpiecewise polynomial solutions to first-kind

Volterra integral equations is not possible at the mesh points.
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HÄLBIVA ARGUMENDIGA ESIMEST LIIKI NÕRGALT
SINGULAARSETE VOLTERRA INTEGRAALVÕRRANDITE

NUMBRILINE LAHENDAMINE

Hermann BRUNNER

On vaadeldud teatud neutraalsete diferentsiaal-integraalvorrandite klassi

kuuluvate iilesannete numbrilist lahendamist. Tiikiti poliinomiaalseid kollokat-

sioonimeetodeid on rakendatud otse vorrandile ja teise vOimalusena ekvivalent-

sele, hilbiva argumendiga Volterra tiilipi integraalvorrandile. On uuritud meetodi

koonduvust jaseesuguste vorrandite ligikaudse lahendamisega seotud probleeme.
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