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Abstract. We present a periodization method for three different types of integral equations
on open arcs. The periodization is based on the cosine transform. Applying the cosine

transform, we obtain an equivalent periodic integral equation of certain parity, and the

theory of pseudodifferential equations can be applied to this new formulation. Our results

cover logarithmic singular integral equations, Cauchy singular integral equations, as well as

hypersingular integral equations.
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1. INTRODUCTION

In many applications the boundary integral method leads to the solution

of an integral equation on an open arc (when two-dimensional phenomena are

considered). In the basic examples the arising integral equations can be covered

by the following types: logarithmic singular integral equations, Cauchy singular
integral equations, and hypersingular integral equations. For the parametrized
forms of the model equations, see (1)—(3). Equations of these types come from

various fields such as fracture mechanics, aerodynamics, electromagnetism, and

elasticity, for example. Starting from the parametrized form, we first apply the

cosine transformand obtain for the original problem an equivalent formulation as a

periodic problem of certain parity. It is well known that the cosine transform has

some obvious advantages. In particular, in the case of logarithmic singular and

Cauchy singular equations on an open arc I', the solution may have a singularity
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of order O(|z — ¢|~'/2) at the endpoint c of I even when the right-hand term of

the equation is smooth. The cosine transform removes this singularity. Moreover,
for smooth b(z,y) and g(z) (see (1)—(3)), also the coefficients and the right-hand
term of the periodized problem are smooth; consequently, so is the solution of the

periodized problem. Thus, the periodized forms of problems (1)—(3) are rather

convenient for an approximate solution; see [!] for details and literature.

2. PARAMETRIZED EQUATION AND PERIODIZATION

In our analysis we start from an integral equation which is given on the open
interval I = (0, 1) and apply the cosine transform to obtain a moreconvenient form

of the equation which allows us to apply an approach for fast solution based on [?],
for example. For the parametrized equations, we assume one of the following three

types on J:

1

(Brv)(z) == /0 (bo(z, ) log|z — yl + b 1(z, 1))v(w) dy = g(z),

(Bcv)(w) =

/1 (bo(s,y) + bl (:L‘, y) logla: — yl + b2(:1:, y))v(y) dy = g(m)',
0 r—Yy

(Brv)(z) :=

r
bo(:]?,y)

. x > — ola).A (I:L.
— y|2

+bl(s,y) loglx yl +b2( ’y)) (y) dy g( )

Here we assume that by € C*®°(lxl), k =0,1,2, and by(z,z) # 0, z € I. The

first integrals in (2) and (3) are understood in the sense of the principal value
and the finite-part of Hadamard, respectively. We introduce the weighted spaces

Li(D), Lf/a(I), and H)(I) of functions having a finite norm |jv|, =

1 1/2 1 1/2

(Jo o@v@)Pdy)'"?, o(y) = y/2(1 - 9)'72, lollise = (fy ssslo(w)Pdy) ",

and |lullie = (llvl2 + |['2)"/?, respectively. We define also HL(I) =

{ve H(I)|v(0) =v(1) =o} with the norm induced from H}(I). The

following mapping properties of By, Bc, and By can be obtained from our

considerations:

By, : L2(I) — HX(I) is Fredholm operator of index 0,

Bc : LE(I) — L%(I) is Fredholm operator of index 1,

Be :L%/U(I )— L?/„(I ) is Fredholm operator of index -1,

By : HX(I) = L%(I) isFredholm operator of index 0.

(1)

(2)

(3)
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Example 2.1. Cauchy singular integral equations. The singular integral equation

!
T/0 (box(_, Z) + bi(z,y) log|lz —y| + bg(x,y))u(y)dy = g(z)

appears in several applications concerning flow problems around airfoils. In

particular, with the constant function by(z,y) = by # 0 and by = by = 0, we

have the basic airfoil equation. However, Eq. (a) is not yet uniquely solvable in

these examples, but the uniqueness is assured by imposing an additional condition
of the form

1

v :=/ v(y)dy =~
0

which has the interpretation that the circulation around the profile is given. So,
instead of (a) we have to consider the system

(Bev)(z) = g(z), ze€l;

Qv i= 7.

Having an integral equation on I = (0, 1), we apply the cosine transform

z =z(t) = £(1 — cos2mt), t€ (0,3).

After this transform we obtain a new integral equation for the unknown function

u and the right-hand side f on (0, 5). The new kernel is defined in a natural way

already on the symmetric interval (—-š—, %) and, moreover, has a natural 1-biperiodic
extension to R?. The final form of the equation is obtained by extending the

functions u and f as even or odd functions to R.

2.1. Equations with a logarithmic singular kernel

Consider the equations of the general form (1). Applying the transform (4),

extending z(t) by the formula (4) for all t € R, and writing u(t) = v(z(t))|z' ()],
f(t) = g(z(t)), t € R, we find that (1) is equivalent to the equation fort € R

1/2
(Aru)(t) := /_

o
(@Rt=)+rltNul)ds= £,

where u and f are 1-periodic, even on R; ao(t, s) = bo(z(t), z(s)) and al(t, s) =

šbl (z(t), z(s)) are smooth 1-biperiodic even functions; and k¢(t) = log|sin 7t|.

(a)

(b)

(c)

(4)

)



Ascu +w = f. (9)
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2.2. Cauchy singular equations

Here we consider equations of the general form (2) and introduce two different

periodizations. Let first u(t), t € R, be the 1-periodic even extension of the

function u(t) = v(z(t))z’'(t), t € (0, 3). Then, putting f(t) = z'(t)g(z(t)), we

see due to parity properties that (2) is equivalent to

(Arcu)(t) ==

1/2

/_l/2 (ao(t, 8)ko(t —8) + a11(t, s)kl(t —s) + ay2(t, s))u(s)ds = f(t),

where u is an even and f is an odd 1-periodic function in R. Moreover,

ko(t) = cot wt, K1(t) = log|sinzt|, ao(t, s) = wbo(z(t), z(s)),
a11(t,s) = b (z(t), z(s))z' (t), al2(t,s) = 3ba(z(t), 2(s))2' (t).

In the applications connected to Example 2.1 we have to take the additional

condition (b) into account. By the cosine transform we obtain

1/2
v = Du := %[l/2 u(s)ds = 7.

Define the operator A;cX® by (Alcx®)u = [Alcu, Pu]. Now the system of Egs.
(6a) and (6¢) is given by a single equation: for given [f, ] find the function u such

that

(Aicx®)u = [f,7].

In the other periodization of (2) the function u(t) is chosen to be the odd

1-periodic extension of v(z(t)), 0 < t < 3, and f(t) = g(z(t)), t € R, is even.

Proceeding in a similar manner as above, we obtain that (2) is equivalent to

1/2

(A2cu)(t) = /_l/2 (ao(t, s)ko(t —s)+ a 1(t, s)kl(t —8) + aza(t, s))u(s)ds

— f(t), teR

Here the functions ag(t, s), ko(t), and k 1 (t) are the same as for A;¢ but

a 1 (t,B) = by ((t),z(s))z'(s), al(t,s) = 3ba(z(t),z(s))z'(s).

In the case of the second formulation we do not use any additional condition for the

uniqueness, but we inserta new parameter w in order to obtain a uniquely solvable

equation for all right-hand sides f. Thus we shall consider the solution of the

equation

(6a)

(6b)

(6¢)

(7)

(8)



|AFR, ()| < ckll|*P %, 041 €Z, keNy=NU{o}, p=0,1,...,q. (14)
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2.3. Hypersingular equations

Consider Eq. (3). Define u as the periodic odd extension of v(z(¢)) and put
f(t) = z'(t)g(z(t)). Applying the cosine transform and multiplying the resulting
equation by z’(t), one can see that (3) is equivalent to

1/2

(Agu)(t) = /—l/2 (ao(t, s)ko(t —s) + al(t, s)kl(t —s) + aalt, s))u(s)ds

- f(t)’ teR

where ko(t) = (sin®7t)™l, k1(t) = log|sinmt|, ao(t,s) = w2bo(z(t), z(s)),
ai(t,s) = bi(z(t),z(s))z'(t)z'(s), az2(t,s) = zba(@(t),z(s))e’()2’ (s).

Remark 2.1. The cosine substitution was introduced by Multhopp in [®] for the

airfoil equation of Prandtl. For Symm’s equation it was applied by Yan and Sloan

[*] and for the basic hypersingular integral equation on an interval by Biihring [°].

3. ANALYSIS OF THE PERIODIC PROBLEM

We have transformed all Egs. (1)—(3) to the form

1/2 :

/——l/2 (ao(t, s)ko(t —s) + al(t, s)xkl(t —s) + aslt, s))u(s)ds = f(t),

where u and f are 1-periodic and a, € CT (R?) (the space of all 1-biperiodic
smooth functions). Moreover, there holds ay(t,t) # 0, ¢ € R. Now we assume

the general form used in [®] and consider the equation

Au =T,

where A = þ= 3 A
2

p
and

1/2

(Apu)(t) = /_
|

Pat — )at s)u(s)ds, a € O (R2

Furthermore, we assume that x,, 0 < p < g, are 1-periodic distributions on R such

that the Fourier coefficients satisfy fora o € R,

(10)

(11)

(12)

(13)
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Here A is the difference operator, A&,(l) = Rp(l+1) — &p(I). Due to (13), (14),

A, € Op>_“? ie. Apisaperiodic pseudodifferential operator of order&—p. On

the main part A of the operator .A we impose the following condition for a positive
number coo:

|Ro(1)| > cooll]*, 0 # 1 € Z,

ao(t, t) # 0, teR

It follows from (13)—(15) that A is an elliptic periodic pseudodifferential
operator of order a (see []) and A € L(H*, H*~®) for any A € R. Here HA
is the Sobolev space of 1-periodic distributions u with the norm

1/2 |
l[ullx = (Z[mw(l, |k|)]2"|a(k)|2) , (k) = (u,e,

keZ

Moreover, A : H* — H*~“ is Fredholm operator of index zero for any A € R,
and N(A) = {u € H*| Au = 0} C C§°(R) is independent of . Therefore, if

Au =O, u € Ci°(R)=u=O,

then A : HY > HY-%, X\ € R, is an isomorphism. We introduce the Sobolev

spaces H 2 and H of the even and odd functions

HD = {u € HY | u(—t ) == u(t) » H)=(u € HY | u(—t) = —u(t)}

The space H? is represented as the direct sum HY = H)+ H,. Let P, : H* — H)
and P, : H* — H) be the corresponding projections. For u € H?*, we write

ue = Pou, u, = P,u. We say that the operator A is an even operator if A does not

change the parity of the function, i.e., there holds P, Aue = Au., P, Au, = Au,.
The operator A is an odd operator if A changes the parity, i.e., we have P, Au, =

Au,, P,Au, = Au,. Consider solution of Eq. (12). If Ais even, Eq. (12) is

equivalent to the system

Aue = fea Ay, = Fo:

Similarly, if A is odd, Eq. (12) is equivalent to the system

Auy, =fe Aue. = Fo:

In our applications, which arise from applying the cosine transform to an equation
on an open arc, we do not use the whole system (17) or (18) but just one or another

of the equations appearing in these systems.

(15a)

(15b)

(16)

(17)

(18)
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Now we characterize the parity properties of an integral operator through its

kernel. Consider a general term A, = A in the representation of .A defined by

/2

(Au)(t) = /_ 11/2k(t — s)alt, s)u(s)ds

a € CS(R?), |A*RD)| <i* (o#l€Z, keN).

We introduce the conditions

K is even, i.e. k(—]) = &(l), | € Z,

Kk is odd, i.e. k(1) = —&(l), | € Z,

a is even, i.e. a(—t,—s) = a(t,s), t,s € R,

a is odd, i.e. a(—t,—s) = —a(t,s), t,s € R

Observe that (23) is equivalent to the condition a(—k,—j) = a(k,j), k,j € Z,
and (24) is equivalent to a(—k, —j) = —al(k,j), k,j € Z.

Lemma 3.1.

(i) A is even if conditions {(21),(23)} or {(22),(24)} are fulfilled.
(ii) A is odd ifconditions {(21),(24)} or {(22),(23)} are fulfilled.

We introduce a linear functional ®by -

1/2
—

Du = /—l/2 u(s)p(s)ds,

where ¢ € C°(R) is even. Furthermore, we define the operators Ax® and A+ &

such that

(Ax®)u = [Au, ®u), u€ H),

(A+®)[u,w] = Au+w¢, [u,w] € H}xC.

Lemma 3.2. In addition to (20), assume that a(t,t) # 0, t € R, and

&()] >&)>coll]* (o#l€Z), co>o.

Then, for any X\ € R, the following holds true:

(i) Under conditions (21), (23), the operators A € L(H;\,H;“a) and A €

L(H), H)~%) are Fredholm operators of index 0,

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)



86

(i1 Under conditions (22), (23), the operators A € E(Hg\, Hg\“’) and A €

L(H), H)~%) are Fredholm operators of index 1 and —l, respectively. We have

Ax® € L(H),H)*xC) and A+ ® € L(H) xC, H}~*), moreover, these are

Fredholm operators of index 0.

Now we analyse the solvability of the periodic problem for even and odd

operators. Let CTO(R) and CTS(R) be the space of all even, respectively, odd

functions in C{°(R). We require on the main part Ay the following properties:

ko(—1) = Ro(l), I #0; ao(—t,—s) = ao(t,s); ao(t,t) #0

Moreover, we impose the conditions

u € C(R), Au=o=u=o,

u € CB(R), Au=o >u=o.

Theorem 3.1. Let A\ € R be given. Assume that A is an even operator with

the conditions (13)—(15) and (28). If (29a) is valid, then A: H} — H}~°
is an isomorphism. Moreover, if (29b) is valid, then A : Hä* — Hš*"a is an

isomorphism.

Let us consider the solvability of Egs. (5) and (10). For these we set

v € Li(I), Bly=o=v=O,

v € HX(I), Byv=o=v=O.

Lemma 3.3. The following assertions are valid:

(i) The mapping vw— u with u(t) =v(z(t)), t€ R, defines a linear

isomorphismbetween L?/ »(T) and H9, as well as between HL(T) and H.
(ii) The mapping v — w with u(t) = v(z(t))signt, |t| < ž, extended to a

1-periodic function, defines a linear isomorphism betweenL% 10(I) and H?, as well

as between HX(I) and H}.
(iii) The mapping v — u with u(t) = v(z(t))z'(t), t € R, defines a linear

isomorphism between L 2 (I) and HY.
(iv) The mapping v — u with u(t) = v(z(t))|z'(t)|, t € R, defines a linear

isomorphism between L2(I) and H.

(28)

(29a)

(29b)

(30a)

(30b)
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'l:’heorem 3.2. Assume (30). Then the operators By, : L%(I) — HL(I), By :
Pfž;]) š Li(l)and AL, :H) — H)M', Ap: H) — H)! are isomorphic for
a € K.

Now we consider the case of an odd operator A together with the operators
Ax ® and A+®. We require on the main part A the properties

ko(—l) = —Ro(l), 0 #1 € Z,

aO(_t’ —S) — aO(tvs)a t,S € Ra

ap(t,t) #O, t € R

Moreover, for the linear functional 9 : HA — C, we additionally impose

/2
—

Õ1 = /—l/2 #(s)ds # 0.

We consider the solution of the equation

A—a CuEHé\ :Au=f, Du=7y, fe H)™®y€

and assume uniqueness for the homogeneous problem in the form

u€CRMR), Au=o, du=o=u=o.

Theorem 3.3. Assume (13)—(15), (25), (31), (32), and (34).Then, for any \ € R,
the operator Ax® : H) — H)~®xC is an isomorphism.

We apply this result to the solution of the Cauchy singular integral equations on

the interval I in the case where the periodization is carried out by the first method

described in Section 2.2. The corresponding operator A is given in (6a). We set

the condition

v € L(I), Bcv=O, ;v =o=v=O.

Theorem 3.4. Assume (35) and define du = % f_l{% u(s)ds. Then the mappings

Bex®p i L2(I) > L2(I) xC and Aic xD : H) — H_) x C are isomorphicfor
all A € R.

(31a)

(31b)

(31c)

(32)

(33)

(34)

(35)
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Now we describe how the second periodization in Section 2.2 can be utilized for

the solution of Cauchy singular equations on an interval. This leads to a problem of

the general form

wueH, weC: Au+wp=f, f€HX.

Problem (36) can be viewed as a “dual” problem of (33). We put the condition

Au+wp=o,u€CHß), wveC=>u=o, w=o,

and have a solvability result for (36) given by the operator A + ® as follows.

Theorem 3.5. Assume (13)—(15), (31), (32), and (37). Then, for any X € R, the

operator A+ ® : H) xC — H}~? is an isomorphism.

For the Cauchy singular operator we impose the condition

vELf/„(I),wE(C, Bcv+w®r=o=2v=o,w=o.

Theorem 3.6. Assume (38). Then B¢ +®;: L%/U(I) xC— L%/„(I) is an

isomorphism and Asc + ® : H) x C — H) is an isomorphism for all \ € R.

For given A € L(H*, H*~®) we have the adjoint A* € L(H** H™*)
defined by

(Au,v) = (u, A*),
ue H* ve H*

We introduce the duality pairing

(['U„ LU], [’U,#]) — (ua 'U) + woüa ['U„CU] €HÄX C, [’U,[l,] € H—Ä x C

Now we have

((A* x ®)u, [v,w]) = (u, (A + ®)[v,w]), u€ H*?, ve H), weC,

and therefore A + ® = (A* x ®)*. By the general results for Fredholm operators
we have:

Theorem3.7. Assume that (13)—(15) and (28) are valid. Then the operator A + ® :
H) xC — HX)%is an isomorphismfor all A\ € Rifand only if A* x ® : H) -
H)}~*xC is an isomorphism for all \ € R.

(36)

(37)

(38)

(39)
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As an application of Theorem 3.7 we recall the second periodization method

described for Cauchy singular equations in Section 2.2. We consider the equation

wu€H),weC:Aycu+iw=f, feH.

Define

*

! —b—
y

T 3T Y]

Beo)(@) = [ (22 45y, 0)ogle ~ 31+ 50 )) o)y

We impose the condition

Btv=o,®w=o, velLi(l) = v=o.

Theorem 3.8. Assume (41). Then Ayc + % : Hš x C — HŽ is an isomorphism
forall AER
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LAHTISEL KAAREL ANTUD INTEGRAALVÕRRANDITE
PERIODISEERIMINE

Jukka SARANEN Gennadi VAINIKKO

On esitatud kolme tiilipi integraalvorrandite periodiseerimine koosinus-

transformatsiooni abil. Periodiseeritud vorrandi tuum ja vabaliige on 1-perioodised
siledad funktsioonid. Seesuguste vorrandite kisitlusel on voimalik kasutada perioo-
diliste pseudodiferentsiaalvorrandite teooriat.

(40)

(41)
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