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Abstract. The congruence lattices of graphs satisfying a given lattice identity are studied. A

complete characterization of all finite graphs with the congruence lattice lying in a given lattice

variety is presented.
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1. INTRODUCTION

It has been proved in [!] that the set of all congruence relations of agiven graph
G is a complete lattice. In the current paper the following problem is solved.

Problem. Let Ibe a lattice identity. Find a characterization for all finite graphs
G such that Con G satisfies I.

To solve this problem, the J-radical defined in [l] as the meet of all co-atoms

in Con G is useful. If J(G) = 0, then either Con G = 11,, or Con G = IT7, where

IT,, is the lattice of all partitions of n = {0,...,n — I}. For every J-semisimple
graph G define a positive integer 7(G) such that n(G) = n ifG is a complete or

edgeless graph with n vertices (i.e. ifCon G = IT,) and n(G) = 2 otherwise. Let

V be a lattice variety such that L ¢ V for at least one lattice L. There is a unique
positive integer n such that Iy, ..., IT,, € V,butlL,; ¢ V. Denote this n as n(V).

Theorem. IfG/J(G) = {Gl,...,Gn} and Vis a lattice variety, then Con G lies

inV ifand onlyifn(G/J(G)) < n(V) and ConG; € V fori =l, ...,n.

G/J(G) denotes the factor-graph of G by J(G) and G; are the congruence
classes viewed as subgraphs of G. It follows from the theorem that for every lattice

identity I there is an O(|V|?) algorithm that determines whether I holds in Con G,
where V is the vertex set of G.
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2. BASICS

A pair G = (V, E) is called a graph ifE is an antireflexive binary relation on V.

The elements of V and F are called vertices and edges of the graph G, respectively.
A graph G is said to be undirected if the relation E is symmetric. Usually we use

the short notation zy € E instead of the correct notation (z,y) € E.

Let Gy = (VI,EI) and G, = (Va, E5) be graphs. We say that a mapping

Vi - W is a graph morphism if the condition

f(z) # fly) = [zy € F 1 + f(z)f(y) € Ea]

holds for arbitrary vertices z,y € V;. Then we can write G —f—% GG2. Such

a morphism has been introduced in [?]. It is easy to verify that we get the usual

structure of a category. In other words, the identity mapping G 19, G'is always

a morphism, and the composition G —g—ol; G 3 of two morphisms G 1 i> G> and

G» — G 3 is a morphism as well.

An equivalence relation p on the vertex set V of the graph G = (V, E) is called

a congruence relation on G if the condition

zpx’ Aypy A -(zpy) = [zy € E & z'y’ € E]

holds for arbitrary vertices z,z’,y,y’ € V. It is easy to see that the kernel Ker f

of every morphism G Lo B e congruence relation and conversely, every

congruence relation p of G is a kernel of some morphism. This is true because there

is a unique graph structure on the factor set V/p such that the natural projection
L V/p is a morphism. This graph is called a factor graph of G by p and is

denoted as G/p.

A subset M C Vis called a module (by Spinrad [3]) of G = (V, E) it

zz € E > zy € E and zz € E > yz € E forarbitrary7,y€ M and 2 2 M. It

is easy to prove that an eguivalence relation p on the vertex set V is a congruence

relation of G ifand only ifall the p-classes are modules of G.

Lemma 1. The union AU B oftwo intersecting modules A and B is a module. If A

and B are overlapping modules (i.e. they are intersecting andA—B # () # B—A,)
then A — B is a module.

The proof is trivial ([}3]).
Let Con G denote the set of all congruence relations of the graph G. Note that

Con G is partially orderedby the inclusionrelation C. It isproved in [*] that Con G

is acomplete lattice for every graph G = (V, E). Let (p] and [p) denote the principal
ideal generated by p and its dual, respectively.

Theorem 1. If G = (V, E) is a graph and p € Con G, then

[p) = ConG/p.

(1)
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Theorem 2. IfG is a graph, p € Con G is an arbitrary congruence relation, and

G/p ={G;}jez, then

(p] = H Con G;.
JET

Proofs can be found in ['].
For any graph G the intersection of all co-atoms of Con G is called a radical of

G and will be denoted as J(G). A graph G is said to be J-radical ifr(G) = 1 and

G is said to be J-semisimple ifr(G) = 0. Here 0 and 1 denote trivial congruence
relations.

Theorem 3. A graph G is J-radical iff there are no co-atoms in Con G and G is

J-semisimple iff it satisfies at least one of thefollowing conditions:

e (G is simple,

e (G is edgeless,

e (G is complete,

e ( is isomorphic to a linear ordering.

The proof can be found in [].

3. PARTITION LATTICES

Let A be an arbitrary set and S C II(A) be a nonempty set of equivalence
relations on A. A finite sequence

ag, ai, ..., ayg,

where a; € A, is called an S-chain if for every ¢ there is an equivalence relation

p; € S such that (a;,a;1+1) € p;. Two S-chains a : ay,...,ag and b : b, ..., by are

equivalent if for every i there is p; € S such that (a;,a;+l) € p; and (b;, bj+l) € p;.

It is well known that (z,y) € supJS iff z and y can be connected with an

S-chain. If (zl,y;) € sup S and (z2,y2) € sup S, then the corresponding S-chains

can be chosen in such a way that they are equivalent.
Let G = (V, E) be a graph.

Theorem 4. Con G is a complete sublattice of II(V).

Proof. It is sufficient to show that the least upper bound (in II(V')) of every

nonempty set S of congruence relations is a congruence relation. Let p = sup S,

zpz', ypy', and —(zpy). So, there are equivalent S-chains

/

r=29,Tly.---9T¢ —
T,

—.— 9/
y =U0,Y1,--»Ye = Y
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such that z;p;z;4+l and YipiYi+l Yo ¥,

Let (z,y) € E. We will show by induction that (z;,y;) € FE for

all o<i<#¥ Indeed, theicase i= ois trivial and if (z;_l,9i-1) € E, then

Ti_lPi-I%i> Yi—lPi—lYi- But =(z;_1p;_1y;—1), because otherwise there would be

an S-chain

T =Xo,%lyyTs—-I,Yi—-1,---,YO = Y-

As pi-1 € Con(G), we get from the definition of congruence relation that

(zi,y;) € E. Therefore, p = sup S is a congruence relation. O

4. NEUTRAL AND STRONGLY NEUTRAL ELEMENTS

An element « of a lattice L is said to be neutral [+°] if

(ahz)V(zAy)VyAa)=(aVZ)A(zVy)AyVa)

for all z,y € L. The following theorem gives us two equivalent formulations of

neutrality.

Theorem S. Let Lbe a lattice and let obe an element of L. The following
conditions are equivalent:

e « is neutral;

e «is distributive, dually distributive, and a N\x = aAyandaVz = aVy
imply x = yfor any ¢,y € L;

e the mapping

L — (o]x[a)
P: { z— (ZAa,zVa)

is a lattice embedding. ; ;

The proof is given in [°].

Let V' be an arbitrary set, L be a complete sublattice of II(V) and p € L. We

say that p is strongly neutral in L if

pVo=ocUp

for arbitrary o € L.
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Lemma 2. An equivalence relation p € L is strongly neutral iff

v/pCS v/a or vfo Cu/p

for arbitrary o € L and v € V, where v/p denotes the p-class containing v.

Proof. Let us assume that pis strongly neutral, 0 € L,v € V,and v/p € v/o.
We will show that v/0 C v/p. As v/p is not a subset of v/o, there has to be an

u € v/p such that u € v/o. Let w be an arbitrary element of v/o. As (w,v) € o

and (v,u) € p, we have

(w,u) € pVo=pUo

and thereby (w,u) € p because (w,u) £ 0. Now we have w € u/p = v/p. Asw

has been chosen arbitrarily, we conclude that v/o C v/p.
Let us assume that the condition (2) holds. It is sufficient to prove that p U o

is an equivalence relation. It is obvious that p U o is reflexive and symmetric. We

will prove the transitivity. Let (u,v), (v, w) € p U o. If these pairs lie both in por
in o, the transitivity is obvious. Let (u,v) € o and (v,w) € p. If (u,w) & p, then

u & w/p and therefore

v/o =u/o L w/p=uv/p

and by condition (2) we have w € w/p = v/p € v/o = u/o showing that

(u,w) € o. O

Lemma 3. Every strongly neutral element is neutral.

Proof. Suppose p € Lis strongly neutral. Let us prove at first that the mappings
o+~ oNpando — oV p are endomorphisms of the lattice L. The secondmapping
is obviously a morphism because of the distributivity of the lattice of all subsets of

A. Lety = o V 0. We will prove the equality

¥p=dg)V1oNip).

Indeed, as0 C yand§ Cv, itfollowsthatcNp CyNpanddNp C yNp.
Therefore«y N p is an upperbound of the equivalence relations o N p and 6 N p. It

remains to show that it is the least upper bound. Let

oNpPCT, ŠNpPCT,

and (u,v) € v N p. Accordingly, (u,v) € o V ¢ and (u,v) € p. Therefore there is

a {o, d}-chain

C: U=19,V1y...,0¢ = V.

(2)

3)
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If (v;,v;4l) € pforeachi < £, then obviously cisa {oNp, dNp}-chain. Therefore,

by the inclusions (3) and the transitivity of 7, we have (u,v) € 7.

Let i be the smallest index such that (v;,v;11) & p. Then either v;/o Z v;/p
or v;/d0 & v;/p. Accordingly, by Lemma 2, either v;/p C v;/o orv;/p C wi/õ,
which gives that either (u,v) € o or (u,v) € 6. This implies (u,v) € 7. Thus, p

is a distributive and dually distributive element.

We assumenowthatoVp = V pandoNp= J N p and showthat o= 6.

Let (u,v) € o. If (u,v) € p, then (u,v) € oNp = §Np C § and therefore

(u,v) € 6. If (u,v) € p, then from (u,v) Ec CoVp=43Vp=4JUpitfollows
that (u,v) € 6. Therefore o C 4. The proof of § C o is similar. Accordingly, p is

a neutral element of L. O

Lemma 4. [f there is a co-atom p in Con G such that there are at least 3 vertices

in G/p, then p is a unique co-atom of Con G and, furthermore, p is the least upper

bound ofall congruence relations different from 1.

The proof is given in [!].

Theorem 6. ]f G/J(G) is edgeless [complete|, then every J(G)-class G, is

connected [complement-connected).

Proof. Let G/J(G) be edgeless and G, € G/J(G) be not connected. Let G/
be an arbitrary connected component of G,. It is obvious that there are no edges
between G and G— G, and therefore {G,, G— G,} is a congruence partition and the

corresponding congruence relation p is a co-atom in Con G and J(G) £ p, which

is a contradiction with the definition of J(G).
If G/J(QG) is complete, the proof is similar. DO

By A, we mean the graph ({O, 1,...,n—1},{(¢,7) | 0 <4 < j < n}) (alinear
ordering with n elements).

Theorem 7. If G/J(QG) is a linear ordering, then none of the J(G)-classes have a

factor-graph isomorphic to As.

Proof. Let G/J(G) = (Wb, Ep) be a linear ordering and H € G/J(G). Suppose

there is an epimorphism H 5 A» and (Hl, H2) is a partition corresponding to

Ker f; (F(1), f (H2 € E(42).
We say that H' € Vj is less than H € Vo if H'H € Ey. Let G 1 C G/J(G) be

the set of elements of G/J(G) less than H and G, be the set of elements greater
than H. It is obvious that the partition

{(UGI)UH;, (UG3)U Hy}

is a co-atom of Con G which is not comparable with J(G). This is a contra-

diction. ]
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Theorem 8. The radical J(Q) is a strongly neutral element of Con G.

Proof. The statement is trivially true if |G|< 2. Let us assume that |G|> 3. As the

graph G/J(@G) is J-semisimple, we know that G/J(G) is either simple, complete,

edgeless or linear (Theorem 3).
The cases when G/J(G) is edgeless or complete are dual, so it is sufficient

to consider only one of them. Let G/J(G) be edgeless, v € V be an arbitrary
vertex, c € ConG, and v/o ¢ wv/J(G). Consequently, there is a vertex

u € v/o —v/J(G). By Theorem 6 the induced subgraph v/J(G) is connected.

Thereby, for any vertex w € v/J(G), there is a chain ofvertices v = vg, vl, ...,V =

w € v/J(G) such that v;u;4.l € EUE™I,O < i < n — 1. We will prove by
induction that all the vertices v; lie in v/o. Obviously, v lies in v/o. Assume that

v; € v/o and v;4l ¢ v/o. Since there is an edge between v; and v;4l and u is

contained in the module v/o which does not contain v; 1, there must be an edge
between u and v;4 as well. Since G/J(G) is edgeless, this implies u/J(G) =

vi+l/J(G), a contradiction.

Let G/J(G) be linear. Let H = v/J(G) and v/o be overlapping modules. By
Theorem 1 the intersection H Nv/o and set difference H — v/o are modules of the

induced subgraph H, and thereby we have a partition of H into modules. It is easy
to show that the corresponding factor-graph is linear, which is a contradiction with

Theorem 7.

If G/J(G) is simple, then J(G) is the unique co-atom of ConG. If

|G/J(G)|= 2, then G/J(G) is either complete, edgeless or linear. Thus we can

assume without loss of generality that | G/J(G) |> 3. It follows directly from

Lemma 4 that every congruence relation p € Con G is comparable with J(G) and

therefore J(G) V p = J(G) U p for every p € ConG. O

5. PARTITION NUMBER OF A VARIETY

We will show in this section that the finite partition lattices 11, play an important
role in studying the lattice identities holding in Con G.

Let L be the class. of all lattices, V G L be a lattice variety, and L, ..., L, be

arbitrary lattices. It is obvious that their direct product

L=LixlL>X..xLn

lies in V if and only if every L; lies in V. For example, L is modular [distributive]
iff every L; is modular [distributive].

As proved by Sachs in 1961 [°], every lattice identity that holds in every finite

partition lattice musthold in every lattice. Thereby, for every lattice variety V # L,
there is a unique natural number 7(V) such that IT,y) ¢ V and I1,;, € V for every

natural number m < 7()). The natural number 7(}) is called a partition number

of the variety V.
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For example, the class of all distributive lattices has the partition number 3, the

class of all modular lattices has the partition number 4.

Lemma 5. [fV is a lattice variety and (V) = 2, then every lattice in V is trivial.

Proof. llf L € Vis a nontrivial lattice, then it has a two-element sublattice

isomorphic to ITs. Therefore n(V) > 2. DO

Let £, denote the variety generated by the lattice IT,_;. Obviously,

Li CL» CL3 C... EL7 C... CL.

It follows from the Jénsson lemma ["+®] that all these inclusions are proper, i.e. for

every natural number n > 0 there is a lattice identity that holds in 11,, but not in

I, .1./For the case n. =; 11 the suitable identity is ¢ = y,.for the.case. n:=.2, it

1s distributivity and for the case n = 3, modularity. It turns out that the suitable

identity forn =4 is

z0 AN (T 1 V IV 13V14)= 2o Az V2V 3V B A (51 Vl2 V 34)]

V[.'l?() A (x1 Vz3V :II4)] V [:130 A (.’EQ V z3N .'l24)]

Obviously, the left-hand side is greater than or equal to the right-hand side. To

show the opposite inequality, it is sufficient to mention that for arbitrary elements

ap,ai, ..., a 4 of Il the equivalence relation ag A (a 1 V ...
V ayq) is equal to one of

ap N\ (a 1 Va 2Va3), ag A (a 1 Vas V a4),

ap A (a 1 Vaz Vay), ag A (az Vaz V ayq),

because there are no chains of length 5 in 114 and therefore the chain

o<a;<alVas<alVayVaz<aiVayVazVay<1

musthave two equal elements.

But this identity does not hold in ITS. Take, for example, zo = (04), z; = (01),
z 2 = (12), z 3 = (23), and z 4 = (34), where (47) denotes the minimal equivalence
relation containing the pair (z, j).

A proof of the general case is similar to the proof of the case n = 4. Let

X = {zo, 1, ...,z }be the set of variable letters. A suitable identity that separates
IL, and lln4+l is

Zo A(TIV...V n) = V[:I?() A (:L’L(l) V
..

N xb(n—l))]-

where the join in theright-hand side is calculated over all possible injections

(1,...n -1) — (1,...,n].
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6. IDENTITIES IN Con G
5

Let £ be the class of all lattices, Lg be the class of congruence Jattfges of all

finite graphs. We say that two lattice varieties V; and V, are equivalent and write

WVi m Wf Vi flfig =5 Lg.

Lemma 6. Let G be a graph, V be a lattice variety, and G/J(G) = {Gi}tier
The congruence lattice ConG lies in V iff all the lattices Con G; and the lattice

Con(G/J(G)) liein V.

Proof. Assume ConG €V. Now ConG; €V, because there are lattice

embeddings ConG; — (J(G)] <G, and ConG/J(G) €V, because

Con G/J(G) = [J(G)) < ConG.

And, conversely, if every Con G; and Con G/J(G) lie in V, then by Theorem

8 there is a lattice embedding

ConG — (J(G)] x [J(G)) = Con(G/J(G)) x || ConG;
IE€ET

and therefore Con G € V. [

Let L be the class of all congruence lattices of finite .J-semisimple graphs. Let

Vi and Va be lattice varieties. We say that V; and V 5 are J-equivalent and write

Yoo Vo itE Va 7 = YoNNLo

Lemma 7. Two lattice varieties Vi and V 5 are J-equivalent if and only if
) =~ n(V2).

Proof. Theorem 3 gives us a complete characterization of the class L. It

is obvious that if any of the direct powers Hš lies in Vi or in Y, then all Hš,
2 =1,2,3,..., lie in Yi orin Va, respectively. Therefore, Vi and Va are J-eguivalent
if and only if they contain the same partition lattices II;, I,..., Iy, ...,

i.e. iff

n(V1) = n(Va). ' , O

Theorem 9. Two varieties V and Vs are equivalent if and only if their partition
numbers coincide, i.e.

Vi ~Vy & n(V1) =n(Va).

Proof. If Vi NLg =V2 N Lg, then n(V1) = n(V2). Indeed, ifK, is a complete
graph of n vertices, then Con K,, = 11, and therefore {II;,IIy, ...} C Lg.

Let us prove the opposite implication. Let G be a finite graph. Let n(V;) =

n(V2). Then, by Lemma 7, ViNL; = VoNLy. IfG is J-semisimple, then obviously

ConG € V; & ConG € V. 4)
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Assume that G is not J-semisimpleand (4) is valid forall finite graphs smaller than

G. Let G/J(G) = {G;}iez.- By Lemma 6 ConG lies in V; iff every Con G; and

Con G/J(G) lie in V;. But G; and G/J(G) are smaller than G and therefore by

(4) we get that Con G is in V; iff Con G;,i € T, and Con G/J(G) lie in Vs, and

by Lemma 6

ConG € V; & ConG € Vs.
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GRAAFID JA VÕREDEMUUTKONNAD

Ahto BULDAS

On uuritud graafide kongruentside voresid, milles kehtib fikseeritud vore-

samasus. On esitatatud tdielik kirjeldus koigi selliste graafide kohta, mille kong-
ruentside vore rahuldab kindlat voresamasust.
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