Proc. Estonian Acad. Sci. Phys. Math., 1998, **47**, 2, 75–89 https://doi.org/10.3176/phys.math.1998.2.01

MERCER'S THEOREMS FOR GENERALIZED SUMMABILITY METHODS IN BANACH SPACES

Tamara SÕRMUS

Department of Mathematics and Informatics, Tallinn Pedagogical University, Narva mnt. 25, EE-0001 Tallinn, Estonia

Received 4 December 1997, in revised form 29 January 1998

Abstract. Mercer's theorems, shortly, M-theorems, well-known for number sequences and summability methods given by scalar matrices, are generalized to larger classes of summability methods $\mathcal{B} = (B_{nk})$ and sequences of points in B-spaces X. The operators $B_{nk} : X \to X$ are continuous and linear on X. Seven M-theorems for generalized triangular methods and for generalized Euler-Knopp and Riesz methods of $c_X \to c_X$ type or $\ell_X \to \ell_X$ type are presented (c_X and ℓ_X being spaces of convergent sequences or absolutely convergent series). The applications of general results to scalar matrix methods and certain classical methods are also discussed.

Key words: Banach spaces, operators and generalized summability methods, methods of $\alpha \rightarrow \beta$ type, Mercer's theorems.

1. INTRODUCTION AND PRELIMINARIES

Let X and Y be Banach spaces (B-spaces) over the field **K**, where $\mathbf{K} = \mathbf{R}$ or $\mathbf{K} = \mathbf{C}$. For any two spaces X and Y the notation $\mathcal{F} : X \to Y$ denotes that the operator \mathcal{F} maps X into Y, for which we could also use the notion " \mathcal{F} is of $X \to Y$ type". The space $\mathcal{L}(X, Y)$ of all continuous linear operators from X into Y is known to be a B-space (see, e.g., [¹],V; [²], IV). We denote further by I and θ the identity and the zero operator on any B-space, respectively. Let $\chi = (x_k)$ be a sequence of $x_k \in X$. The well-known sequence spaces are: $m_X = \{(x_k) : x_k \in X; \sup_k ||x_k|| < \infty\}; c_X = \{(x_k) : x_k \in X; \exists \lim_k x_k\}; \ell_X = \{(x_k) : x_k \in X; \sum_k ||x_k|| < \infty\}$. These are all B-spaces with the norm $||\chi|| = \sup_k ||x_k||$ in m_X and c_X , and the norm $||\chi|| = \sum_k ||x_k||$ in ℓ_X . Unless indicated otherwise, a sum $\sum_{k=0}^{\infty} x_k$ without limits will always be understood as follows: $\sum x_k = \sum_k x_k = \sum_{k=0}^{\infty} x_k$.

In this work the classical Mercer's theorems (M-theorems), well-known for number sequences and scalar matrix methods, are extended to sequences in Bspaces and generalized triangular summability methods $\mathcal{B} = (B_{nk})$ with $B_{nk} \in \mathcal{L}(X, X)$. More about matrix methods of this kind see, e.g. $[^{3-8}]$. Our main results on the generalized M-theorems are given in Section 2. M-theorems for generalized Euler-Knopp and Riesz methods with some of classical cases are obtained in Section 3 and 4 as applications of the results of Section 2.

Let us fix some notations connected with the method \mathcal{B} , where the spaces s_X and s'_X will be m_X , c_X or ℓ_X and $\mathbf{N} := \{0, 1, 2, ... \}$.

We define the operator $\mathcal{B}_n : s_X \to X$ by

$$\mathcal{B}_n \chi = \sum_{k=0}^n B_{nk} x_k \qquad (\chi \in s_X; n \in \mathbf{N}).$$
(1)

The special case of it as an operator of $X \to X$ type is also denoted by \mathcal{B}_n , so that

$$\mathcal{B}_n x = \sum_{k=0}^n B_{nk} x \qquad (x \in X; n \in \mathbf{N}).$$
(2)

Let the operator $\mathcal{B}: s_X \to s'_X$ be given by

$$\eta = \mathcal{B}\chi,\tag{3}$$

where $\eta = (y_n)$ and

$$y_n = \sum_{k=0}^n B_{nk} x_k \qquad (\chi \in s_X; n \in \mathbf{N})$$
(4)

or, because of (1),

$$y_n = \mathcal{B}_n \chi \qquad (\chi \in s_X; n \in \mathbf{N}). \tag{5}$$

In view of (3)–(5) we have

$$\eta = \mathcal{B}\chi = (y_n) = (\mathcal{B}_n\chi) = \left(\sum_{k=0}^n B_{nk}x_k\right) \qquad (\chi \in s_X).$$
(6)

It is proved in [⁸] that the first of these operators $\mathcal{B}_n \in \mathcal{L}(s_X, X)$, the second operator $\mathcal{B}_n \in \mathcal{L}(X, X)$, and $\mathcal{B} \in \mathcal{L}(s_X, s'_X)$, whenever $B_{nk} \in \mathcal{L}(X, X)$ $(n, k \in \mathbb{N})$ and s'_X is any of m_X , c_X or $s'_X = s_X = \ell_X$.

In the sequel we need for generalized triangular methods $\mathcal{B} = (B_{nk})$ defined by (1)–(4) the following two theorems and the corollaries to them. Both theorems hold also for the case $B_{nk} \in \mathcal{L}(X, Y)$. **Theorem A.** Let the method $\mathcal{B} = (B_{nk})$ with $B_{nk} \in \mathcal{L}(X, X)$ be defined by (6). Then \mathcal{B} is of $c_X \to c_X$ type if and only if 1^0 there exists $\lim B_{nk}x = B_kx$ $(x \in X; k \in \mathbb{N})$,

2⁰ there exists $\lim_{n} \sum_{k=0}^{n} B_{nk}x = Bx$ $(x \in X),$ 3⁰ $\sup_{\|x_k\| \le 1} \|\sum_{k=0}^{n} B_{nk}x_k\| = O(1)$ $(n \in \mathbf{N}).$

Moreover,

$$\lim_{n} y_{n} = \lim_{n} \sum_{k=0}^{n} B_{nk} x_{k} = B x^{*} + \sum_{k} B_{k} (x_{k} - x^{*})$$
(7)

whenever these conditions are satisfied and $x^* = \lim_{k \to \infty} x_k$.

Theorem B. Let the method $\mathcal{B} = (B_{nk})$ with $B_{nk} \in \mathcal{L}(X, X)$ be defined by (6). Then \mathcal{B} is of $\ell_X \to \ell_X$ type if and only if

$$\sum_{n=k}^{\infty} \|B_{nk}x\| \le M\|x\| \qquad (x \in X; k \in \mathbf{N}), \tag{8}$$

the constant M being independent from x and k. Moreover,

$$\sum_{n} y_n = \sum_{k} \mathcal{G}_k x_k,\tag{9}$$

with

$$\mathcal{G}_k x = \sum_{n=k}^{\infty} B_{nk} x \qquad (x \in X; k \in \mathbf{N}), \tag{10}$$

whenever the condition (8) is satisfied and $(x_k) \in \ell_X$.

Corollary A.1. Let the method $\mathcal{B} = (B_{nk})$ with $B_{nk} \in \mathcal{L}(X, X)$ be defined by (6). Then \mathcal{B} is regular if and only if the conditions of Theorem A with B = I and $B_k = \theta$ ($k \in \mathbf{N}$) are satisfied.

These sentences can be obtained as immediate corollaries of their analogues proved for generalized infinite matrix methods by Zeller [⁴], Kangro [⁵], and Robinson [³], respectively. It is also clear that the following Remarks A.1, B.1, and B.2 are true.

Remark A.1. The operators B_k and B, appearing in the conditions 1^0 and 2^0 of Theorem A, are linear and bounded or, precisely, $B, B_k \in \mathcal{L}(X, X)$ $(k \in \mathbb{N})$.

Remark B.1. The series $\sum \mathcal{G}_k x_k$ of Theorem B is absolutely convergent and it may be treated either in the form $\sum y_n$ or $\sum \mathcal{B}_n \chi$. Moreover, there exists a constant M such that

$$\sum_{n} \|y_{n}\| = \sum_{n} \|\mathcal{B}_{n}\chi\| = \sum_{k} \|\mathcal{G}_{k}x_{k}\| \le M\|\chi\|.$$
(11)

Remark B.2. Let the operators $\mathcal{G}_k : X \to X$ be defined by (9) and (10) with all premises of Theorem B. Then

- (a) $\mathcal{G}_k \in \mathcal{L}(X, X)$ $(k \in \mathbf{N});$
- (b) the sequence $\|\mathcal{G}_k\|$ is bounded, at which

$$|\mathcal{G}_k|| \le M \qquad (k \in \mathbf{N}),\tag{12}$$

where M is the constant from (8).

Below we need for methods of $\ell_X \to \ell_X$ type the following corollary of Theorem B, which is a generalization of an analogous result of the classical case derived by Baron [⁹]. The proofs of both these results are fully similar.

Corollary B.1. Let the method $\mathcal{B} = (B_{nk})$ with $B_{nk} \in \mathcal{L}(X, X)$ be defined by (6) and let $\mathcal{B} : \ell_X \to \ell_X$. Then \mathcal{B} is absolutely regular if and only if

$$\mathcal{G}_k x = x \qquad (x \in X; k \in \mathbf{N}) \tag{13}$$

for \mathcal{G}_k : $X \to X$ fixed by (9) and (10). At that $||\mathcal{B}|| = 1$ and

$$\sum_{n} y_n = \sum_{k} x_k \qquad (\chi \in \ell_X).$$
(14)

Note. The results, obtained in Corollary B.1, and Remarks B.1 and B.2, improve our knowledge about the methods $\mathcal{B}: \ell_X \to \ell_X$ discussed in [⁸].

2. GENERAL THEOREMS

Suppose that $\chi = (x_k)$ is a sequence of elements in the B-space X. In accordance with the classical form of Mercer's theorems for number sequences, let us examine a transformation $\zeta = (z_n)$ of χ , where $z_n = \alpha x_n + (1 - \alpha) \sum_{k=0}^n B_{nk} x_k$ and $\alpha \in \mathbf{R} \setminus \{0\}$. In view of (1), we use further for ζ mostly the following expression:

$$z_n = \alpha x_n + (1 - \alpha) \mathcal{B}_n \chi \qquad (n \in \mathbf{N}).$$
(15)

We need also the notation $\frac{\alpha-1}{\alpha} = q$, $\frac{1}{\alpha}z_n = t_n$, and $\tau = (t_n) = \frac{1}{\alpha}\zeta$. Now, from (15) it follows that

$$t_n = x_n - q\mathcal{B}_n\chi \qquad (n \in \mathbf{N}). \tag{16}$$

Employing the operator $\mathcal{B}: s_X \to s_X$ given by (6), we can transform the relations (15) and (16) to

$$\zeta = \alpha \chi + (1 - \alpha) \mathcal{B} \chi \tag{17}$$

and

$$\tau = \chi - q\mathcal{B}\chi,\tag{18}$$

respectively, which are fixed by operators $\alpha I + (1 - \alpha)\mathcal{B}$ and $I - q\mathcal{B}$. Based on the results of [⁸] and the sense of $\mathcal{L}(X, X)$, we get that $I - q\mathcal{B}_n : s_X \to X$, $I - q\mathcal{B}_n \in \mathcal{L}(s_X, X), I - q\mathcal{B} : s_X \to s_X$, and $I - q\mathcal{B} \in \mathcal{L}(s_X, s_X)$ whenever $B_{nk} \in \mathcal{L}(X, X)$.

Theorem 1. Let the method \mathcal{B} : $s_X \to s_X$ be defined by (6) with $B_{nk} \in \mathcal{L}(X, X)$ $(n, k \in \mathbf{N})$ and let s_X be m_X , c_X or ℓ_X .

If $\zeta = (z_n) \in s_X$ is given by (17) and if $|\frac{1-\alpha}{\alpha}| < ||\mathcal{B}||^{-1}$, then $\chi = (x_k) \in s_X$. At that

$$\lim_{n} z_{n} = \alpha x^{*} + (1 - \alpha) \left[Bx^{*} + \sum_{k} B_{k} (x_{k} - x^{*}) \right],$$
(19)

where $Bx = \lim_{n \to \infty} \mathcal{B}_n x$, $B_k x = \lim_{n \to \infty} B_{nk} x$ $(x \in X; n, k \in \mathbb{N})$, and $x^* = \lim_{k \to \infty} x_k$, or

$$\sum_{n} z_n = \alpha \sum_{k} x_k + (1 - \alpha) \sum_{k} \mathcal{G}_k x_k,$$
(20)

where $\mathcal{G}_k x = \sum_{n=k}^{\infty} B_{nk} x$ ($x \in X; k \in \mathbb{N}$), for the cases $s_X = c_X$ or $s_X = \ell_X$, respectively.

Proof. By the assumptions for α , $||\mathcal{B}||$ and the meaning of q we get $||q\mathcal{B}|| < 1$. As, additionally, s_X is a B-space and every $B_{nk} \in \mathcal{L}(X, X)$, then $\mathcal{B} \in \mathcal{L}(s_X, s_X)$ (see above). All this will guarantee the invertibility of $I - q\mathcal{B}$ with $(I - q\mathcal{B})^{-1} \in \mathcal{L}(s_X, s_X)$ (see, e.g., [¹], V; [²], IV). Therefore, and since $\zeta \in s_X$ yields $\tau \in s_X$, we obtain from (18) that $\chi = (I - q\mathcal{B})^{-1}\tau \in s_X$.

To prove the relations (19) and (20), we observe separately the following two cases.

First, let $s_X = c_X$. Since by now $\chi \in c_X$, there exists $\lim_k x_k = x^*$ with $x^* \in X$. As $\mathcal{B} : c_X \to c_X$, then, relying on Theorem A and Remark A.1, $\lim_n y_n = \lim_n \mathcal{B}_n \chi$ takes the form (7). Thus, starting from (15), we get (19).

Second, let $s_X = \ell_X$. According to the first part of the proof we have $\chi \in \ell_X$. As $\mathcal{B} : \ell_X \to \ell_X$, then $(y_n) = (\mathcal{B}_n \chi) \in \ell_X$. In view of Theorem B and Remark B.2, the equality (9) holds with operators $\mathcal{G}_k \in \mathcal{L}(X, X)$ being fixed by (10). Finally, from (15) we infer (20), which completes the proof.

Remark 1.1. The parameter $\alpha \neq 0$ which occurs in generalized M-theorems is commonly fixed by the condition

$$\left|\frac{1-\alpha}{\alpha}\right| < \|\mathcal{B}\|^{-1}.\tag{21}$$

In some cases we use the following equivalent relation: (21) $\Leftrightarrow \alpha > \frac{1}{2}$, if $||\mathcal{B}|| = 1$.

The proofs of M-theorems for methods of $c_X \to c_X$ and $\ell_X \to \ell_X$ type, where respectively the validity of $\lim_n z_n = \lim_k x_k$ and $\sum z_n = \sum x_k$ would be proved, can be simplified by the next two lemmas.

Lemma 1. Let \mathcal{B} : $c_X \to c_X$ and suppose that all assumptions for \mathcal{B} and ζ are the same as in Theorem 1. If $\zeta \in c_X$ and if $|\frac{1-\alpha}{\alpha}| < ||\mathcal{B}||^{-1}$, then

$$\lim_{n} z_n = \lim_{k} x_k \tag{22}$$

if and only if B is regular.

Proof. The implication $\zeta \in c_X \Rightarrow \chi \in c_X$ is obvious by Theorem 1.

So, it remains to prove that for (22) the regularity of \mathcal{B} is necessary and sufficient. For the sufficiency the regularity of \mathcal{B} is evident.

For the necessity, let (22) be valid for each $\chi \in c_X$. Then (22) is true also for both sequences $\chi_x = (x_n) = (x, x, ...)$ and $\chi_m^* = (x_n^*) = (\theta, ..., \theta, x^*, \theta, ...)$ with arbitrary $x, x^* \in X$. Clearly, $\lim_n x_n = x$ and $\lim_n x_n^* = \theta$ hold for χ_x and for χ_m^* , respectively.

From the above statements and in view of (7), Theorem A, and Remark A.1 we get for each χ_x that $\lim_n y_n = Bx + \sum_k B_k(x-x) = Bx$. Employing this result in (19), we get $\lim_n z_n = \alpha x + (1-\alpha)Bx$. Now it follows from (22) that $\alpha x + (1-\alpha)Bx = x$, or Bx = x $(x \in X)$, signifying that B = I. Analogously, we get for every χ_m^* that $\lim_n y_n = B_m x^*$ and $\lim_n z_n = \alpha \theta + (1-\alpha)B_m x^*$, yielding $(1-\alpha)B_m x^* = \theta$, or $B_m x^* = \theta$ $(x^* \in X; m \in \mathbf{N})$, signifying that all $B_m = \theta$. So, the regularity of \mathcal{B} is guaranteed by Corollary A.1.

Lemma 2. Let \mathcal{B} : $\ell_X \to \ell_X$ and suppose that all assumptions for \mathcal{B} and ζ are the same as in Theorem 1. If $\zeta \in \ell_X$ and if $|\frac{1-\alpha}{\alpha}| < ||\mathcal{B}||^{-1}$, then

$$\sum_{n} z_n = \sum_{k} x_k$$

(23)

if and only if B is absolutely regular.

Proof. The first part of our proof is analogous to the corresponding part of Lemma 1.

For the necessity, let (23) be valid for each $\chi \in \ell_X$. Then (23) is true also for every $\hat{\chi}_m = (\hat{x}_k)$ ($\hat{x} \in X$) given in Lemma 1 as X_m^* . In this case it follows from (10) and Remark B.2 that $\mathcal{G}_k \hat{x}_m = \mathcal{G}_m \hat{x}$ if k = m and $\mathcal{G}_k \hat{x}_m = \theta$ whenever $k \neq m$. Therefore and in view of (9) and (20) we get

$$\sum_{n} z_n = \alpha \sum_{k} \hat{x}_k + (1 - \alpha) \sum_{k} \mathcal{G}_k \hat{x}_k = \alpha \hat{x} + (1 - \alpha) \mathcal{G}_m \hat{x}.$$

From the last result, by using (23), we obtain $\alpha \hat{x} + (1 - \alpha)\mathcal{G}_m \hat{x} = \hat{x}$ and then $\mathcal{G}_m \hat{x} = \hat{x}$ ($\hat{x} \in X; m \in \mathbb{N}$). Consequently, all these operators \mathcal{G}_m satisfy the condition (13). Thus \mathcal{B} is absolutely regular and (14) is valid (see Corollary B.1). The lemma is proved.

Various problems of the generalized summability theory necessitate examination of such M-theorems where the method \mathcal{B} satisfies certain additional conditions which are typical of several well-known classical methods like the Cesàro, Riesz, Euler-Knopp methods, and also for generalized methods of the latters.

For such cases let us prove the following two theorems.

Theorem 2. Let the operators \mathcal{B}_n and \mathcal{B} be defined by (1) and (6) with $B_{nk} \in \mathcal{L}(X, X)$ $(n, k \in \mathbf{N})$.

Suppose the following conditions hold.

$$|\mathcal{B}_n|| \le 1 \text{ for } \mathcal{B}_n : c_X \to X \qquad (n \in \mathbf{N}), \tag{24}$$

$$\mathcal{B}_n x = x \quad (x \in X; n \in \mathbf{N}), \tag{25}$$

$$\lim B_{nk}x = \theta \quad (x \in X; k \in \mathbf{N}).$$
(26)

If $\zeta = (z_n) \in c_X$ is given by (17) and if $\alpha > \frac{1}{2}$, then $\chi = (x_k) \in c_X$ and $\lim_k x_k = \lim_n z_n$.

Proof. It follows immediately from (1), $||\mathcal{B}_n|| = \sup_{||x|| \le 1} ||\mathcal{B}_n \chi||$, and (24) that the condition 3⁰ of Theorem A holds. Because of that and by other premises for B_{nk} and \mathcal{B}_n we can infer from Theorem A that $\mathcal{B}: c_X \to c_X$. Therefore $||\mathcal{B}|| = 1$ (see [⁸], Theorem 3). The regularity of \mathcal{B} follows now from Corollary A.1. Hence (see Lemma 1), $\chi \in c_X$ and (22) is valid, which completes the proof.

Analogously we can prove the following theorem using Theorem B and Corollary B.1 instead of Theorem A and Corollary A.1.

Theorem 3. Let the operators \mathcal{B} and \mathcal{G}_k be defined by (6) and (10) with $B_{nk} \in \mathcal{L}(X, X)$ $(n, k \in \mathbf{N})$.

Suppose the conditions (8) and (13) hold. If $\zeta = (z_n) \in \ell_X$, where ζ is given by (17), and if $\alpha > \frac{1}{2}$, then $\chi = (x_k) \in \ell_X$ and $\sum z_n = \sum x_k$.

3. MERCER'S THEOREMS FOR GENERALIZED RIESZ AND EULER-KNOPP METHODS

For any generalized summability method $\mathcal{B} = (B_{nk})$ with $B_{nk} \in \mathcal{L}(X, X)$, given by sequence-to-sequence transformation, there exists a corresponding method $\overline{\mathcal{B}} = (\overline{B}_{nk})$, given by series-to-series transformation, where

$$\bar{B}_{nk} = \sum_{\nu=k}^{n} \bar{\Delta} B_{n\nu}, \quad \bar{\Delta} B_{n\nu} = B_{n\nu} - B_{n-1,\nu} \quad (n,k \in \mathbf{N}).$$
(27)

These formulas, meant for triangular matrices, are completely analogous to the well-known formulas of scalar matrix methods (see, e.g., [^{9,10}]).

In what follows the elements with negative indexes are everywhere taken to be zero.

Let $\Re = (\Re, P_n) = (R_{nk})$ be the generalized Riesz method given by sequenceto-sequence transformation and specified in [^{7,8}] by

$$R_{nk} = \begin{cases} \mathcal{R}_n P_k & (k = 0, 1, \dots, n), \\ \theta & (k > n), \end{cases}$$
(28)

with $\mathcal{R}_n, P_k \in \mathcal{L}(X, X)$ and

$$\mathcal{R}_n \sum_{k=0}^n P_k x = x \qquad (x \in X; n \in \mathbf{N}).$$
⁽²⁹⁾

Relying on (27)–(29), we can easily check that the corresponding method $\overline{\Re} = (\overline{\Re}, P_k) = (\overline{R}_{nk})$ is determined by

$$\bar{R}_{nk} = \begin{cases} (\mathcal{R}_{n-1} - \mathcal{R}_n) \sum_{\nu=0}^{k-1} P_{\nu} & (k = 0, 1, \dots, n), \\ \theta & (k > n). \end{cases}$$
(30)

Now, using (9), (10), and the results of Theorem B with Remarks B.1, B.2, we prove that the operators \mathcal{G}_k connected with $\overline{\mathfrak{R}}: \ell_X \to \ell_X$ satisfy the condition (13).

As for each $x \in X$, $k \in \mathbb{N}$ and because of (10)

$$\mathcal{G}_k x = \lim_m \sum_{n=k}^m (\Delta \mathcal{R}_{n-1}) \sum_{\nu=0}^{k-1} P_\nu x = (\mathcal{R}_{k-1} - \lim_m \mathcal{R}_m) \sum_{\nu=0}^{k-1} P_\nu x$$

and $\lim_m \mathcal{R}_m P_k x = \theta$ (see [⁸], Theorem 4), then $\mathcal{G}_k x = \mathcal{R}_{k-1} \sum_{\nu=0}^{k-1} P_{\nu} x$. Hence, (13) is true in view of (29).

Theorems 4 and 5 for the method (\Re, P_n) extend Theorems 9 and 10 of [⁷]. Theorem 4 follows immediately from Theorem A and Corollary A.1 if we take (28) and (29) into account.

Theorem 4. The method (\Re, P_n) , defined by (6), (28), and (29) with $\mathcal{R}_n, P_k \in \mathcal{L}(X, X)$ $(n, k \in \mathbb{N})$, is of $c_X \to c_X$ type if and only if

$$\exists \lim_{n \to \infty} \mathcal{R}_n x = \mathcal{R}^* x \qquad (x \in X) \tag{31}$$

and

$$\sup_{\|x_k\| \le 1} \|\mathcal{R}_n \sum_{k=0}^n P_k x_k\| = O(1).$$
(32)

The method (\Re, P_n) is regular if and only if the conditions (31) with $\mathcal{R}^* = \theta$ and (32) are valid.

Theorem 5. The method (\Re, P_n) , defined by (6), (29), and (30) with $\mathcal{R}_n, P_k \in \mathcal{L}(X, X)$ $(n, k \in \mathbf{N})$, is of $\ell_X \to \ell_X$ type if and only if

$$\sum_{n=k}^{\infty} \|(\Delta \mathcal{R}_{n-1}) \sum_{\nu=0}^{k-1} P_{\nu} x\| \le M \|x\| \qquad (x \in X; k \in \mathbf{N}),$$
(33)

where the constant M is independent from x and k.

The last method is absolutely regular and $\|\overline{\Re}\| = 1$.

Theorem 5 can be obtained as a direct application of Theorem B and Corollary B.1.

Next, with the help of various results of generalized summability methods, treated above, we obtain Mercer's theorems for generalized Riesz methods.

Theorem 6. Let the method $\Re = (\Re, P_n)$, defined by (6), (28), and (29) with $\mathcal{R}_n, P_k \in \mathcal{L}(X, X)$ $(n, k \in \mathbb{N})$, satisfy the conditions (31) and (32).

If $\zeta = (z_n) \in c_X$ is given by (17) with $\mathcal{B} = (\Re, P_n)$ and if

(a) $\left|\frac{1-\alpha}{\alpha}\right| < \|\Re\|^{-1}$ for the case $\|\Re\| > 1$

or if

(b) $\alpha > \frac{1}{2}$ for the case $||\Re|| = 1$, then $\chi \in c_X$;

(c) and if, in addition to the assumptions of case (b), we suppose that (31) holds with $\mathcal{R}^* = \theta$, then $\lim_k x_k = \lim_n z_n$.

Proof. The assertion $\Re : c_X \to c_X$ follows immediately from Theorem 4 because the validity of (31) and (32) is assumed. As (29) holds for each (\Re, P_n) , then, relying on Theorem 3 of [⁸], we have to discuss only two possible cases: $||\Re|| > 1$ and $||\Re|| = 1$.

Both statements (a) and (b) follow from Theorem 1 in view of Remark 1.1. By applying Theorems 2 and 4 we get the statement of case (c). This completes the proof.

Immediately from Theorems 3 and 5 we can infer Theorem 7.

Theorem 7. Let for the method $\widehat{\Re} = (\widehat{\Re}, P_n)$, defined by (6), (29), and (30) with $\mathcal{R}_n, P_k \in \mathcal{L}(X, X)$ $(n, k \in \mathbb{N})$, the condition (33) hold. If $\zeta = (z_n) \in \ell_X$ is given by (17) with $\mathcal{B} = (\widehat{\Re}, P_n)$ and if $\alpha > \frac{1}{2}$, then $\chi = (x_k) \in \ell_X$ and $\sum z_n = \sum x_k$.

The generalized Euler-Knopp method $\mathcal{E} = (\mathcal{E}, \Lambda) = (E_{nk})$, given by sequence-to-sequence transformation, is specified in [^{7,8}] by

$$E_{nk} = \begin{cases} \binom{n}{k} \Lambda^k (I - \Lambda)^{n-k} & (k = 0, 1, \dots, n), \\ \theta & (k > n), \end{cases}$$
(34)

where $\Lambda \in \mathcal{L}(X, X)$ and $\Lambda^0 = I$. In [⁷] it was proved that the equality (25), or, in our case $\mathcal{E}_n x = x$ ($x \in X; n \in \mathbb{N}$) with

$$\mathcal{E}_n \chi = \sum_{k=0}^n E_{nk} x_k \qquad (\chi \in s_X, n \in \mathbf{N}), \tag{35}$$

is valid for every (\mathcal{E}, Λ) . It is also known from [⁷] that \mathcal{E} is conservative or regular if and only if

$$\|\Lambda\| + \|I - \Lambda\| = 1$$
(36)

or (36) and

$$\|I - \Lambda\| < 1 \tag{37}$$

hold, respectively.

Let $\overline{\mathcal{E}} = (\overline{\mathcal{E}}, \Lambda) = (\overline{E}_{nk})$ denote the Euler-Knopp method given by series-to-series transformation. Sometimes we use also $\overline{E}_{nk}(\Lambda)$ instead of \overline{E}_{nk} . Transforming the elements E_{nk} with the help of (27), we can write (exactly as it is realized for the classical method (E, λ) in [⁹]) the elements \overline{E}_{nk} in the following form:

$$\bar{E}_{nk} = \begin{cases} \frac{k}{n} \binom{n}{k} \Lambda^k (I - \Lambda)^{n-k} & (k = 1, \dots, n), \\ \delta_{n0} I & (k = 0), \\ \theta & (k > n), \end{cases}$$
(38)

where δ_{ij} is the Kronecker symbol.

Further we need two well-known formulas:

$$\frac{k}{n}\binom{n}{k} = \binom{n-1}{k-1}, \quad \binom{n-1}{-1} = \delta_{n0} \quad (n,k \in \mathbf{N}).$$
(39)

Lemma 3. The both methods $(\bar{\mathcal{E}}, I) = (\bar{E}_{nk}(I))$ and $(\bar{\mathcal{E}}, \theta) = (\bar{E}_{nk}(\theta))$ are of $\ell_X \to \ell_X$ type, but only $(\bar{\mathcal{E}}, I)$ is absolutely regular.

The validity of these assertions follows immediately from (38).

Lemma 4. If for $(\bar{\mathcal{E}}, \Lambda) = (\bar{\mathcal{E}}_{nk})$ with $\Lambda \in \mathcal{L}(X, X)$ the condition (37) is fulfilled, then the operators $\mathcal{G}_k : X \to X$ $(k \in \mathbb{N})$ defined by (10) satisfy the condition (13), *i.e.*,

$$\mathcal{G}_k x = \sum_{n=k}^{\infty} \bar{E}_{nk} x = x \qquad (x \in X; k \in \mathbf{N}).$$
(40)

Proof. It is known [^{1,2}] that for each $A \in \mathcal{L}(X, X)$, $x \in X$, and $k, m \in \mathbb{N}$ the relations

$$A^{k}x = A(A^{k-1}x), \ A^{k}(A^{m}x) = A^{k+m}x = A^{m}(A^{k}x)$$
 (41)

hold. Also, (see, e.g., [1,2]) the operator I - A is invertible if ||A|| < 1. In this case $(I - A)^{-1} \in \mathcal{L}(X, X)$ and $(I - A)^{-1} = \sum_{i=0}^{\infty} A^i$. In addition to the last two facts and by (41), there exist the inverse operators $(I - A)^{-k} \in \mathcal{L}(X, X)$ $(k \in \mathbb{N})$ for which

$$(I-A)^{-k} = \sum_{i=0}^{\infty} {\binom{k+i-1}{i}} A^i \qquad (k \in \mathbf{N}).$$
(42)

Starting from (10) and (38), changing the index of summation by i = n - k, and taking account of (39) and (42) with $A = I - \Lambda$ and $||I - \Lambda|| < 1$, we get for all $x \in X$ that

$$\sum_{n=k}^{\infty} \bar{E}_{nk} x = \Lambda^k \sum_{i=0}^{\infty} {\binom{k-1+i}{i}} (I-\Lambda)^i x = \Lambda^k [I-(I-\Lambda)]^{-k} x = x.$$

Lemma is proved.

The next theorem which gives the necessary and sufficient condition for $\overline{\mathcal{E}} = (\overline{\mathcal{E}}, \Lambda)$ to be of $\ell_X \to \ell_X$ type is in a sense more general than the analogous result obtained in [⁷].

Theorem 8. The method $\overline{\mathcal{E}} = (\overline{\mathcal{E}}, \Lambda)$ defined by (6) and (38) with $\Lambda \in \mathcal{L}(X, X)$ is of $\ell_X \to \ell_X$ type if and only if (36) holds. This method is absolutely regular if and only if $\Lambda \neq \theta$. At that $\|\overline{\mathcal{E}}\| = 1$.

Proof. In view of Lemma 3 we omit the case $\Lambda = \theta$ from the following discussion.

By Theorem B we have to prove that for $\mathcal{B} = \overline{\mathcal{E}}$ the condition (8) is valid if and only if (36) holds. Starting from the left-hand side of (8), using (38), (39), and

changing the indexes by n - k = i, in view of (42) we see that the boundedness of $\sum_{n=k}^{\infty} \|\bar{E}_{nk}x\|$ will be guaranteed if and only if (36) holds. Actually, we get for all $x \in X$:

$$\sum_{n=k}^{\infty} \|\bar{E}_{nk}x\| \le \|\Lambda\|^k \sum_{i=0}^{\infty} {k-1+i \choose i} \|I - \Lambda\|^i \|x\| = \left(\frac{\|\Lambda\|}{1 - \|I - \Lambda\|}\right)^k \|x\| \le \|x\|,$$

where we took into account that $\frac{\|\Lambda\|}{1-\|I-\Lambda\|} \leq 1 \Leftrightarrow \|\Lambda\| + \|I-\Lambda\| \leq 1 \Leftrightarrow \|\Lambda\| + \|I-\Lambda\| = 1$, yielding $\|I-\Lambda\| < 1$, as $\Lambda \neq \theta$.

By the final result and because of Lemma 4 the condition (40) is fulfilled. The absolute regularity of $\overline{\mathcal{E}}$ and $\|\overline{\mathcal{E}}\| = 1$ follow now from Corollary B.1.

Finishing this part, we shall apply the results of Sections 2 and 3 to obtain M-theorems for (\mathcal{E}, Λ) methods.

Theorem 9. Let the method $\mathcal{E} = (\mathcal{E}, \Lambda)$ defined by (6), (34), and (35) with $\Lambda \in \mathcal{L}(X, X)$ satisfy the condition (36) or both (36) and (37).

If $\zeta = (z_n) \in c_X$ is given by (17) with $\mathcal{B} = \mathcal{E}$ and if $\alpha > \frac{1}{2}$, then $\chi = (x_k) \in c_X$ or the equality $\lim_k x_k = \lim_n z_n$ hold, respectively.

Proof. By the conditions (36) or $\{(36), (37)\}$ and in view of Theorems 6 or 5 from [⁷], the method \mathcal{E} is conservative or regular, respectively. As in both cases $||\mathcal{E}|| = 1$ (see [⁸], Corollary 3.2), then let $\alpha > \frac{1}{2}$. Hence, the provable assertions follow from Corollary 3.2 of [⁸] and Theorem 2.

The next result follows from Theorem 3, Theorem 8, and Lemma 4.

Theorem 10. Let the method $\overline{\mathcal{E}} = (\overline{\mathcal{E}}, \Lambda)$ be defined by (6) and (38) with $\Lambda \in \mathcal{L}(X, X)$ satisfying the condition (36).

If $\zeta = (z_n) \in \ell_X$ is given by (17) with $\mathcal{B} = \overline{\mathcal{E}} = (\overline{E}_{nk})$ and if $\alpha > \frac{1}{2}$, then $\chi \in \ell_X$. If, in addition to previous assumptions, we suppose that $\Lambda \neq \theta$, then $\chi \in \ell_X$ and $\sum z_n = \sum x_k$.

4. CONCLUDING REMARKS

In 1907 Mercer [¹¹] showed for real sequences that if $y_n = (n+1)^{-1} \sum_{k=0}^n x_k$ and if $\alpha x_{n+1} + (1-\alpha)y_n \to x^*$, where $n \to \infty$ and $x^* \neq \infty$, then both x_{n+1} and y_n tend to x^* , provided that $\alpha > 0$.

This theorem has been extended in various directions and numerous authors have studied its different modifications (see, e.g., $[^{12-16}]$). Theorems of this kind, mainly in the scalar case, are still being examined.

Numerous M-theorems, associated with classical summability methods (among them several results of the works cited above), can be inferred from our generalized M-theorems.

Let now $B = (b_{nk})$ be a triangular matrix method with $b_{nk} \in \mathbf{K}$ $(n, k \in \mathbf{N})$. We can treat this method also in an operator form. To this end, instead of B, we use the method $\mathcal{B} = (B_{nk})$ with

$$B_{nk} = b_{nk}I, \quad \mathcal{B}_n\chi = \sum_{k=0}^n b_{nk}Ix_k, \quad \mathcal{B}\chi = (\mathcal{B}_n\chi) \quad (n,k \in \mathbf{N}), \quad (43)$$

where $\chi = (x_k) \in s_X$. For this special case of the general method \mathcal{B} the following formulas hold (see also [⁸], Summaries I, II):

$$||B|| = \sup_{n} ||B_{n}||, ||B_{n}|| = \sum_{k=0}^{n} |b_{nk}| \quad (n \in \mathbf{N})$$
(44)

for a general instance of $B = (b_{nk})$ and

$$||B|| = 1, ||B_n|| = 1 \quad (n \in \mathbf{N})$$
 (45)

for non-negative methods satisfying the condition

$$\sum_{k=0}^{n} b_{nk} = 1 \qquad (n \in \mathbf{N}). \tag{46}$$

In the case $X = \mathbf{K}$ the notations s, m, c, and ℓ will be used instead of s_X, m_X, c_X , and ℓ_X .

Employing (43)–(45), from Theorem 1 and Lemma 1 we can infer an M-theorem for $B = (b_{nk})$ and for $\zeta = (z_n) \in c_X$ with

$$z_n = \alpha x_n + (1 - \alpha) \sum_{k=0}^n b_{nk} x_k \qquad (n \in \mathbf{N}).$$

$$(47)$$

The result will be analogical to that obtained in $[^{15}]$.

For all non-negative and regular methods satisfying (46) we can deduce some M-theorems which occur in $[^{15,16}]$.

We denote, further, by $\mathcal{R} = (\mathcal{R}, p_n) = (r_{nk})$ and $E = E_{\lambda} = (E, q) = (e_{nk})$ with $p_n \in \mathbf{K}$, $q = \lambda^{-1} - 1$, and $\lambda \in \mathbf{R}$ the classical Riesz and Euler-Knopp methods, respectively. As we know, these methods, given by sequence-to-sequence transformation, and the methods $\overline{\mathcal{R}} = (\overline{r}_{nk})$ and $\overline{E} = (\overline{e}_{nk})$, given by series-toseries transformation, are defined by

$$r_{nk} = \mathcal{P}_n^{-1} p_k, \ \mathcal{P}_n = \sum_{k=0}^n p_k \neq 0 \ \text{and} \ e_{nk} = \binom{n}{k} \lambda^k (1-\lambda)^{n-k},$$
 (48)

and

$$\bar{r}_{nk} = \frac{\mathcal{P}_{k-1}p_k}{\mathcal{P}_{n-1}\mathcal{P}_n} \quad \text{and} \quad \bar{e}_{nk} = \frac{k}{n}e_{nk},$$
(49)

respectively. At that (46) is true for both methods E and \mathcal{R} (about E see [⁷⁻⁹]; for \mathcal{R} it is clear) and therefore every regular method E is non-negative (see [^{8,9}]).

The M-theorem for such (\mathcal{R}, p_n) was first proved by Okada [¹⁶]. As a supplement to the last remark, let us observe the M-theorems in the classical form and for E_{λ} . Recall (see, e.g., [^{9,10}]) that $\mathcal{E}_{\lambda} : c \to c$ or E_{λ} is regular if and only if $0 \le \lambda \le 1$ or $0 < \lambda \le 1$, respectively. Even more, ||E|| = 1 in view of (45) and (46).

The next result follows immediately from Theorem 9.

Corollary 9.1. Let $\zeta = (z_n)$ be given by (47), with $b_{nk} = e_{nk}$ defined by (48), and let $0 \le \lambda \le 1$ or $0 < \lambda \le 1$.

If $\zeta \in c$ and if $\alpha > \frac{1}{2}$, then $\chi = (x_k) \in c$ or $\lim_k x_k = \lim_n z_n$ hold, respectively.

An analogue of Mercer's original theorem for the case of absolute summability was first proved by Bosanquet [¹²] and later in a generalized form by Walsh in 1942. Afterwards M-theorems of $\ell \to \ell$ type were proved for different summability methods of scalars. For the case (\mathcal{R}, p_n) such a theorem was proved by Hayashi [¹³]. For general triangular scalar methods $B = (b_{nk})$ this was done by Love [¹⁵], but Parameswaran proved in 1957 for this case an analogue of M-theorems studied by Agnew in 1954. Several of the mentioned results can be inferred from our Mtheorems. For instance, the next Corollaries 7.1 and 10.1 follow immediately from Theorem 7 and Theorem 10, respectively.

Corollary 7.1. Suppose that for $\overline{\mathcal{R}} = (\overline{r}_{nk})$ defined by (49) the condition $\sum_{n=k}^{\infty} |\overline{r}_{nk}| = O(1)$ holds and let $\zeta = (z_n)$ be given by (47) with $b_{nk} = \overline{r}_{nk}$. If $\zeta \in \ell$ and if $\alpha > \frac{1}{2}$, then $\chi = (x_k) \in \ell$ and $\sum x_k = \sum z_n$.

Corollary 10.1. Suppose that for $\bar{E}_{\lambda} = (\bar{e}_{nk})$ defined by (49) the condition $0 \leq \lambda \leq 1$ holds and let $\zeta = (z_n)$ be given by (47) with $b_{nk} = \bar{e}_{nk}$.

If $\zeta \in \ell$ and if $\alpha > \frac{1}{2}$, then $\chi = (x_k) \in \ell$. If, additionally to the previous propositions $\lambda \neq 0$, then $\sum x_k = \sum z_n$.

Note. In some cases our conditions about α differ from the corresponding conditions in the results of papers cited above. This is mainly caused by different methods used for investigations of that kind.

ACKNOWLEDGEMENT

This research was supported by the Estonian Science Foundation (grant No. 1991).

REFERENCES

- 1. Kantorovich, L. V. and Akilov, G. P. Funktsional'nyj analiz v normirovannykh prostranstvakh. Moscow, 1959 (in Russian).
- 2. Oja, E. and Oja, P. Funktsionaalanalüüs. TÜ, Tartu, 1991.
- Robinson, A. On functional transformations and summability. Proc. London Math. Soc. (2), 1950, 52, 132–160.
- 4. Zeller, K. Verallgemeinerte Matrixtransformationen. Math. Z., 1952, 56, 1, 18-20.
- 5. Kangro, G. O matrichnykh preobrazovaniyakh posledovatel'nostej v banakhovykh prostranstvakh. *Izv. AN ESSR. Fiz. Matem.*, 1956, **5**, 2, 108–128 (in Russian).
- 6. Maddox, I. J. Infinite Matrices of Operators. Springer, Berlin, 1980.
- 7. Nappus, A. and Sõrmus, T. Einige verallgemeinerte Matrixverfahren. *Proc. Estonian Acad. Sci. Phys. Math.*, 1996, **45**, 2/3, 201–210.
- 8. Sõrmus, T. Some properties of generalized summability methods in Banach spaces. Proc. Estonian Acad. Sci. Phys. Math., 1997, 46, 3, 171–186.
- 9. Baron, S. Vvedenie v teoriyu summiruemosti ryadov. Valgus, Tallinn, 1977 (in Russian).
- 10. Zeller, K. und Beekmann, W. Theorie der Limitierungsverfahren. Springer, Berlin, 1970.
- 11. Mercer, J. On the limits of real variants. Proc. London Math. Soc. (2), 1907, 5, 206-224.
- Bosanquet, L. S. An analogue of Mercer's theorem. J. London Math. Soc., 1938, 13, 177– 180.
- 13. Hayashi, G. A theorem on limit. Tôhoku Math. J., 1939, 45, 329-331.
- 14. Leslie, R. T. and Love, E. R. An extension of Mercer's theorem. Proc. Amer. Math. Soc., 1952, 3, 448–457.
- 15. Love, E. R. Mercer's summability theorem. J. London Math. Soc., 1952, 27, 413-429.
- 16. Okada, J. A theorem on limits. Tôhoku Math. J., 1919, 15, 280-283.

MERCERI TEOREEMID SEOSES ÜLDISTATUD SUMMEERIMISMENETLUSTEGA BANACHI RUUMIDES

Tamara SÕRMUS

On üldistatud klassikalisest summeeruvusteooriast tuntud Merceri teoreemid (M-teoreemid) üldistatud summeerimismenetlustele $\mathcal{B} = (B_{nk})$ ja jadaruumidele Banachi ruumides X. Kõik operaatorid $B_{nk} : X \to X$ on pidevad ja lineaarsed. On tõestatud seitse M-teoreemi üldistatud kolmnurksete menetluste ja üldistatud Euleri-Knoppi ning Rieszi menetluste kohta, mis on koonduvust või absoluutset koonduvust säilitavad. Töö tulemusi on rakendatud arvmaatriksitega määratud üldiste või klassikaliste menetluste puhul.