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Abstract. A stability analysis is given for two classes of odd-even finite-difference

schemes, which approximate the two-dimensional variable coefficient heat conduction and

the Schrodinger problems. Sufficient and necessary stability conditions are derived for the

von Neumann stability for the case of constant coefficient problems. The case of variable

coefficients is investigated by the discrete energy method.

Key words: stability analysis, odd-even schemes, the Schrédinger problem.

1. INTRODUCTION

In this paper we consider the two-dimensional variable coefficient diffusion

equation with the initial and boundary conditions

ou 0 ou 0 ou :

%= o (10)+ 5=(@)g ) +Fm) i@ x (0.7

u(z,t) = p(z,t) on 09 x [O,T7],
u(z,o) = up(z) in),

where z = (1, z3), Q is aunite square in R2. Assume that the functions a 1 () and

az(z) are continuous and that there exist constants «; and g such that 0 < a; <

a1(z), as(z) < ag for z € Q. Also assume that f(z,t), u(z,t), and ug(z) are

such that the solution u is sufficiently smooth.

(1)
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We also consider the Schrédinger equation

ou . [Oo%u .2u
:ä—za(ö—xš+ö—xš)+f(m,t) in Qx (0,7

subject to the same initial and boundary conditions; here, u(z,t) and f(z,t) are

complex functions.

We rewrite Egs. (1) and (2) as one equation

ou 0 ou 0 ou

& (A1(:v) özl) s (A2(s)äx—2) + f(z,l),

where A;(z) = a;j(z) for (1) and A;(z) = ia for (2), respectively.
The odd-even (OE) schemes are popular methods for the efficient numerical

solution of advection-diffusion problems (see [l:2]). The OE schemes are also

used as a basis for popular iterative methods in the case of elliptic two- and three-

dimensional diffusion problems, for example the red-black SOR iteration. We note

that OE schemes can be successfully applied on parallel computers (see [®]).
Convergence analysis of OE schemes is studied in [2]. In both papers stability

analysis is given for the constant coefficient linear advection-diffusion model

problem. The Fourier analysis is carried out for an associated scheme which is

equivalent to the OE scheme. We also note the paper [°], where some stability
results are proved in the energy norm.

Our purpose is to extend the stability analysis to a variable coefficient heat

conduction problem and to the Schrodinger problem. We investigate two classes of

OE schemes. The von Neumann stability definition is used for constant coefficient

problems. We propose to carry out the Fourier analysis directly for the OE scheme.

Sufficient and necessary conditions are derived for the von Neumann stability. The

variable coefficient heat conduction problem is investigated by the discrete energy
method.

2. THE ODD-EVEN METHOD

Let % = Ql5 X 9y, be a discretization of €2, where 21, and 254 are uniform

meshes obtained by dividing intervals ]o,l[ into mesh intervals by the points
Tr;j=jh, k = 1,2, 7 =1,2,...,N —1, where Nh = 1and h denotes the

spatial mesh size. Then, for any pair (;,[;) with 0 < ;, I < N, we get a discrete

point X = (zls,Tox) €Q. Let Ujx(t) denote the numerical approximation of

u(Xk,t). We define the innerproduct between the mesh functions U and V and the
discrete Lo norm

(U,V)=h Y UX)V(X), |IVI]=VV,V);
XeQy,

(2)

3)
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here, V is the complex conjugate function of V. These definitions are simplified for

real functions.

We approximate Eq. (3) by the semidiscrete scheme

dE(š =LU+$f(X,O), X€E,

where LU = CU — DU and the difference operators C' and D are defined as

follows:

1
CU = "'ZE(Aj+I/2,kUj+l,k + Aj-1/2xVj-1k

+Ajk+l/2Üjk+l + Ajjk-1/2Ü,k-1))
1

DU = Ü(Aj.*.l/zk + Aj—l/2,k + Aj,k+l/2 + Aj,k—l/Z)Uj,k)

with

Ajrijak = A(Xjrly2k)»> Ajkrl/2 = A2(Xjk+l/2).
Let w; be the uniform time mesh, where 7 is the discrete time step, and let U J"k =

U(Xjk,ytn), tn = nT. We also use the difference operator

n+lll
— U" n+l

_ Un—l
pp o

TRI pa U
T t 27

Then the OE method is a special combination of the two well-known methods, i.e.

the explicit forward Euler method

Ur = LU, + f(Xjk,tn)

and the implicit backward Euler method

U” =
n+l

The basic formula defining the OE method (see [''?]) then reads

Ui =©s(LU + fjk) +(1 - B?k)(LUš*k“ + ijLl),
where the hopscotch parameter @;‘k is defined by

o" =

1 for oddvalues of v(7,k,n),
jk 0 for even values of v(j, k,n),

and (4, k,n) is a given integer function. By applying different functions v(7, k, n),
we derive various cases of the OE method.

Notice that the explicit forward Euler scheme is only conditionally stable under

therestriction 7 < h?/(4cx) for the parabolic problem (1) and it is unconditionally
unstable for the Schrédinger problem (2). The implicit backward Euler method

is unconditionally stable for the general equation (3). Both of these methods

approximate the differential equation (3) with the order O(7 + h?).

(4)
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3. THE SPACE-DEPENDENT ODD-EVEN METHOD

In this section we consider the first example of the function v(j,k,n). It is

assumed that for any OE method the numbers of odd and even mesh points are

equal, and the costs of realization of the OE scheme are equivalent to the costs

of realization of the explicit forward Euler method. Such schemes are called

economical.

Let us define the test function

v(j,k,n) = j +k,

where only space-dependent arguments j, k are involved in the definition. This OE

space mesh coincides with the well-known red-black colouring scheme. We get the

OE scheme

U=LUj+fi, for j+k=2m+l,

U=LU +[ for j+k=2m.

In addition, we use the boundary conditions

j jk —.k e h n > 0

Let Z7) denote the global error of the difference solution

Z]'-lk = U(Xjk,tn) — Ufic

The OE scheme has truncation errors

XII;"I:—I — 'U:t(Xjk,tn) — LU(XJkatn) — f.?k for _] +k=2m+ 1,

Õ;LI:-I — Ut(Xjk,tn) — Lu(Xjk)tn+l) — f;?_l for j+k=2m.

Then ZJ’-‘,C satisfies the difference problem

ZY = LZ“ W v
0 +K = +t

|

jk
*

AU Z,Z"" PD k=2
jk
!+:

|

0 m

;—
O

.
!

for .7

n+ +

= fo n

1

r X

,

jk €0

,

Õs™ 2

Z > 0

In order to carry out the stability analysis, we propose to rewrite Egs. (6). We

introduce two error vectors

n jk
for j
r

k= 2m

r] =

y

w2 +k=2m+ 1

(5)

(6)
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o;,c={W"Zr{k
for j;

*

j+k=
r j+k—2m= 2m +1

where W7, are fictitious global-error components. The difference problem for E, O

then readJs
,

n —Or=CE%-DO%+Y%7 — for Xjk € ,

Erp =CO — DERF' +9% for Xj; €O,

here, the definition of the functions ¥ and @ is extended for all X € 2.
We consider the Schrodinger problem. The stability analysis for the parabolic

problem is given in [®]. We represent the global-error vectors in the form of the

Fourier series

N-IN-1

EY = lzl zl ep, sin(mlzy;) sin(mmagy) for Xji € Qp,
= m=

N-IN-1

O;-‘k = zzl El op, sin(mlzy;) sin(mrmagy) for X€ Q.
— m= A

The similar expansions are valid for the truncationerror vectors

N-IN-1

o= 121 zl YP sin(tlzl;)sin(7mz2xr) for KXjk €O,
= m= .

N-IN-1

% = l}:l 21 pi sin(7lzl;) sin(7mz2x) for Xjk €Q.
= m=

Substitution of (9) and (10) into the difference equations (7) and (8) leads to the

difference scheme for the Fourier coefficients

on+l n l 0

e -
-

gyt
143y 14wy

where S is the amplification matrix

1 — 2y ya
S=| iya(l-iy) 1-(70)* |.

1+ iy 1+ 4y

Here we denote

y = ž;šf, m = š(cos(nlh) + cos(mmh)).

(7

(8)

(9)

(10)



116

To simplify notations, we will omit subscripts [ and m in the remainder of this

section. The von Neumann stability condition requires that all eigenvalues of the

amplification matrix be in the closed unit disk and the ones on the unit circle be

simple (see [7]). In particular, von Neumann'’scondition is necessary for the stability
in the Lo norm.

Theorem 1. If 7 < 57h3/(21a) and N is an odd number, then von Neumann'’s

necessary stability condition is satisfied for the OFE scheme (5) for solving the

Schrodinger problem (2).

Proof. We get the characteristic equation of the amplification matrix S

2/1 . »2 I—i)‘2_w)‘+_fl=o,
142y 14y

The eigenvalues of S are therefore

2 +72(1 —a?) + y/7y2(1 — a2)? — 402
M 1,2=ma——— ,

2(1 + i)

For y > 2|a|/(1 —a?), there exists |A| > 1 and hence von Neumann’s condition

is violated. Ifv < 2|a|/(1 —a?), then we have [A\;5| = I.lf N = 2M, then

ayv = 0 and the OE scheme is unconditionally unstable. If N = 2M + 1, then

we get i

,
.

s
min |ay,| = apm = sin (—h).l,m 2

As is easily proved, we have for h < %

T T 72 10
]

— > — -——|> —rh:31n(2h)_2h(1 216)_217rh,
hence the OE scheme satisfies von Neumann'’s stability condition if

20 smh3
< — < —,7—2l7rh o 7<

210

Now we consider the stability and convergence of the OE scheme (5) for the

parabolic problem (1) with variable coefficients. The discrete energymethod is used

in our analysis.
We shall need the following lemmas.

Lemma 1. [fU =V = 0for X € 00, then

(CU,V) = (U,CV). (12)

(11)



(16)
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Let us denote Y = (O, E)T. We define the discrete function

IY||4 = (DO,0) + (DE,E) — (CO,E) — (CE, O).

Lemma 2. IfY = 0for X € OQp, then ||Y||% is the norm which can be written as

N-1 N 2 2Ojr — Ej_l Ejk—Oj-I,kR
= a: ( j j-1, )+( j jl,

ma -T3 (225E2)s(B
N-1 N 2 2

OJ'k — Ej,k—l Ejk — Oj,k——l

+3aaa| s) s (Facdu)),

The proof of both lemmas follows from the definition of the operators C' and D

and it requires only simple calculations.

Theorem 2. If 7 < (1 —¢)h?/(2a3), 0 < € < 1, then the solutionof the OE

scheme (5) converges to the solution of the parabolic problem (1) and the global
error satisfies the inequality

n

T 1L . ;
YR < 0+5 3 GII+ 1112

j=l

Proof. We multiply (7) by 270; and (8) by 27E; to obtain

27(|0¢||* — 73(DOy, O) + T2(CE, Oy)

— (C(En+l + En), On+l af On) — (Don+l,on+l)

+(DO", 0*) + 27(U"*+!, O%),

27||E||* + 7*(DEy, Ey) — 2(CO, Et)
— (C(On+l + On),En+l o En) S (.DE"+l,Em+l)

+(DE™, E™) 4 27(®",Ey).

Then we add (14) and (15), use Lemma 1, and get

27(|0¢|? + || B¢l |?) + 72((DE4, Ei) — (DO, Oy)) + Y%

= HYnHZA + 27((XIJ"+1, Ot) + (Õn+l7Et))'

(13)

(14)

(15)
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We estimate the last two terms in (16)

1
(1,00 <el +pYH

1
(S**T,E) < B"+71184

Now we substitute these inequalities into (16) and get

T
2r((1 - )lIOd? - F(DO1, 0)) + 7(DEi, Bi) + Y™}

o
T(/1

<YI+ 3(e+o).
It is easy to see that when 7 < (1 — €)h?/(2a), we have

(1 =9Ol - S(DO,O) 2 0.

Finally, we add inequalities (17) and obtain (13).

4. THE TIME-DEPENDENT ODD-EVEN SCHEME

Let us define the following test function [l+2]:

v(j,k,n) =7+k+n.

By first applying the explicit forward Euler method at all odd points

1Ui = Uk +7(LUSk + fjk)

and subsequently applying the implicit backward Euler method at all even points

)jk Jnžc ( 12: r fn !

we carry out one step with the OE method.

The difference problem for the global error functions O and E then reads

ot — E%
% = CO;lk — DE?k + q,;l,;l-l for XJ]C € Qh,

E}t -on

Ab = COj' -DER + & for Xk €Q,

E;Lk =O, O?k =0 for XJk € ÕDJ;„

(17)

(18)

(19)

(20)



i ppn

u
=CO - DEJ'P,c + <l>;’k. (22)
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First we consider the parabolic equation (1) with constant coefficients a(z) =

as(z) = o and the Schrédinger problem (2). After computations, similar to

Section 3, we obtain the difference equation for the Fourier coefficients

on+l(&)-s(2)+(
75 75

e" I+B m)("”"“0 1 T(p"+l )
where S is the amplification matrix

af(l — ) I+(a6)2)S=( 1+ 4 I+B ;

1-8 af

and 8 = + for the parabolic problem, and # = iy for the Schrédinger problem;
here, v = 41a/h2.

Theorem 3. The von Neumann necessary stability condition is satisfied uncondi-

tionallyfor the OF scheme (20).

Proof. We get the characteristic equation of the amplification matrix S

» > 2af fl_

Application of the Hurwitz criterion gives that von Neumann’s stability condition

is satisfied for the parabolic problem if

-2 2|aly 1-97
—<l and — < 1-—.

I+7y7 1+97 149

We have that both of these inequalities are satisfied unconditionally. In the case of

the Schrodinger problem the eigenvalues of S are given by

2\~2ayi + /1 + (1 — a2)y :
eo

As is easily seen from (21) we have |A;2| = 1 unconditionally.

Next we consider the convergence of the OE scheme (18), (19) for the parabolic
problem (1) with variable coefficients. First we derive from (20) the difference

problem which involves only the function O. Taking (20) for the nth time step, we

have the equation

(21)
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Adding (20) and (22), we get

Or}+l
jk

— Oje

27

-
= CO

%
- DEk +jk + —(Õn k )

Subtracting (22) from (20), we find

1
oy

4

E% = ž(oy,jl +O% )+ 515 - HAD

Finally, substituting (24) into (23), we obtain the three-level difference scheme for

the function O

Of}+l
jk

- O

27
=—Coš„k -

On+l
D

A
O

2

r ;

+—

j l(q)n

2D(\lfl?+l

2
Jk+‘l'n+

N
-

):

-

Lemma 3. If the solution of the problem (1) is a sufficiently smoothfunction, then

we have the following estimates of the truncation error:

HETFERB% < C(7°+h2),

ID(T™ —®™)|| < Co(r/h%+ h?).

Proof. Using a Taylor series expansion, we get from (18), (19)

2

———Õt2 üT(u(Xjk, tn)) + O(T2 + h4)

x

2

q)jk = _%a“_(XJ’C_’f’lZ +h?
12 šT(u(Xjk, tn)) + O(T2 + h4)

where

From (26) and from the definition of D we obtain immediately the required
estimates. O

The difference problem (25) defines O™ for n > 2. Hence we must estimate O’

separately.

(23)

(24)

(25)

(26)
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Lemma 4. Assume that the solution of the problem (1) has continuous bounded

partial derivatives. Then

(DO, 0! ) < C372(1 + h?)?/h2.

Proof. The initial condition is satisfied exactly by the solution of the OE scheme

(18), (19); hence we have

Ej, =O, 03 =0 for Xj €Q.

Then it follows from (20)
1Ojk = qušk.

Taking into account (26) and using the definition of D, we get (27).

Theorem 4. The global error O ofthe solution of the OE scheme (18), (19) satisfies
the inequality

(Do™tl, ontY) + (DO™,OM) = 2(CO™H, 0%

n+l i i 1 12 2Vi. 3i . .
< (DO*',o) +2rs3° (U—"-L-Z—H + 34—||D(x11J — <l>J-I)||2).

j=2

Proof. We multiply (25) by 4*rOct, to obtain

4T|IO;II2 + (DO™l, o™t — 2(co™, O™Y)

= (DO"7!, 0" - ACO", 0% )+ AnlFr Os),

where we denote

Fn+l n+l n l I

Then we estimate the last term in (29)

47(F™*1, 05) < 47]|Os|? + 7| F" 1]

add (DO™, O™) to both sides of (29) and get

(Don+l, On+1) + (DOn, On) 2 Z(COn, On+1)

< (DO™, 0™ + (DO™1,0™1) — 2(CO™, 0™1)+ ||F™HH|2.

(27)

(28)

(29)
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Finally we add inequalities (30), use Lemma 1 and equality 0° = 0, and obtain (28).
It remains to note that the function on the left side of (28) is a norm, as it follows

from Lemma 2. D

As a consequence, from Theorem 4, Lemma 3, and Lemma 4 we have that if

7 < C4hM*P with 0 < p < 1, then

(DO™F, 0™ & (DO, 0™) - 2(Co"*+!,O) < Ch**.

The case of the variable coefficient Schrodinger problem is investigated in [®].
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KAHEDIMENSIONAALSETE DIFERENTSSKEEMIDE STABIILSUSE

ANALÜÜS

Raimondas ČIEGIS Olga STIKONIENE

On kasitletud kahedimensionaalse difusioonivorrandi diskretiseerimise mee-

todite kahe klassi arvutuslikku stabiilsust, sealhulgas nn. von Naumanni stabiilsust.

Tulemused on sonastatud teoreemidena, mis on ka toestatud. Eraldi on vaadeldud

konstantsete kordajatega juhtu ning Schrédingeri vorrandit.
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