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Abstract. For some classes of equations of the second kind in Hilbert space the exact power
order ofcomplexity of the approximate solution is found. Itis established that the optimal power
order is realized by iterative methods which use the Galerkin information with indexes from the

hyperbolic crosses.
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Let {e;}s2, be some orthonormal basis in a Hilbert space X, and let P, be the

orthogonal projector on span{ey, e5,...,e,}, i.e. Pop = Y., ei(ei, @), where

(+,) is an inner product in X. We denote by X", r = 1,2,..., a linear subspace
of X such that forany m = 1,2,..., |I — Pgllxr-x < Brm™", where I

is the identity operator and the constant 8, > 1 is independent of m, and for all

peX", |eolx < llellx
Moreover, let £(X, X") be the space of linear and continuous operators H

acting from X into X" with usual norm. We denote by V3,4 the class of uniquely
solvable equations of the second kind

z=Hz+f,

whereHe H C L(X,X")andf€ & C X".

We shall investigate the complexity of finding an approximate solution to

Eq. (1) for some classes U3,¢- The formulation of the problem and terminology
are borrowed from [l+2].

(1)
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Let T'={d;}"; be a collection of continuous functionals d;, of which

61,02, ..., 0, are defined on the set H and 6,41, . . .

,
O On the set @, card(T") = m,

Tm = {T: card(T) < M}.

To each Eq. (1) of U7,4we assign the numerical vector

T(H,f) = (81(H), 62(H), ..., 8u(H), 8,31(1), - 6m(F))
which we call the information about Eq. (1); the collection of functionals 7" will be

called a method of specifying information.

By the algorithm A for approximate solving of equations from U 7 5 we

mean the operator assigning an element A(T', H, f) € X to information (2) as an

approximate solution of Eq. (1). We assume that any algorithm Ais connected

with the parametric set of elements

Fy = {‘p&,fz,...,fn : V1,62, kR €X, fi € Rl) 1= I’2a s In}

and A(T,H, f) =v¢ £,,..60 € Fa, where each value &, i=1,2,...,n,
depends on the components of the vector T'(H, f). For calculation of these values

it is required to execute only a finite number of arithmetic operations (AOs) on

61(H),02(H),...,0,(H),0u41(f),-..,0m(f). We denote by An(T') the set of

algorithms A in which it is required to perform no more than N AOs on the

components of the vector (2) to determine A(T,H, f) € F4. For considering
algorithms from A (7') it is natural to suppose that 7" € Tys at M < N. Otherwise,
no algorithm of A5 can utilize all information represented by the components of the

vector (2). The error of the algorithm A on the class ‘I"TH,<I> is defined as

e(\II;{,‘I” A) — z=S}111zI?0-f HZ — A(T7 H, f)”X
HEH,fED

The quantity

En(Vye) = inf
A Hlf(T)e(ql;-l,ÖaA)

MecM AEAN

is the minimal error, which we are able to guarantee on the class V73,4 after the

execution of N AOs on the informational functionals §;. Thus, the quantity Ey
characterizes the complexity of approximate solving of equations from W73,.

Let ITx be the set of all continuous maps 7 from X" into the /N-dimensional

Euclidean spaceRy. Moreover, let 7! o () be an inverse image of the element

m(p) € Ry, ¢ € X". The quantity

Xi X)= — inf su sup llf— gllxAn(Xa: X) rEIIN wéšf)ä f.9€m=lom(p)

(2)
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is called [?] a pretabulated width of the set

Xa={p:o€X", |olx <d}.

The next lemma ascertains a connection between Ey (¥}, ;) and the pretabulated
width Ay(X7 X).

Lemma 1 [*]. Let H be the following set of linear operators:

H=H={H:HeL(X,X"), |I-HYxsx <, |Hlxsx <™},

v = (70, 1)-

Then
1

En(Y%) 2 žAN(Xä,X),
where d = (1 + 7)™}

Now consider the set of methods for specifying information which we call the

Galerkin information. The so-called Galerkin method of approximate solution of

Eq. (1) reduces to the situation where a uniquely solvable equation

z2g = P,Hzg+P,f,

is assigned to Eq. (1) and z¢ is taken as an approximate solution of Eq. (1). It is

clear that zg = Y.-, m;e;, where unknown coefficients 7; will be found from the

following system of linear equations:

Ni = jš%(ei,Hej) + (eiaf)

Thus, in the Galerkin method, to construct the approximate solution zg it is

necessary to have the information (2), where 6;(H) =(e;,, Hej,),...,0,(H) =

(ei,,Hej,),Šp+l(f) = (€ipprs)y- -+ 0m(f) =(€, f). Informationofthis type
we call the Galerkin information.

Denote by ¥7°, r,s = 1,2,..., the class of Eq. (1) whose free terms f belong
to the ball X{ and operators H belong to the class

’H’?s —{H: H€ ’H;’Oa H* € L(X, Xs)v ”H”X—*X' + “H*”X_*X" < ’7l}'

Note that the complexity of the classes ¥7;* was investigated already in [*], but there

it was assumed that s < r < 2s. Our purpose is to find the exact power orderof the

complexity for the whole scale of the classes ¥7”.
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Let us introduce some notation: we write a, < by, if there is a constant co such

that for all n > ng, a, < cob,; we write a,, <b,if a, < b, and b, < a,.

Let I', be the planar set having the form of a hyperbolic cross

o = 11,29 x (271,201Jn,2] x (1).
j=l

We consider the method of specifying information 7)., determined by Galerkin

functionals (e;, He;) with indexes from T',,. Namely, T(H, f) is the Galerkin

information of the form

T};(H,f)z ((ei,Hej)a (ek’f); (7').7) Erna k=1,27"'722n)

Let us assign to each operator H € HY* the finite-dimensional operator

2n

o L
BTN5 H (H):= >"Pyon-j H(Pyi — Pyi-1) + Pan HPy

J=l

2n

— Z(PZJ — P2j_l)HP22"—J' T PIHP22n.
j=l

Now we give some subsidiary results which will be used later on.

Lemma 2. Let r,s = 1,2,.... Then, for H € HY

|H — HF(H)||xox < Y16272050/(r+3)

andfor H € H°

|H —HY(H)||xr-x < 2™y 82272 /n,

where

—

——)V =1

4

Br+2”(l+WÕ
o 1

Proof. First of all we note that for H € H~*° and forany k = 1,2,..

IH — Py H||x—x < M18:27F,

|H — HPy||x—x < 718,275,

3)

(4)

(5)

(6)
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Taking into account (3) and (6), we have for any f € X 7 (||f]lxr < 1)

I(H - HT)fllx
= |(H — Poom H)f + (PoanH — HT)f x
= sup ' (g, (I = Pyan)Hf + PLH(I — Poon)f

llgllx <1

2n

+ 5O (P2k — Pi )H(I — Pzz„-k)f)l
k=l

<
S

(I((Z = Pyan)g, (I — Paa )Hf)| + |(Prg;PH(I — Poon) f)]
JllxXx =

2n

+ 2 [((Pye = Ppeer)g, (P = Pyt H(I = Pyn-s)])
< sup (12 = Pyan)gllx|(I = Pyrn) Hfllx +||Prgll|PLE(T ~ Pyan) |

9lix
s

2n

+> IPa = Porc)gllxT = PytH(I = Pyont)flx)
2 2

2n
2 1/2

< sup (II(Z = Pun)gl% + IPgl% + 5 IPa — Pai)gllž)
llgllx<1 =1

x (lIZ — Poon )Hf +HAx(T — Paan)F 3
2n

2 9
1/2

+35 T = PytHle I = Pon-s) 1)
2n 1/2

< (27%fi32—4rn + ,Y%B;l z 2—2r(k—l)2—2r(2n—k))
k=l

< 2" 82272n + 2.

The estimate (5) follows from (6), (7), and from the inequality

IH — H || xr»x < |HI — Py2n)||xr=x + |HPy2n —H||xr x.

In a similar manner, we obtain (4). The Lemma is proved.

Lemma 3. For H € H.°, H" = H'(H) in (3), and any m < 2n we have

(7)
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Proof. Using the definition (3) of the operator HT, we obtain for m < 2n

2n-m—l

PomH" = PmHPi+ Y PymH(Py — Py-1)
k=ll

2n

+ z Pozn-k H(Pok — Pok-1)
k=2n-m

2n

= P»m HPy2nm-m-1 + z Po2n-k H(Pyr — Pok-1),
k=2n-m

HY - PomH" = (HPyn-m-IPymH') + (H' — HPy2n-m-1)
2n-m-1

= (I—sz)HP22n—m—l — z (I—P22n—k)H(P2k ""P2k——l)
k=l

-(1 —P»)HP.

As is easy to calculate,

2n—m-—1

H" - PmH'llxsx < (= Pom)Hlxox + D° (I — Pom-r)Hllx>x
k=o

2n-m-1

< 716r2—rm+71,3r2—2rn z 2kr
k=o

9(2n—-m)r _ 1
—

- *3
= (2 i)

This implies the desired estimate.

Lemma 4 [*]. Let
22n

9= z As€i

i=]l

be an arbitrary element of the subspace span{ey,es,...,eqn}. To represent the

element H'g in the standardform

HF

j=l

B]eJ

it suffices to perform no more than O(n2?") AOs on the components of the vector

Tr (H,f) and coefficients o, i=1,...,2%",

(9)
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For each Eq. (1) we determine the sequence of elements

20=0, 2tr=2k—l+ I—PomH")YH 2p_l — 2p_l + Py2n f),
2

k=1,2,3; m= [šn] +l.

All these elements belong to the subspace span{ey, es, ...,€32: }. To construct the

elements zx, k = 1,3, it suffices to have the information T} (H, f) and to solve the

equations 5 -

Ek = szHFEk + (Hrzk_l — Zk-1 + P22nf),

Zk = Zk-1 + Ek:

Now we consider the algorithm A,, for which A, (T}, H, f) = z3.

Lemma 5. Within the framework ofthe algorithm A,,, to represent the approximate
solution A„(T,f ,H, f) = 23 ofany Eg. (1) from the class Wy* in the form

22n

ž OAiEi,

i=]l

it suffices to perform no more than O(n2?") AOs on the components of the vector

TI (H, f). |

Proof. We are looking for the element ¢, in (11) in the form

2m

Ek = zqz“ei + Gk

=1

where

gr = H' 2,21
— Zk-1 + Po2nf

Then the unknown coefficients ¢;, i = 1,2,...,2™, will be found from the

following system of linear equations

2m

di = q'(ec, .
s

JNEi e]) (eia ng) i 1H H
,

=1.2S + 2,.. 2.

Observe that if the values of the functionals from 7. (H, f) are known, then it is

necessary to represent the element H'g; = H'Pyn f in the standard form (9).
According to Lemma 4, the fulfilment of this procedure requires no more than

(10)

(11)

(12)

(13)
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O(n2?") AOs. Then, to solve the system of equations (13) at & = 1, it suffices

to perform ¢(2™)3 = O(2%") AOs. By virtue of (12), 2™ operations of addition

provide for the element z; = €; the representation (9), where

ai—_-Qi+(ei,f), i=la"'a2m7

a; = (e;, f), i=27'+1,...,22.

As follows from Lemma 4, for the representation of elements go = HPy =

Zf:l gie; and H'gy in the form (9) it is necessary to perform O(n22") AOs. To

find the element 23, it suffices to repeat the scheme described above for k = 2, 3.

Thus the inclusion

An € AN(TY), N = n2?,

holds.

Theorem. If, for the pretabulated width of the ball X, we have the estimate

AN(XäaX) - N—rv

then, for any r,s = 1,2,.

NY < Ex(¥7*) < N~"log"t/2 N.

The algorithm A, and the Galerkin information T\ (H, f), n22" xN, are order-

optimal in the power scale in the sense of the quantity En(U7s°).

Proof. The required lower estimate (15) follows from Lemma 1 and (14).
To obtain the upper estimate (15), we calculate the error of the algorithm A,, on

the class WY.
From relations (4), (8), and from the theorem on the invertibility of a linear

operator that is close to an invertible operator, it follows that for H € H 3

la-HyUlkox < -JU-H)llxaxAf
1— (I - H)Ulx-x[H — HTllxax

< >0
1 — cl7o2—2rsn/(r+s)

< 270,

where

02m =l+ |l+ [logslerm))5

(14)

(15)

(16)
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and

I~ PBTHxox £ UHla .-[= HY) Y| xsx||HY — PomHY||x 5 x

270
& el

> 1— 202702—„„
S 4707

where
2 + | log»(c2%0)|

co =2718r, m2>m=l+ ———
In other words, the inequalities (16) and (17) are fulfilled for n >
max{ni, [3ml/2]}. Moreover, for any H € 17’ and f € X 7 there is the estimate

lzllxr = |H(I = H)™'f + fllxr < vom +l.

Let us assign to each Eq. (1) the equation

=

>

lIID ~

Z——H (H)Z+P22nf

Taking into account (5), (16), and (18), we have

Iz = žllx = ||(l = HY)™ (f = Ppanf + (H — H")2) ||x < 327"v/n

where

7161') .1)2(1+— 27067'C 3 =

Since for the solution Z of Eq. (19) at any k¥ = 1,2, 3 the representation

Z=zpl+ (I - HY) Y(H21 — 2k—l + Pponf)

holds by virtue of (10), the following relation exists:

F—23 = (I—PmHY)Y(HF — PpmHY)(Z — 23)

= ((I - PpmHY)"Y(HT = PpmH)) (3 - 21).

Again, using (10) and (21), we find

ž- z =(I1 - Pom H*)(H!' — Pom HYV)zž.

Joining relations (22) and (23), we obtain

ž - z3 = ((I - Pom H')UH' — Pom HT))” ž

Inserting the bounds (8), (17), (18), and (20) into (24), we have

IIZ — z3]lx < ByomBr)3(1 + 3+ yo11)27%™

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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From the last inequality and (20) it follows

Iz = An(TE,H,f)llx = |lz—2llx

< |lz-Zlx + ||z - zsllx < 272"/n.

Using the relation

card(Ty,) = (n + 1)22",

Lemma 5, and (25), we obtain the upper estimate (15) for N =< n2?"

- +l/2En(¥7°) < e(UT, An) < N™"log™ /2 N.

Thus, the Theorem is proved.
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MÕNEDE KORREKTSETE ÜLESANNETE KLASSIDE

LAHENDAMISE KEERUKUS

Sergei G. SOLODKY

On kisitletud teist liiki operaatorvorrandeid Hilberti ruumides jauuritud nende

lahendamise keerukust. On leitud selliste vorrandite ligikaudse lahendamise

keerukuse tidpne jdrk ja ndidatud, et see on saavutatav, kui kasutada Galjorkini
iteratsioonimeetodit, mille nn. informatsioonivektor kuulub eukleidilise ruumi

hiiperboolsesse risti.

(25)
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