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Abstract. Mercer’s theorems, shortly, M-theorems, well-known for number sequences and

summability methods given by scalar matrices, are generalized to larger classes of summability
methods B = (B ) and sequences of points in B-spaces X. The operators By : X — X

are continuous and linear on X. Seven M-theorems for generalized triangular methods and

for generalized Euler—Knopp and Riesz methods of cx — cx type or £x — Zx type are

presented (cx and £x being spaces of convergent sequences or absolutely convergent series).
The applications of general results to scalar matrix methods and certain classical methods are

also discussed.

Key words: Banach spaces, operators and generalized summability methods, methods of

a — [3 type, Mercer’s theorems.

1. INTRODUCTION AND PRELIMINARIES

Let X and Y be Banach spaces (B-spaces) over the field K, where K = R or

K= C. For any two spaces X and Y the notation 7 : X— Y denotes

that the operator F maps X into Y, for which we could also

use the notion “F is of X>Y type”. The space Z(X, Y) of all continuous

linear operators from X into Y is known to be a B-space (see, e.g., [l],V; [2],
IV). We denote further by I and 6 the identity and the zero operator on any

B-space, respectively. Let x = (zx) be a sequence of zp €X. The well-

known sequence spaces are: my = {(zx) : zx € X; supg||zk|| < 00}; cx =

Hapleone Xp 4 limktk);lx=f(zk):x3x €X; > |zel| < oo). These

are all B-spaces with the norm ||x|| = supg||zk|| in mx and cx, and the norm

Ixll = >k llzkll in £x. Unless indicated otherwise, a sum Y zj, without limits

will always be understood as follows: > zr = >, Tk = YpeoZk-
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In this work the classical Mercer’s theorems (M-theorems), well-known for

number sequences and scalar matrix methods, are extended to sequences in B-

spaces and generalized triangular summability methods B = (B,) with B, €

L(X, X). More about matrix methods of this kind see, e.g. [2~B]. Ourmain results

on the generalized M-theorems are given in Section 2. M-theorems for generalized
Euler—Knopp and Riesz methods with some of classical cases are obtained in

Section 3 and 4 as applications of the results of Section 2.

Let us fix some notations connected with the method 3, where the spaces sx

and s’y willbe mx, cx or £x and N := {0,1,2,... }.
We define the operator 8,, : sx — X by

n

BnXZZßnkmk (XESx;’I’LEN)-
k=o

The special case of it as an operator of X — X type is also denoted by 8,,, so that

n

Bnz = >° Bnkz (z € X;n€N).
k=o

Let the operator B : sx — s’y be given by

n = By,

where 1 = (y,) and

n

Un =D BnkZk (xEsx;nEN)
k=o

or, because of (1)

Yn = Bnx (XESX;’IZEN)

In view of (3)—(5) we have

=By = (un) = (Bax)y = (Y Buesr) '(x € sx)
k=o

It is proved in [®] that the first of these operators B, € L(sx,X), the second

operator By, € L(X,X),and B € L(sx, s’y), wheneverBy, € L(X,X) (n,k€
N) and s'y is any of mx, cx or 8% = sx = €x.

In the sequel we need for generalized triangular methods B = (B)) defined

by (1)—(4) the following two theorems and the corollaries to them. Both theorems

hold also for the case B, € L(X,Y).

(1)

(2)

(3)

4)

(5)

(6)
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Theorem A. Let the method B = (Byy) with By, € L(X, X) be defined by (6).
Then B is ofcx — cx typeif and only if

19 there exists limBpyz = Byx (z € X;k €N),
n

n

20 there exists lim 5 Bnrz =Bz (z € X),
7

k=o
n

3° sup || > Bnrzal| = O(1) (n € N).
llzxl|<l k=o

Moreover, .

n

lišny„ = lilllrnkz Bz = Bz* + zk: Bi(zp — z*)
—0

whenever these conditions are satisfied and x* = lišn Tk:

Theorem B. Let the method B = (Bnx) with By € L(X, X) be defined by (6).
Then B is ofLx — Lx typeifand only if

o 0

>" Brzz] < Miz| (x € X;k € N),
n=k

the constant M being independent from x and k.

Moreover,

z Yn = zkaka
n k

with

o 0

Okz = 5° Bnkz (z € X;k € N),
n==k

whenever the condition (8) is satisfied and (zy) € £x.

Corollary A.l. Let the method B = (Byy) with By, € L(X, X) be defined by
(6). Then B is regular if and only if the conditions of Theorem A with B = I and

By =0 (k € N) are satisfied.

These sentences can be obtained as immediate corollaries of their analogues
proved for generalized infinite matrix methods by Zeller [*], Kangro [°], and

Robinson [3], respectively. It is also clear that the following Remarks A.l, 8.1, and

8.2 are true.

Remark A.l. The operators By, and B, appearing in the conditions 1° and 2° of

Theorem A, are linear and bounded or, precisely, B, By € L(X,X) (k € N).

(7)

(8)

(9)

(10)



Zn = ATn +(1—)Bnx (n € N). (15)
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Remark 8.1. The series) | Gz of Theorem B is absolutely convergent and itmay
be treated either in the form) y,, or >B,x. Moreover, there exists a constant M

such that

> llynll =D IBaxll =D IGkzill < Mixll-
n n k

Remark 8.2. Let the operators G, : X — Xbe defined by (9) and (10) with all

premises of Theorem B. Then

(@) G € L(X, X) (k € N);
(b) the sequence ||Gx|| is bounded, at which

Gkl < M (k € N),

where M is the constant from (8).

Below we need for methods of Zx — £x type the following corollary of

Theorem B, which is a generalization of an analogous result of the classical case

derived by Baron [°]. The proofs of both these results are fully similar.

Corollary 8.1. Let the method B = (Bypy) with By € L(X, X) be defined by (6)
andlet B: fx — £x. Then Bis absolutely regular ifand only if

Giw= T (z € X;k€N)

for G : X— Xfixed by (9) and (10). At that ||B|| = 1 and

> 8D n (x € &x):
n k

Note. The results, obtained in Corollary 8.1, and Remarks 8.1 and 8.2, improve
our knowledge about the methods B : 2x —£x discussed in [®].

2. GENERAL THEOREMS

Suppose that x = (zx) is a sequence of elements in the B-space X.

In accordance with the classical form of Mercer’s theorems for number

sequences, let us ‘examine a transformation ¢ = (z,) of y, where

Zn = oazn + (1 — @) Y p_o Brkzr and @ € R\ {o}. In viewof (1), we use further

for ¢ mostly the following expression:

(11)

(12)

(13)

(14)
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We need also the notation O‘T_l = d, š—z„ = t»,, and 7 = (tn) = šC. Now, from

(15) it follows that

tn = Tn — JBnXx (n € N)

Employing the operator B : sx —sx given by (6), we can transform the relations

(15) and (16) to

C=ax+(l-a)Bx

and

T = x — qßx,

respectively, which are fixed by operators ol + (1 — x)B and I — gB. Based on

the results of [®] and the sense of £(X,X), we get that I — ¢B, : sx — X,

I—qß, € L(sx,X), ] —qß: sx — sx,andI—qß € L(sx,sx) whenever

Bnkr € C(X, X)

Theorem 1. Let the method B: sx —sx be defined by (6) with By, € L(X, X)
(n,k € N) and let sx be mx, cx or lx.

If¢ = (2,) € sx is given by (17) andif |l=2| < ||B||™%, then x = (z}) € sx.

At that

limz, = az* + (1 —a) [Ba:* + sz(ka — x*)],n

k

where Br = lim, Bnz, Brxz = limp, Brxz (x € X;n,k € N), and z* =

mz Zk, or

Yooy a 1 e G,
n k k

where Gz =Y 2 .Bopz (z € X;k € N), for the cases sx = c¢x or sx = £x,
respectively.

Proof. By the assumptions for «, ||B|| and the meaning of ¢ we get ||¢B| < 1.

As, additionally, sx is a B-space and every By, € L(X, X), then B € L(sx,sx)
(see above). All this will guarantee the invertibility of I — ¢B with (I — ¢B)~! €

L(sx,sx) (see, e.g., ['l, V; [2], IV). Therefore, and since { € sx yields 7 € sx,

we obtain from (18) that y = (I — ¢B)~!7 € sx.

To prove the relations (19) and (20), we observe separately the following two

cases.

First, let sx = cx. Since by now x € cx, there exists lim; z, = z* with

z* € X. Asß : cx — cx, then, relying on Theorem A and Remark A.ll,

lim,, y, = lim,, B,x takes the form (7). Thus, starting from (15), we get (19).

(16)

(17)

(18)

(19)

(20)
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Second, let sy = £x. According to the first part of the proof we have x € £x.
As B : 2x — [£x,then (y,) = (Bpx) € €x. In view of Theorem B and

Remark 8.2, the equality (9) holds with operators G, € L(X, X) being fixed by
(10). Finally, from (15) we infer (20), which completes the proof.

Remark 1.1. The parameter o # 0 which occurs in generalized M-theorems is

commonly fixed by the condition

]l -« —[==| <lBl~
A

In some cases we use the following equivalent relation: (21) < o > 3, if |B|| = 1.

The proofs of M-theorems for methods of cx — cx and £x — £x type, where

respectively the validity of lim,, z, = limy 2 and ) | z, = > zx would be proved,
can be simplified by the next two lemmas.

Lemma 1. Let B : cx — cx and suppose that all assumptions for B and ( are

the same as in Theorem 1. If € cx andif |3=%| < ||B||™, then

limzp = limzk
n k

ifand only if B is regular.

Proof. The implication ( € cx = x € cx is obvious by Theorem 1.

So, it remains to prove that for (22) the regularity of B is necessary and

sufficient. For the sufficiency the regularity of B is evident.

For the necessity, let (22) be valid for each x € cx. Then (22) is true also for

both seguences X+x = (Tn) = (z7,7 and x, = (7ž) = (0,... ,0,2%*,0,...)
with arbitrary z,z* € X. Clearly, lim, z, = z and lim,, z;, = 8 hold for x, and

for x;,,, respectively.
From the above statements and in view of (7), Theorem A, and Remark A.l

we get for each x that lim, y, = Bz + ), By(z — ) = Bz. Employing this

result in (19), we get lim,, z, = az + (1 —o) Bz. Now it follows from (22) that

ax+ (1 —a)Bz =z,or Bz =z (z € X), signifying that B= I. Analogously,
we get for every xŽ, that lim, yn = Bmz* and lim, žp = 00 + (1 — a)Bm2*,
yielding (1 - x)Bmzx* =o,or Bmz* =0 (x* € X;m € N), signifying that all

8,, = 0. So, the regularity ofB is guaranteed by Corollary A.l.

Lemma 2. Let B : {x —{x and suppose that all assumptionsfor B and ( are the

same as in Theorem 1. If € €x and if |=2| < ||B||™!, then

D =)T
n k

ifand only if B is absolutely regular.

(21)

(22)

(23)
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Proof. The first part of our proof is analogous to the corresponding part of

Lemma 1.

For the necessity, let (23) be valid for each x € £x. Then (23) is true also for

every Xm = (£x) (£ €X) given in Lemma las X7;,. In this case it follows from

(10) and Remark 8.2 that GyZ,, = G 2 ifk= m and Gržm = 0 whenever k £ m.

Therefore and in view of (9) and (20) we get

Y m=o) &+(1—a)) Gy=ai+(1%a)Gnd.
n k k

From the last result, by using (23), we obtain aZ + (1 — @)G,Z = Z and then

Gmt = % (£ € X;m € N). Consequently, all these operators G,, satisfy the

condition (13). Thus B is absolutely regular and (14) is valid (see Corollary B.1).
The lemma is proved.

Various problems of the generalized summability theory necessitate

examination of such M-theorems where the method B satisfies certain additional

conditions which are typical of several well-known classical methods like the

Cesaro, Riesz, Euler—Knopp methods, and also for generalized methods of the

latters.

For such cases let us prove the following two theorems.

Theorem 2. Let the operators By, and B be defined by (1) and (6) with By €

L(IX,X) (n,k€N).
Suppose the following conditions hold.

IBnl| <1 for Bp:cx - X (n € N),
Brz=x (r€X;n€N),

limßyr =6O (z € X;k e N).
n

If( = (zn) € cx is given by (17) and ifa > %, then x = (z) € cx and

lima; = limz,. .
k n

Proof. It follows immediately from (1), ||Bn|| = supjzi/<1 |Bax||; and (24) that the

condition 3° of Theorem A holds. Because of that and by other premises for Bnz
and 8,, we can infer from Theorem A that B : cx — cx. Therefore ||B|| = 1 (see
[B], Theorem 3). The regularity ofB follows now from Corollary A.l. Hence (see
Lemma 1), x € cx and (22) is valid, which completes the proof.

Analogously we can prove the following theorem using Theorem B and

Corollary 8.1 instead of Theorem A and Corollary A.l.

Theorem 3. Let the operators B and Gy, be defined by (6) and (10) with By €

L(X,X) (n,keN).
Suppose the conditions (8) and (13) hold. If { = (zn) € £x, where ( is given

by (17), and ifo > š, then x = (7r) € 8x and ” žn = > Zk.

(24)

(26)

(25)
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3. MERCER’S THEOREMS FOR GENERALIZED RIESZ AND

EULER-KNOPP METHODS

For any generalized summability method B = (B,) with B, € L(X, X),
given by sequence-to-sequence transformation, there exists acorresponding method

B = (Byk), given by series-to-series transformation, where

n

Bnk = z ÄB„„, ÄBnu = Bnv — Bn—l,u (n 7 k€ N)
v=k

Theseformulas, meant for triangular matrices, are completely analogous to the well-

known formulas of scalar matrix methods (see, e.g., [l°]).
In what follows the elements with negative indexes are everywhere taken to be

Zero.

Let R = (R, P,) = (Rnk) be the generalized Riesz method given by sequence-

to-sequence transformation and specified in [7*B] by

—

fRnPk (k=0,1,...,n),R"’“‘{e ),

with R, P, € L(X, X) and

n

RnZPka::a: (z € X;n € N).
k=o

Relying on (27)—~(29), we can easily check that the corresponding method R =

(R, Pr) = (Rnkx) is determined by

k—l
D

—

n Pu k—:0,1,...,
,Rnkz{ ni -R) DB 3

0 (k>n).

Now, using (9), (10), and the results ofTheorem B with Remarks 8.1, 8.2, we prove

that the operators Gy, connected with 8 : £x —2x satisfy the condition (13).
As for each x € X, k € N and because of (10)

m k—l k—l

Gro = lim > (ARn-1) > Pyz = (Rkl — limRy > PBz
n=k v=o v=o

and lim,, R, Pyz = 0 (see [%], Theorem 4), then Gz = Ry_; Zž;ä P,x. Hence,
(13) is true in view of (29).

(27)

(28)

(29)

(30)
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Theorems 4 and 5 for the method (R, P,) extend Theorems 9 and 10 of [7].
Theorem4 follows immediately from Theorem A and Corollary A.l if we take (28)
and (29) into account.

Theorem 4. The method (R, P,), defined by (6), (28), and (29) with R, P, €

L(X,X) (n,keN),isofcx —cx typeif and only if

SlR 5.=Rs (z € X)
n

and

n

sup [[Rn Y Pl=O(1)
e 1 4 o

The method (R, P,,) is regular if and only if the conditions (31) with R* = 0

and (32) are valid.

Theorem 5. The method (R, P,), defined by (6), (29), and (30) with R,,, P, €

L(X,X) (n,keN),isoflx —2x typeifand only if

00 k—l

Y I(ARy-1) Y Pzl <Mlzll (z € X;k €N),
n=k v=o

where the constant M is independent from x and k.

The last method is absolutely regular and ||R| = 1.

Theorem 5 can be obtained as a direct application of Theorem B and Corollary
8.1.

Next, with the help of various results of generalized summability methods,
treated above, we obtain Mercer's theorems for generalized Riesz methods.

Theorem 6. Let the method ® = (R, P,), defined by (6), (28), and (29) with

Rn, Pr € L(X,X) (n,k € N), satisfy the conditions (31) and (32).
If¢ = (2zn) € cx is given by (17) with B = (R, P,) and if
(@) |[l=2] < ||R||7!for the case |R|| > 1

or if
(b) o > 5 for the case |R|| = 1,

then x € cx;

(c) and if, in addition to the assumptionsofcase (b), we suppose that (31) holds

with R* = 0. then limx 7x = lim» žn.

Proof. The assertion R : cx — cx follows immediately from Theorem 4 because

the validity of (31) and (32) is assumed. As (29) holds for each (R, P,), then,
relying on Theorem 3 of [®], we have to discuss only two possible cases: ||R| > 1

and |R|| = 1.

(31)

(32)

(33)



H=ad o=t (keN). (39)
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Both statements (a) and (b) follow from Theorem 1 in view of Remark 1.1. By
applying Theorems 2 and 4 we get the statement of case (c). This completes the

proof.

Immediately from Theorems 3 and 5 we can infer Theorem 7.

Theorem 7. Let for the method ® = (R, P,), defined by (6), (29), and (30) with

R, Pr € L(X,X) (n,k € N), the condition (33) hold.
If¢ = (zn) € Lx is given by (17) with B = (R, P,) and if@ > 3, then

x=(tk) € Lx andd žn =D Ik.

The generalized Euler—Knopp method £ = (£,A) = (Enk), given by

sequence-to-sequence transformation, is specified in [*?] by

AR 8.n)Enk:{ék)( /
(k > n),

where A € £L(X, X) and A° = I. In [7] it was proved that the equality (25), or, in

ourcase £,z =z (z € X;n €N) with

n

EnszEnkxk (x € sx,n € N),
k=o

is valid for every (£, A). It is also known from [7] that £ is conservative or regular
if and only if

A+/ =AI =1

or (36) and

I-Al <1

hold, respectively.
Let £ = (£,A) = (E,;) denote the Euler—Knopp method given by

series-to-series transformation. Sometimes we use also E’nk(A) instead of E,.
Transforming the elements E,; with the help of (27), we can write (exactly as it

is realized for the classical method (E, ) in [°]) the elements E.,;, in the following
form:

{ FARI A (k=l ),
Enk = Õnol (k — 0)>

0 (k > n),

where 9;; is the Kronecker symbol.
Further we need two well-known formulas

(34)

(35)

(36)

(37)

(38)
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Lemma 3. The both methods (£,l) = (Enk(T)) and (£,O) = (Enx(0)) are of
x — 2x type, but only (E, 1) is absolutely regular.

The validity of these assertions follows immediately from (38).

Lemma 4. ffor (E, ) = (Enk) withA € L(XX ) the condition (37) isfulfilled,
then the operators Gr : X> X (k €N) defined by (10) satisfy the condition

(13), i.e.,

o 0

gkx:ZEnkm:x (x € X;k € N).
n=k

Proof. Tt is known [l2] that for each A € L(X,X),z € X, and k,m € N the

relations

AFg = A(AF 1), AF(A™z) = AFTMe = A™(AF2)

hold. Also, (see, e.g., [**]) the operator I — A is invertible if || A|| < 1. In this case

(I-A4)teL(X,X)and (I -A)~! =32, A Inaddition to the last two facts

and by (41), there exist the inverse operators (I — A)™* € £(X,X) (k €N) for

which

(I 4]F —

%

Z(i_c+i—l
2=o

)AZ (k € N)

Starting from (10) and (38), changing the index of summation by ¢ = n —k, and

taking account of (39) and (42) with A = I — A and || — A|| < 1, we get for all

x € X that

ž Enkz = AY ž(f-“fi)(z -AMz= MII -(1-Nz=z.

n=k i=o

Lemma is proved.

_

The next theorem which gives the necessary and sufficient condition for E =

(E, A) to be of 2x — £x type is in a sense more general than the analogous result

obtained in [].

Theorem 8. The method € = (€, A) defined by (6) and (38) with A € L(X, X) is

ofLx — Lx type ifand only if (36) holds. This method is absolutely regular if and

only ifA# 0. At that ||E]|| = 1.

Proof. In view ofLemma 3 we omit the case A = 6 from the following discussion.

By Theorem B we have to prove that for B = & the condition (8) is valid if

and only if (36) holds. Starting from the left-hand side of (8), using (38), (39), and

(40)

(41)

(42)
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changing the indexes by n — k = 1, in view of (42) we see that the boundedness of

>o2i || Enkz|| will be guaranteed ifand only if (36) holds. Actually, we get for all

z € X:

o 0 o 0
-

aa

: A k

> IBaesl| <A D GII — AlHell = (——“| )]| < l=ll,
n=k i=o

1— 7 — A]

where we took into account that %A—H < 1< M= A < 1486

lAll + || — Al| = 1, yielding || — A]| < I,as A # 6.

By the final result and because of Lemma 4 the condition (40) is fulfilled. The

absolute regularity of £ and ||€|| = 1 follow now from Corollary 8.1.

Finishing this part, we shall apply the results of Sections 2 and 3 to obtain M-

theorems for (£, A) methods.

Theorem 9. Let the method € = (€, A) defined by (6), (34), and (35) with A €

L(X, X) satisfy the condition (36) or both (36) and (37).
If¢ = (zn) € cx isgivenby(17) withß = E andifa > 3, thenx = (z,) € cx

or the equality limy, z = limy, 2, hold, respectively.

Proof. By the conditions (36) or {(36), (37)} and in view of Theorems 6 or 5 from

[7], the method£ is conservative or regular, respectively. As in both cases ||£]| = 1

(see [®], Corollary 3.2), then let o > š— Hence, the provable assertions follow from

Corollary 3.2 of [Š] and Theorem 2.

The next result follows from Theorem 3, Theorem 8, and Lemma 4.

Theorem 10. Let the method £ = (£, ) be defined by (6) and (38) with A €

L(X, X) satisfying the condition (36).
- -

If¢ = (zn) € 2x is given by (17) with B = € = (Enx) and ifa > 3, then

x € Cx. If, in addition to previous assumptions, we suppose that A # 0, then

xElxand) 22—T

4. CONCLUDING REMARKS

In 1907 Mercer [*!] showed for real sequences that ify, = (n+1)"1 Y 7_ =

and if azp+l + (1 — @)y, — x*, where n — oo and z* # 00, then both z,41 and

yn tend to z*, provided that o > 0.

This theorem has been extended in various directions and numerous authors

have studied its different modifications (see, e.g., [*27l6]). Theorems of this kind,

mainly in the scalar case, are still being examined.

Numerous M-theorems, associated with classical summability methods (among
them several results of the works cited above), can be inferred from our generalized
M-theorems.
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Let now B = (by,x) be a triangular matrix method with b, € K (n,k € N).
We can treat this method also in an operator form. To this end, instead of B, we use

the method B = (B,x) with

n

Bnk=bnkl, Bnx=s> bnelzr, Bx=(Brx) (nm,k€N), —
k=o

where x = (zx) € sx. For this special case of the general method B the following
formulas hold (see also [®], Summaries I, II):

IB|| = sup||Ball, llBall =) lbukl (n€N)
n

k=o

for a general instance of B = (b,,x) and

48l —1 [Br]|=l (nEN)

for non-negative methods satisfying the condition

n

> bnk=l (n € N).
k=o

In the case X = K the notations s, m, ¢, and ¢ will be used instead of sx, mx,

CX3 and £X:-

Employing (43)—(45), from Theorem 1 and Lemma 1 we can infer an

M-theorem for B = (b,) and for¢ = (z,,) € cx with

n

Zn = azn +(1 — ) Zb„kxk (n €N)
k=o

The result will be analogical to that obtained in [*°].
For all non-negative and regular methods satisfying (46) we can deduce some

M-theorems which occur in [1516].
We denote, further, by R = (R, pn) = (rnk) and E = E) = (E,q) = (enk)

with p, € K, ¢ = X7! —1, and A € R the classical Riesz and Euler—Knopp
methods, respectively. As we know, these methods, given by sequence-to-sequence
transformation, and the methods R = (7,;) and £ = (&,;), given by series-to-

series transformation, are defined by

n

rnk = Pr'Pk, Pn= > pr F 0 and en = N
k=o

(43)

(44)

(45)

(46)

(47)

(48)
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and

€. k — že'n,k,e
Pk-IPk

and
=fnk —

Pn—lpn

respectively. At that (46) is true for both methods E and R (about E see [ ~]; for

R it is clear) and therefore every regular method E is non-negative (see oy
The M-theorem for such (R,p,) was first proved by Okada ['®]. As a

supplement to the last remark, let us observe the M-theorems in the classical form

and for E). Recall (see, e.g., [>'lo]) that £, : ¢—c or E), is regular if and only if

0 <A< Iloro< A< I,respectively. Even more, ||F|| = 1 in view of (45) and

(46).
The next result follows immediately from Theorem 9.

Corollary 9.1. Let( = (z,) be given by (47), with b,y = ey defined by (48), and

let O<A<lorO<A<l.

[fC € candifoa > % then x = (zr) € cor limkztx = lim, 2» hold,

respectively.

An analogue ofMercer's original theorem for the case of absolute summability
was first proved by Bosanguet [l2] and later in a generalized form by Walsh in

1942. Afterwards M-theorems of £ — £ type were proved for differentsummability
methods of scalars. For the case (R, p,) such a theorem was proved by Hayashi
['3]. For general triangular scalar methods B = (b,;) this was done by Love ['°],
but Parameswaran proved in 1957 for this case an analogue of M-theorems studied

by Agnew in 1954. Several of the mentioned results can be inferred from our M-

theorems. For instance, the next Corollaries 7.1 and 10.1 follow immediately from

Theorem 7 and Theorem 10, respectively.

Corollary 7.1. Suppose that for R = (Tnk) defined by (49) the condition

YO2& [Tnkl = O(1) holds and let{ = (2y,,) be given by (47) with by, = Tpk.
If¢ €landifa > 5, thenx = (zx) € LandYz = Y 2n

Corollary 10.1. Suppose that for Ex = (&ns) defined by (49) the condition 0 <
A < 1 holds and let( = (zy,) be given by (47) with by, = ény.

If¢ € Land if a > %, then x = (zr) € £. If, additionally to the previous
propositions X % 0, then > % =~ Z..

Note. In some cases our conditions about« differfrom the corresponding conditions

in the results of papers cited above. This is mainly caused by differentmethods used

for investigations of that kind.
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MERCERI TEOREEMID SEOSES ÜLDISTATUD
SUMMEERIMISMENETLUSTEGA BANACHI RUUMIDES

Tamara SORMUS

On iildistatud klassikalisest summeeruvusteooriast tuntud Merceri teoreemid

(M-teoreemid) iildistatud summeerimismenetlustele B = (B,) ja jadaruumidele
Banachi ruumides X. Koik operaatorid B, : X—X on pidevad ja lineaarsed.

On toestatud seitse M-teoreemi iildistatud kolmnurksete menetluste ja iildistatud

Euleri—Knoppi ning Rieszi menetluste kohta, mis on koonduvust v6i absoluutset

koonduvust siilitavad. T66 tulemusi on rakendatud arvmaatriksitega madratud

tildiste voi klassikaliste menetluste puhul.
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