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Abstract. In wave zone, new types of selfinteracting gravitational waves and their simple
counterparts in the extended Maxwell theory have been determined. As a curious fact, the solutions

are determined also by the nonhomogeneous Lorentz condition and the nonlinear harmonic

coordinate conditions, respectively. Our solutions remove some difficulties inherent in standard

approaches. New solutions describe photons and gravitons to which no specific value of spin can

be ascribed and lead us to a class of unexplored theories.
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1. INTRODUCTION

It is well known that by imposing on the Maxwell equations

V—F*, =OOA*-A" F =V A AV,V p 479"

the Lorentz gauge condition

A'u,p, = O,

one can write Egs. (1) in the form

OA* =4z j*

where A¥ is the potential 4-vector and j* is the 4-vector of charge-current density

(see, e.g., [']). An analogous treatment is usually given to the weak linear

approximation of the Einstein gravitational field [*], Section 11.2. A weak field

is defined as the one for which the metric tensor g#”, with a suitable choice of

the coordinate system, can be separated into two parts

(1)

2)

3)
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g" =7"" +h"",

where the components k", corrections to the Minkowski metric n*", are small

quantities. Subscript and superscript indices are raised and lowered with the

metric tensor 7. (We could define as well g,, =n,, +H,,, then

H™ =—h*) If we take y*¥ =./- gg"¥ —n*", or in the first approximation,

y = h" opSl V

71 hi

then the Einstein equations

RV==-—Br| THY
]si

can be put, in linear approximation, into the form []

D hFY =l67r(T”" ——š—n”vT],
x"v =0

Here R*Y is the Ricci tensor, T is the energy momentum tensor and T its trace,

g=detg -
The forms of Eqgs. (6) and (7) are similar to those of (3) and (2), and

linear gravitational radiation is treated following the example of well understood

electromagnetic radiation.

Usually analogous treatment has been given also to higher-order wave

solutions of the Einstein equations. Denoting nonlinear terms on the left-hand

.
s

. ] , .
side of the Einstein eguations (5) by š——t”v, we can write the full nonlinear form

T

of the equations as follows:

Dhuv—xua V

o -X =
a —lõn(T"V—l u

2g VT+I"V)
and add supplementary conditions (7). The nonlinear terms describe selfenergy
of the gravitational field. The choice of the supplementary conditions (7) in the

full theory “simply means that we are putting the interaction of the gravitational
field with its own energy-momentum pseudotensor on the same footing as its

interaction with the energy-momentum tensor of the matter field” (Gupta B
This is the basis of the standard approach to the selfinteracting gravitational
radiation field and to the quantization of the nonlinear gravitational field.

Equations (8), (4), and (7) are usually solved by some approximation method.

4)

(5)

(6)

(7

(8)
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However, the standard approach leads to some difficulties, e.g., the energy loss

in asymptotic solution is described by the angle dependent quantity Ae(u,, @)

and in the wave zone terms of the type —IBLAE occur ([4], Section 87). The
r

logarithmic terms disappear in the Bondi coordinates [] or in the Papapetrou
radiation coordinates [°], but the angle dependence of Ae survives. More careful

analysis reveals that solutions with angle dependent Ae diverge at time-like

infinity. In this paper we propose new types of solutions of nonlinear gravitational
wave equations in which the energy loss is described by angle independent
quantity M(u). In our solutions gravitational fields accompanying radiation energy
behave differently as compared to fields emitted by massive sources.

To make clear the physical and mathematical difference between our new

wave solutions with sources in the form of radiation energy flow and the

standard wave solutions with massive sources, we shall first analyse in detail a

much simpler model of the extended Maxwell theory. We shall extend the

Maxwell equations by introducing into them fictitious light-like 4-currents J¢,,,

moving at the velocity of light and having vanishing rest mass. The sources

J(aay form a part of the current J*constructed from the massless complex

scalar field. In solutions proposed below, light-like sources do not emit waves,

but “drag the field along”, analogously to the changes of charge density in wave

guides and electric transmission lines, propagating also at the velocity of light
and “dragging” transverse electromagnetic waves along ['].

As a curious fact, it turns out that our new wave zone solutions are

determined by the nonhomogeneous Lorentz condition

— Aty =4n[ Ide

and by the nonlinear harmonic conditions

x vy == 87rJ.t”°(rad)dt’

respectively. Here #(;,, is the radiation part of ", defined in Section 3.

Conditions (9) and (10) mean that no definite value of spin can be ascribed to

our specific photons and to gravitons in nonlinear approximations. Theories of

this type have been called, by Ogievetskij and Polubarinov [*], theories of class

B (to discriminate them from ordinary theories of class A). As far as we know,
no detailed study of theories of class B has been performed. The aim of the

present paper is to initiate the research into the theories of class B, in the first

place, to determine some solutions of class B theories.

In Section 2 we give a detailed gauge invariant derivation of the new types of

wave solutions in the extended Maxwell theory. In Section 3 analogous solutions

in the Einstein and Einstein—-Maxwell theories will be proposed and discussed.

(9)

(10)
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Notation. Latin indices i, k (except r) take the values 1, 2,3 and denote the

components of vectors in the orthogonal Cartesian coordinates. Greek indices

(except ¥, @) take the values 0,1, 2,3; x* = (t, xi), A = (AO, Ai), A is a three-

dimensional vector. Indices are lowered and raised with the Minkowski metric

Nw =n"" = diag (1, -1, -1, -1), over repeated indices summation is assumed.

The retarded time coordinate u = ¢ — r is also used; the wave vector k* =u*.

The dot above a symbol denotes differentiation with respect to u. Occasionally

polar coordinates r,, ¢ are used, A", A%, A® denote components of a vector in

polar coordinates. As stated above, AF (u, r, Y, (p), Ai(u, r, Y, (p) are components

of a vector in the orthogonal Cartesian coordinates.

Units will be used in which the velocity of light c=lland the Newton

gravitational constant y =l.

2. NEW SOLUTIONS OF THE EXTENDED MAXWELL EQUATIONS

In this section we shall determine solutions of a new type of the Maxwell

equations. The solutions are generated by a (fictitious) spherical pulse of a light-
like 4-current density

o(u, v, .
Ju 4

Mku lful<u<u2,
(rad)

”

r :
0 if u<u; or u>u,,

where u;and u, are constants. Contributions to the linear electromagnetic field

generated by j* and the remaining part of J* can be evaluated in a

conventional way and added to our solution.

At first we propose a new solution of the Cauchy problem for the Maxwell

equations

rot E =—š£,
»

divH =O,

oE
rot H =—

d
+ 47:,(rad)7

div E =47g,

then we shall demonstrate that our new solution can be obtained from the

nonhomogeneous gaugecondition (9) for potentials A*.
A solution to Egs. (12)—(15) is uniquely determined by the values ofE and H

at some arbitrarily chosen initial moment of time ¢ = #;, but the initial values

(12)

(13)

(14)

(15)

(11)
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themselves for the fields E and H cannot be chosen arbitrarily; they must satisfy
constraint equations (15) and (13). The novelty of our solution can be traced

back to the choice of a new class of initial data, to nonstandard solution of

Eg. (15).

The standard solution of Eg. (15) with the usual charge density j° can be

found by assuming that [77'']

E=grad¢p+E’, divE'=o,

and inserting decomposition (16) intoEq. (15). We have

Ap =47°,

where A=divgrad is the Laplace operator. We see that ¢is the constrained

part of the field which is determined by the charge density j°, while the initial

value of E' can be chosen freely. Next, for the case of light-like sources (11), we

shall determine an alternative solution of the constraint. Equation (15) is clearly
underdetermined: threecomponents of the electric field E at ¢ = ¢, are described

by one equation, and decompositions of field vectors, different from(16), lead to

alternative solutions of Eq. (15) at ¢ = #;, hence to alternative solutions of the

Maxwell equations in the whole space-time.
Let

E=Efl +E.L’

where the vector E, is parallel to radial vector and E is perpendicular to it.

Suppose that at ¢ = £

470 (u)
div Efl =

T

divE, =4—7;[O'(u, V, P) - Oo(u)
r

o, (u)= %[o(u, , p)sinv dödo.

In Egs. (19) to (21) u has been taken on the initial surface / = 1, I.e. 4 =t —-r.

Equation (19) gives us the Coulomb field with a variable charge density

E:g"f(")i,
r r

where Q is an integration constant (the “total” charge) and

(16)

(17)

(18)

(19)

(20)

21

(22)



q(u)=4r .TO'O (u) du.

u

(23)
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Here integration variable r has been replaced by u =l, —r.

The treatment we shall give to Eq. (20) on the surface of a two-sphere
r = const is analogous to the standard treatment of the constrained field in three-

space. Two-dimensional operators div, grad on a sphere r = const we shall write

with capital letters; they are appropriately chosen components of the

corresponding three-dimensional operators in polar coordinates. Assume

E, =Grad V.

The corresponding physical components are|O, _l__B_‘{_” LB_‘P . We have
r)V rsinv 00

I o dr(c —O,)
divE, =DivE =r—2A ‘Pz—rz—,

where Ais the Laplace operator on a unit sphere. To integrate Eq. (25), we

expand o(u,¥, @) in spherical harmonics

o |

O'(u, Ü, (0) —GO (u) — z zo-lm (u)Ylm (Üv (p)
=1 m=-1

and obtain from Egs. (25), (24), and (19)

4r0,, (u)
Hae -Y (4 0),lzm l(l+1)

lm( (p)

—

g—q(u)£—4—7r O-lm(u) Y(e) V

eg 1 @
»\N(I +l)Yl’(n)(‘§, (p) =[O, %—, mé—a)yv]m(fl, (p)

It is easy to verify that the value (28) of E satisfies the constraint equation (15)
not only at ¢# =l, but also at any later moment of time ¢>¢,. The second

constraint equation div H=o is satisfied by H=nXE, n=__ We define
r

Yo(0, 0) =n XY (8, ¢) and obtain

—47 O.lm(u) Y(m)(Ü,(p).H=-7 š,/l(ln) m

(24)

(25)

(26)

27)

(28)

(29)

(30)
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In solutions (28) and (30) the vector spherical harmonics of electric and

magnetic types have been used ['*]. The transverse part of electric field (28) and

magnetic field (30) describe a TEM (transverse electromagnetic) wave which is

“dragged” by light-like current, its inhomogeneities being described by o, ().

The new solution has the following properties:

1 1
Hy=——E,, ——H,=E,.

v
sind ° sinYy ° v

We shall show that it satisfies the whole system of the Maxwell equations. By
inserting (28), (30), and (24) into Eqgs. (12) and (14), and taking into account that

Rot Grad ¥ =O, we have

1 - . . 1 -

—-H =E,, H,=-—FE
siny % ° 8 siny °

1 0 d OE, 4r0(u,v,0)
——— H, -Hy +ADD
r* sinü[õö ?dOÜ] dt r 2

. 1. - 1. —— ,
Hy=——E,, ——H_ =E,.v

sind ° sinY ° v

Due to the properties (31) of the new solutions, Eqs. (12a) and (14b) are

satisfied, while Eq. (14a) is reduced to Egs. (19) and (20) which are also

satisfied by our solution. Four-potentials A* corresponding to fields (28) and

(30) are

AO —__A —
—

q()

A ž: )T € (u) Ylšrf |

;

S+
5

r
l,m

£()= [O,()l

The solutions (32) and (33) can be derived from the nonhomogeneous Lorentz

condition

-AL =47[0gy

dr(c -0
:

if we write [cf. Eg. (20)] —š—div A, =——(—T——Q. It is easy to see that by
u r

definition

(31)

(12a)

(14a)

(14b)

(32)

(33)

(34)

(35)
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d d
Eiz—šAiz—š;A'L

Ao being independent of the polar angles.

Nonhomogeneous gauge conditions are suitable for generalization to the case

of the Einstein gravitation theory. Light-like sources in general relativity occur in

a natural way in the form of the energy-momentum of electromagnetic and

gravitational radiation.

3. NEW WAVE ZONE SOLUTIONS FOR SELFINTERACTING

GRAVITATIONAL RADIATION

Let us determine wave zone solutions of the Einstein equations

VD/ -y -a =16% ti

oõ(u,V,o) ,p; vta =———rž——k”k .
Assume that the Sommerfeld—Trautman ['*] radiation conditions are satisfied

Hence

u -a" (u,V,
” -—r—9+o(r—2).

Functions 2" are of the same form. By inserting expressions (38) into Egs. (36),
we have for terms proportional to r~ the following equations:

—
. pa V .PLok =

16mok“kY

r2 -

There is a far-reaching analogy between extended electrodynamics and general
relativity. We can impose nonhomogeneous gauge conditions, consistent with

Egs. (39)

ot
8o (u, 3, @)k |

, r

In the case of no ¢ -dependence, Eqgs. (40) have the following solution (detailed
calculations show that in the case W;=o it simultaneously satisfies all Egs.
(36))):

(36)

(37)

(38)

(39)

(40)
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y" =h"",

hOO =hor =hrr —
z[m—M(u)],

r

1 — 2W (u)
h =hY*=—Y — ——PpV(cosy),

r’ ž,: I+1)
| ol

4w, (u)(l -2)!
h1%9 =—+h¢(p :%z——l(u—)(—.—)n(z) (COS 19-)’

sin ¥ ri (1+2)!

M(u)=o,(u), W, =o,(u),

o, 9) =O, )+ 3.0, )P, (cosV).
724

Here P (cos?d) are the Legendre polynomials and P,(”') (cosY) the associate

Legendre polynomials. In the general case, instead of P,("') the spin m spherical

harmonics should be used.

Equations (40) are, in fact, nonlinear equations; they can be solved explicitly
by a successive approximation method, assuming in definition (38)

QTG T B

and taking account of the following form of o:

1
O'u,Ü, Lt

88 -9 - . :( O) 87r(a Ags +2a al,(p+a'p‘”aw).

The first-order values of a*" are determined by linear approximation equations

(6) and (7). In higher approximations contributions from solutions of

nonhomogeneous gauge conditions (40) must be added; they describe the self-

interaction.

If we replace t(’fizd) with the flat space-time electromagnetic radiation energy-

momentum tensor 7(,,,, which has the same form as (37), we get new solutions

(41) in the linearized Einstein—Maxwell theory which should be added to the flat

space-time electromagnetic waves.

In our solutions the gravitational field which accompanies (“is dragged by”)
photons and gravitons makes these particles heavier and spoils their standard

spin structure. New solutions require modified quantization schemes. Up to now

numerous attempts to construct a selfconsistent theory of quantum gravity within

the class A of theories have failed. This justifies the investigation of the theories

ofclass B, defined in [°].

(41)
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VÄLJAVÕRRANDITE ALTERNATIIVSED ASÜMPTOOTILISED
LAINELAHENDID

Väino UNT

Lainetsoonis on leitud uut tiilipi iseenesega interakteeruvad gravitatsiooni-
lained ja nende lihtne analoog Maxwelli teoorias, mille puhul on tdiendavalt

arvestatud valgussarnaseid allikaid. Rohutamist védrib asjaolu, et uued lahendid

on tdielikult mddratud mittehomogeense Lorentzi tingimusega (35) voi mitte-

lineaarsete harmoonilisuse tingimustega (40). Uued lahendid ko&rvaldavad

moningad standardlahendite puudused ning kirjeldavad footoneid ja gravitone,
millele e 1 saa omistada kindlat spinni véirtust. Seega kuuluvad nad seni uurimata

teooriate klassi.
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