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Abstract. Starting from the discrete analogue of the weak Kharitonov theorem for monic

polynomials, a sufficient stability condition in terms of polytopesis obtained using a Schur

invariant transformation on the coefficients space of polynomials. This approach enables also

the construction of a stable n-dimensional simplex with all vertices on the stability boundary.
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1. INTRODUCTION

In the field of robust control and stability robustness with parametric
uncertainties the Kharitonov theorems which are mainly applicable to Hurwitz

polynomials play the central role [*]. The results regarding Schur polynomials are

less attractive. However, for special cases the discrete analogues of Kharitonov

theorems hold [?]. The weak Kharitonov theorem holds for Schur polynomials in

a region defined by rectangles with edges sloped by 7/4 [3]. Recently, Perez et al.

[*] relaxed the requirements for slopes of edges. Unfortunately, the both versions

of the discrete analogue of the weak Kharitonov theorem give a degenerate stability
region formonic polynomials because the coefficients a,, and ag have to be fixed. It

means that only an (n — 1)-dimensional polytope can be obtained for the nth-order

monic polynomials.
The aim of this paper is to find an n-dimensional stable polytope of monic

Schur polynomials starting from an (n — 1)-dimensional polytope defined by the

discrete Kharitonov theorem. The paper is organized as follows. First, we recall

the discrete analogue of the weak Kharitonov theorem. Second, the Schur invariant
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transformation on the coefficients space of polynomials is recalled [°]. Third,

applying the Schur invariant transformation to the vertex polynomials defined by
the discrete Kharitonov theorem, the main result — a sufficient stability condition in

terms of polytopes in the coefficients space of monic polynomials is obtained. By
special restrictions a stable n-dimensional simplex will be found.

2. DISCRETE ANALOGUE OF THE WEAK KHARITONOV THEOREM

Consider the polynomials with real coefficients a; € R

n .

a(z) = zaiz
I=o

A polynomial a(z) is said to be Schur stable ifall its roots lie inside the unit circle.

The following extreme point result for Schur polynomials a(z) is called the discrete

analogue of the weak Kharitonov theorem [3].

Theorem 1. Consider the class ofpolynomials a(z), a; € [a;, a;] in which, for each

i # n/2, a; and a,_; vary inside a rectangle with edges sloped by 7/4 (Fig.l). If n

is even, ay, /o
varies in an interval [a,, /5G /2). Thenall the polynomials a(z) in this

class are stable ifand only if every member of the finite set ofa(z) defined by every

possible combination ofcorner points (and interval endpoints in case i = n/2) is

stable.

Recently, Perez et al. relaxed therequirements for slopes of edges and coupling
of coordinates for the class of polynomials a(z) and obtained amore general version

of the weak Kharitonov theorem for discrete polynomials [*].

Theorem 2. Consider the polytope in the coefficients space where each pair
(ai,ak), 0 < i < m, n—l < k < n, is varying inside a polytope with edges

Fig. 1. Region of variation of a;, a,,—;.
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sloped in the closed interval [ /4, 37/4] and where each a; can only be combined

with one ay and vice versa. Then every polynomial in the polygon will be stable if
and only if all the polynomials obtained by combining all the polygon corners are

stable.

For monic polynomials we have a, = 1 and by assumptions of Theorems 1

and 2 ag = const. So, all the stable polygons in the coefficients space of monic

polynomials a = (ag,...,an—l) € R™ obtained by Theorems 1 and 2 are of the

dimension n — 1. It means that the discrete analogue of the Kharitonov theorem

is considerably weaker for monic polynomials. To overcome this drawback, we

recall a Schur invariant transformation which enables us to increase the dimension

of the stability polytope by one. More exactly, starting from the (n— 1)-dimensional
stable polytope defined by Theorem2 using a Schur invariant transformation, we are

looking for an n-dimensional stable polytope.

3. SCHUR INVARIANT TRANSFORMATION

We call a transformation on the coefficients space of polynomials a(z) Schur

invariant if it maps a Schur polynomial into another Schur polynomial.
Let us define a transformation S : R*t! x R™ — R™*! on the coefficients

space of polynomials a(z) with r < n free parameters &1,
...,

&, as follows:

b(€) = R(6)Pa = S(E)a,

where R (&) and P are matrices of dimensions (n+l) X (n —r+2) and (n —r +

2) X(n + 1), respectively, and >

P = [OEPn_r+2(kn_T+l)]---[OEPn(kn—l)]Pn+l (kn)a

0T 0
R(§) = Rn+l(6l) [ Rn(t2) J [ o (i) ] )

Pj(k‘j_l) = Ij + kj_lEj,

Ri(En-j+2) = Ij + En-j+2Ej

where I, is an nx n unit matrix and E, = [e,:...1e1], e; = (0...010...0)T.
=1

Now let us recall the recursive definition of reflection coefficients k; of a

polynomial a(z) [®]:

n;i=1,..,
) an—.i,n

—— SRai
-

(1)

2)

(3)
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—(1) >(7)
- 3 +kid;

Kajz = -J—l——i(—;š—y, )=l,b — 1,

k; = —Õ.(—i).

The following theorem and corollaries hold [°].

Theorem 3. The polynomial b(z, &) will be Schur if and only if
1) the reflection coefficients kl, ..., kn_r of thepolynomial a(z) lie in the interval

(_ 17 l),
2) thefree parameters 1, ..., &, lie in the interval (—1,1).

Corollary 3.1. The reflection coefficients k;(b) of the polynomial b(z, &) have the

following values:

o[

ki i=1,...7-rkz(b)_{ fn—i+l i:n—’r‘-{—1,...,n-

Corollary 3.2. The transformation S(&) will be Schur invariant if and only if
-1<8j;<1, j=1,...r.

Corollary 3.3. The polynomial b(z, €) lies on the Schur stability boundary ifa(2) is

Schurandifsome , = +l, k € 11,...7); 6 € (-1,1), jAk, j=l...r.

4. A NEW SUFFICIENT STABILITY CONDITION

In the following we shall consider only monic polynomials, i.e., a, = 1. Let

us start from a stable (n — 1)-dimensional polygon defined by Theorem 1 for some

ap = a}, and let a®™(2), m = 1, ...,2"! be the corer polynomials of this stable

polygon. To obtain a stable n-dimensional polytope, we use the Schur invariant

transformation (1)~(3) for every a®"(z) withr = 1, k;, = kn(cy), and & €

(E, E), wherekp (cm) denotes the nth reflection coefficient of the corner polynomial
a®™(z). In other words, we put a line segment

B(cm) = (b°" = S(E)a",€ € (€,E);E,E€ (-1,1))

through every corner polynomial a°™.

Theorem 4. Consider the polytope

A= convia™ m=l.l 2" 1}

in the coefficients space ofmonic polynomials, where each pair (a;,ar), 1 <1 <
n—l, n—i <k < n—lisvarying inside a polytope with edges sloped by m/4 (or
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3w/4) and where each a; can only be combined with one ay, and vice versa. Then

every polynomial in the polytope

B = conv{b(£) | b°(£) = S(E)a’™, m =1,..,.2%! £e(-1,1)}

will be stable ifall the corner polynomials a®™ of the polytope A are stable.

Proof. By Theorem 1 the polytope A will be stable. For » = 1 the transformation

(1)—(3) is linear in respect of the free parameter £. Hence, the transformation S(¢)
maps the polytope A into another polytope

B —) = convfb"",m=1,... 2773

and if £ € (—1,1), thepolytope B(¢) will be stable by Theorem 3. So, both the

polytopes B({) and B(¢) will be stable. The corner polynomials b“m* (£) € B(€)
and b°m* (£) € B(€) are the end points of a line segment

B(cm) = (b°"(8) = S(E)a",€ € (€,E))

which is stable by Theorem 3 if a“™ is stable. Therefore, all the exposed edges of

the polytope B will be stable ifa’», m = 1,...,2" !, are stable and by the Edge
theorem the polytope B will be stable. []

The polytope B(€) has the maximal volume if £ = —1 and € = 1. Then all the

vertices of the polytope B(¢) are placed on the stability boundary. The number N of

vertices b°™ (¢ = +£l) increases rapidly by increasing the degree n of polynomials,
N < 2™. The next theorem allows us to generate an n-dimensional stable simplex
starting from an (n — 1)-dimensional stable polytope of monic polynomials.

Theorem 5. Consider the intersection points a% € R™1ofhyperplanes

a; + an—; = Qj, a; € {Q_z'a s‘:'}

and

4i — An—-i — /6i7 IB'L € {g,finéih 1= 17 ey — 1.

The n-dimensional polytope

SY" =convfa* (6) | € =+l,j =1,.... NY

e is stable if and only if the (n — 1)-dimensionalpolytope

An—l — convfa*%, j=l
>+NY

where

% (€) = R(¢) [ o ] |

4)

(5)
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is stable;

e is a stable simplex if
N = pv,

where| is the number ofhyperplanes (4) considered

,uz{ n/2+l ifneven,
(n+l)/2 ifnodd,

and v is the number ofhyperplanes (5) considered

V:{ n/2 ifn even,

(n+l)/2 ifnodd.

Proof. Necessity is quite obvious because a% (£) will be unstable if a% is unstable

by Theorem 3.

To prove the sufficiency, we consider two different cases for n even and odd

because the structure of matrices R({ = +1) depends on n.

It is easy to see that the hyperplanes (4) and (5) have only one intersection point
for some fixed o; and ;. Without loss of generality we can assume af, = 0.

Let n be even. Then, for¢ = 1, we have from (3)

Similarly, for¢= —l, we have from (3)

1.0 .
..

0.1
1

0 1
..

1 0 0 o

9
aa

a1 :a(l):R(l)[a]z 0
0

2
2..

0 : o|)= ] An
5 1 . ; . @n1 :
0 1.

..
1 0 " ö

1 .0
..

0 1 11

a(—1) = R(-1) [ ? ] —

—1

[1 0
..

0 —1 P1

0 1
..

-1 0 0 :

. . . . .
0 Bn/2—1

0 0
...

0 0 : = 0 .
e ani g —Bnj2-1

0 —1
..

1 0 1 .
1 0

..
0 1 —'61

1
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It means that all v points a% € R™!of the hyperplane (4) with some fixed

a;, 1 = 1,...,n/2, will be transformed to the point a(1) € R"™ and all x points
of the hyperplane (5) with some fixed 3;, i = 1,...,n/2—1, will be transformed to

the pointa(—l) € R™. Obviously, all the vectors a% (1) € R", j=1,..,p4, p <

n/2 +l, with some different o; € {a;,a;}, ¢ € {1,...,n/2}, are linearly
independent as much as the vectors a% (—1) € R", j = 1,..,v, v < n/2,
with some different 8; € {éi,Bi}, i € (1,...,n/2 —1). Thus, for n even,

N = ut+v=n-+1 points a(+1) € R" form an n-dimensional simplex S™.

Now let n be odd. From (3) we have for £ = 1

It means that all v points a% € R"™! of the hyperplane (4) with some fixed

O, i = 1,...,n/2, will be transformed to the point a(1) € R™. Similarly, for

¢ = —l, we have from (3)

and all p points of the hyperplane (5) with some fixed ;, i 1 =1,...,n/2 —l,
will be transformed to the point a(—1) € R™. Obviously, all the vectors

a%(1) eR™ j=1,..,u4, p<(n+l)/2, with some different o; € {a;,a;},
i € {1,...;,(n—1)/2}, are linearly independent as much =as
the vectors a%(—l) e R™, j = 1,...,v, v < (n + 1)/2, with some different

Pi € {_,B_i,fii}, i €{1,...,(n —1)/2}. It means that fornoddN = p+v=n+l

points a(+1) € R™ form an n-dimensional simplex S™.

1. 0
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—
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»

.
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Consider now the edges of the simplex S™. By assumption all the points
a% € R™l, j = 1,..,N, are stable. Hence, by Theorem 3, the line segments

. 0 . .
a% (&) = R(§) [ aši ] , j=1,...N; €€ (—1,1), will be stable.

By assumption all the line segments conv(a%,a) € A"1; 5,k € {1,..., N},
are stable. Hence, by Theorem 3, the line segments conv{a% (¢),a% (¢) | € = £l}
will lie on the stability boundary. So, all the edges of the n-dimensional simplex
S™ will be stable or placed on the stability boundary. By the Edge theorem all the

inside points of the simplex S™ will be stable. 0

Example 1. Let n = 3 and a 9 = 0. The vertices of the tilted square (ABCD
in Fig. 2) a% = 00500 a 2 = 80057 a° = (0,-05,0)", and

a® = (0,0, —0.5)7 are Schur stable. By Theorem 1 every polynomial in the square
is stable.

Fig. 2. Stable polytope of monic polynomials, n = 3.
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Using the Schur invariant transformation (1)—(3), we find

p 1 = (€,0.5,0.56)T,
b2 = (£ 056 05),
b3 = (€,—-0.5,-0.56)T,
b = (6,—0.56,—-0.5)".

For {=-0.5 and ¢ =0.5, Theorem 4 claims that the polytope
(A'B°C'D'A”»B”C”D” in Fig. 2)

06 008 0.5 0.5 =O6 . —0.5 —0.5 —0.5

B =conv |B5 0.25 —0.5 —0.25 ° =0.5 —0.25 @5 0.25

0.25 0.5 —0.20 0B —0.25 065 0.25 U 9

is stable. By Theorem 5 the simplex (EFGH in Fig. 2)

1 1 -1 —1

S3=conv| 05 —-0.5 05 —0.5

5. 05 -85 85

is stable

5. CONCLUSIONS

We started from the discrete analogue of the weak Kharitonov theorem which

defines an (n — 1)-dimensional polytope for monic polynomials. The polytope will

be Schur stable if all the corner polynomials are Schur stable. We have obtained an

n-dimensional polytope using a Schur invariant transformation on the coefficients

space of the polynomials. We have proved that this n-dimensional polytope will be

Schur stable if only the corner polynomials of the (n — 1)-dimensional polytope
defined by the discrete Kharitonov theorem are Schur stable.

The result obtained is a typical extreme-point stability condition. In fact, it

is better than the ordinary weak Kharitonov theorem: there is no need to check

the stability of all the cornerpoints of the n-dimensional polytope but only the

cornerpoints of another (n — 1)-dimensional polytope (or hyperrectangle).
It is worth pointing out that by special choise of the (n — 1)-dimensional

hyperrectangle (according to Theorem 5) a Schur stable n-dimensional simplex can

be obtained such that all the vertices of it are placed on the stability boundary.
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DISKREETSE HARITONOVI TEOREEMI RAKENDUS

Ulo NURGES

Vaadeldud on normeeritud Schuri poliinoome. Diskreetne Haritonovi teoreem

defineeribnormeeritud poliinoomide jaoks (n — 1)-mddtmelise stabiilse poliitoobi.
Léhtudes sellest (n — 1)-mdotmelisest poliitoobist on Schuri invariantse teisen-

duse abil leitud n-mootmeline stabiilne poliitoop. Kui ldhtepoliitoobiks on

(n — 1)-mod6tmeline hiiperristtahukas, mis vastab teatud lisatingimustele, saab

n-moodtmelise stabiilse simpleksi, mille kdik tipud asuvad stabiilsuspiiril.
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