GRAPHS AND LATTICE VARIETIES

Ahto BULDAS

Cybernetica Ltd., Akadeemia tee 21, EE-0026 Tallinn, Estonia; e-mail: ahtbu@cyber.ee
Received 13 February 1997, in revised form 12 February 1998

Abstract

The congruence lattices of graphs satisfying a given lattice identity are studied. A complete characterization of all finite graphs with the congruence lattice lying in a given lattice variety is presented.

Key words: graph, congruence lattice, lattice variety, lattice identity.

1. INTRODUCTION

It has been proved in $\left[^{1}\right.$] that the set of all congruence relations of a given graph G is a complete lattice. In the current paper the following problem is solved.
Problem. Let I be a lattice identity. Find a characterization for all finite graphs G such that Con G satisfies I.

To solve this problem, the J-radical defined in $\left[{ }^{1}\right]$ as the meet of all co-atoms in Con G is useful. If $J(G)=0$, then either $\operatorname{Con} G \cong \Pi_{n}$ or Con $G \cong \Pi_{2}^{n}$, where Π_{n} is the lattice of all partitions of $n=\{0, \ldots, n-1\}$. For every J-semisimple graph G define a positive integer $\eta(G)$ such that $\eta(G)=n$ if G is a complete or edgeless graph with n vertices (i.e. if $\operatorname{Con} G \cong \Pi_{n}$) and $\eta(G)=2$ otherwise. Let \mathcal{V} be a lattice variety such that $L \notin \mathcal{V}$ for at least one lattice L. There is a unique positive integer n such that $\Pi_{1}, \ldots, \Pi_{n} \in \mathcal{V}$, but $\Pi_{n+1} \notin \mathcal{V}$. Denote this n as $\eta(\mathcal{V})$. Theorem. If $G / J(G)=\left\{G_{1}, \ldots, G_{n}\right\}$ and \mathcal{V} is a lattice variety, then Con G lies in \mathcal{V} if and only if $\eta(G / J(G)) \leq \eta(\mathcal{V})$ and $\operatorname{Con} G_{i} \in \mathcal{V}$ for $i=1, \ldots, n$.
$G / J(G)$ denotes the factor-graph of G by $J(G)$ and G_{i} are the congruence classes viewed as subgraphs of G. It follows from the theorem that for every lattice identity I there is an $O\left(|V|^{2}\right)$ algorithm that determines whether I holds in Con G, where V is the vertex set of G.

2. BASICS

A pair $G=(V, E)$ is called a graph if E is an antireflexive binary relation on V. The elements of V and E are called vertices and edges of the graph G, respectively. A graph G is said to be undirected if the relation E is symmetric. Usually we use the short notation $x y \in E$ instead of the correct notation $(x, y) \in E$.

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs. We say that a mapping $V_{1} \xrightarrow{f} V_{2}$ is a graph morphism if the condition

$$
\begin{equation*}
f(x) \neq f(y) \Rightarrow\left[x y \in E_{1} \leftrightarrow f(x) f(y) \in E_{2}\right] \tag{1}
\end{equation*}
$$

holds for arbitrary vertices $x, y \in V_{1}$. Then we can write $G_{1} \xrightarrow{f} G_{2}$. Such a morphism has been introduced in $\left[{ }^{2}\right]$. It is easy to verify that we get the usual structure of a category. In other words, the identity mapping $G \xrightarrow{1_{G}} G$ is always a morphism, and the composition $G_{1} \xrightarrow{g \circ f} G_{3}$ of two morphisms $G_{1} \xrightarrow{f} G_{2}$ and $G_{2} \xrightarrow{g} G_{3}$ is a morphism as well.

An equivalence relation ρ on the vertex set V of the graph $G=(V, E)$ is called a congruence relation on G if the condition

$$
x \rho x^{\prime} \wedge y \rho y^{\prime} \wedge \neg(x \rho y) \Rightarrow\left[x y \in E \leftrightarrow x^{\prime} y^{\prime} \in E\right]
$$

holds for arbitrary vertices $x, x^{\prime}, y, y^{\prime} \in V$. It is easy to see that the kernel $\operatorname{Ker} f$ of every morphism $G \xrightarrow{f} H$ is a congruence relation and conversely, every congruence relation ρ of G is a kernel of some morphism. This is true because there is a unique graph structure on the factor set V / ρ such that the natural projection $V \xrightarrow{\pi} V / \rho$ is a morphism. This graph is called a factor graph of G by ρ and is denoted as G / ρ.

A subset $M \subseteq V$ is called a module (by Spinrad $\left[{ }^{3}\right]$) of $G=(V, E)$ if $z x \in E \Rightarrow z y \in E$ and $x z \in E \Rightarrow y z \in E$ for arbitrary $x, y \in M$ and $z \notin M$. It is easy to prove that an equivalence relation ρ on the vertex set V is a congruence relation of G if and only if all the ρ-classes are modules of G.

Lemma 1. The union $A \cup B$ of two intersecting modules A and B is a module. If A and B are overlapping modules (i.e. they are intersecting and $A-B \neq \emptyset \neq B-A$,) then $A-B$ is a module.

The proof is trivial $\left(\left[{ }^{1,3}\right]\right)$.
Let Con G denote the set of all congruence relations of the graph G. Note that Con G is partially ordered by the inclusion relation \subseteq. It is proved in [${ }^{1}$] that Con G is a complete lattice for every graph $G=(V, E)$. Let ($\rho]$ and $[\rho)$ denote the principal ideal generated by ρ and its dual, respectively.

Theorem 1. If $G=(V, E)$ is a graph and $\rho \in \operatorname{Con} G$, then

$$
[\rho) \cong \operatorname{Con} G / \rho
$$

Theorem 2. If G is a graph, $\rho \in \operatorname{Con} G$ is an arbitrary congruence relation, and $G / \rho=\left\{G_{j}\right\}_{j \in \mathcal{J}}$, then

$$
(\rho] \cong \prod_{j \in \mathcal{J}} \operatorname{Con} G_{j}
$$

Proofs can be found in [${ }^{1}$].
For any graph G the intersection of all co-atoms of Con G is called a radical of G and will be denoted as $J(G)$. A graph G is said to be J-radical if $r(G)=1$ and G is said to be J-semisimple if $r(G)=0$. Here 0 and 1 denote trivial congruence relations.

Theorem 3. A graph G is J-radical iff there are no co-atoms in $\operatorname{Con} G$ and G is J-semisimple iff it satisfies at least one of the following conditions:

- G is simple,
- G is edgeless,
- G is complete,
- G is isomorphic to a linear ordering.

The proof can be found in [${ }^{1}$].

3. PARTITION LATTICES

Let A be an arbitrary set and $S \subseteq \Pi(A)$ be a nonempty set of equivalence relations on A. A finite sequence

$$
a_{0}, a_{1}, \ldots, a_{\ell}
$$

where $a_{i} \in A$, is called an S-chain if for every i there is an equivalence relation $\rho_{i} \in S$ such that $\left(a_{i}, a_{i+1}\right) \in \rho_{i}$. Two S-chains $a: a_{0}, \ldots, a_{\ell}$ and $b: b_{0}, \ldots, b_{\ell}$ are equivalent if for every i there is $\rho_{i} \in S$ such that $\left(a_{i}, a_{i+1}\right) \in \rho_{i}$ and $\left(b_{i}, b_{i+1}\right) \in \rho_{i}$.

It is well known that $(x, y) \in \sup S$ iff x and y can be connected with an S-chain. If $\left(x_{1}, y_{1}\right) \in \sup S$ and $\left(x_{2}, y_{2}\right) \in \sup S$, then the corresponding S-chains can be chosen in such a way that they are equivalent.

Let $G=(V, E)$ be a graph.
Theorem 4. Con G is a complete sublattice of $\Pi(V)$.
Proof. It is sufficient to show that the least upper bound (in $\Pi(V)$) of every nonempty set S of congruence relations is a congruence relation. Let $\rho=\sup S$, $x \rho x^{\prime}, y \rho y^{\prime}$, and $\neg(x \rho y)$. So, there are equivalent S-chains

$$
\begin{aligned}
& x=x_{0}, x_{1}, \ldots, x_{\ell}=x^{\prime} \\
& y=y_{0}, y_{1}, \ldots, y_{\ell}=y^{\prime}
\end{aligned}
$$

such that $x_{i} \rho_{i} x_{i+1}$ and $y_{i} \rho_{i} y_{i+1} \forall i<\ell$.
Let $(x, y) \in E$. We will show by induction that $\left(x_{i}, y_{i}\right) \in E$ for all $0 \leq i \leq \ell$. Indeed, the case $i=0$ is trivial and if $\left(x_{i-1}, y_{i-1}\right) \in E$, then $x_{i-1} \rho_{i-1} x_{i}, y_{i-1} \rho_{i-1} y_{i}$. But $\neg\left(x_{i-1} \rho_{i-1} y_{i-1}\right)$, because otherwise there would be an S-chain

$$
x=x_{0}, x_{1}, \ldots, x_{i-1}, y_{i-1}, \ldots, y_{0}=y
$$

As $\rho_{i-1} \in \operatorname{Con}(G)$, we get from the definition of congruence relation that $\left(x_{i}, y_{i}\right) \in E$. Therefore, $\rho=\sup S$ is a congruence relation.

4. NEUTRAL AND STRONGLY NEUTRAL ELEMENTS

An element α of a lattice L is said to be neutral $\left.{ }^{4,5}\right]$ if

$$
(\alpha \wedge x) \vee(x \wedge y) \vee(y \wedge \alpha)=(\alpha \vee x) \wedge(x \vee y) \wedge(y \vee \alpha)
$$

for all $x, y \in L$. The following theorem gives us two equivalent formulations of neutrality.

Theorem 5. Let L be a lattice and let α be an element of L. The following conditions are equivalent:

- α is neutral;
- α is distributive, dually distributive, and $\alpha \wedge x=\alpha \wedge y$ and $\alpha \vee x=\alpha \vee y$ imply $x=y$ for any $x, y \in L$;
- the mapping

$$
\varphi:\left\{\begin{array}{l}
L \longrightarrow(\alpha] \times[\alpha) \\
x \mapsto(x \wedge \alpha, x \vee \alpha)
\end{array}\right.
$$

is a lattice embedding.
The proof is given in [${ }^{5}$].
Let V be an arbitrary set, L be a complete sublattice of $\Pi(V)$ and $\rho \in L$. We say that ρ is strongly neutral in L if

$$
\rho \vee \sigma=\sigma \cup \rho
$$

for arbitrary $\sigma \in L$.

Lemma 2. An equivalence relation $\rho \in L$ is strongly neutral iff

$$
\begin{equation*}
v / \rho \subseteq v / \sigma \quad \text { or } \quad v / \sigma \subseteq v / \rho \tag{2}
\end{equation*}
$$

for arbitrary $\sigma \in L$ and $v \in V$, where v / ρ denotes the ρ-class containing v.
Proof. Let us assume that ρ is strongly neutral, $\sigma \in L, v \in V$, and $v / \rho \nsubseteq v / \sigma$. We will show that $v / \sigma \subseteq v / \rho$. As v / ρ is not a subset of v / σ, there has to be an $u \in v / \rho$ such that $u \notin v / \sigma$. Let w be an arbitrary element of v / σ. As $(w, v) \in \sigma$ and $(v, u) \in \rho$, we have

$$
(w, u) \in \rho \vee \sigma=\rho \cup \sigma
$$

and thereby $(w, u) \in \rho$ because $(w, u) \notin \sigma$. Now we have $w \in u / \rho=v / \rho$. As w has been chosen arbitrarily, we conclude that $v / \sigma \subseteq v / \rho$.

Let us assume that the condition (2) holds. It is sufficient to prove that $\rho \cup \sigma$ is an equivalence relation. It is obvious that $\rho \cup \sigma$ is reflexive and symmetric. We will prove the transitivity. Let $(u, v),(v, w) \in \rho \cup \sigma$. If these pairs lie both in ρ or in σ, the transitivity is obvious. Let $(u, v) \in \sigma$ and $(v, w) \in \rho$. If $(u, w) \notin \rho$, then $u \notin w / \rho$ and therefore

$$
v / \sigma=u / \sigma \nsubseteq w / \rho=v / \rho
$$

and by condition (2) we have $w \in w / \rho=v / \rho \subseteq v / \sigma=u / \sigma$ showing that $(u, w) \in \sigma$.

Lemma 3. Every strongly neutral element is neutral.
Proof. Suppose $\rho \in L$ is strongly neutral. Let us prove at first that the mappings $\sigma \mapsto \sigma \cap \rho$ and $\sigma \mapsto \sigma \vee \rho$ are endomorphisms of the lattice L. The second mapping is obviously a morphism because of the distributivity of the lattice of all subsets of A. Let $\gamma=\sigma \vee \delta$. We will prove the equality

$$
\gamma \cap \rho=(\sigma \cap \rho) \vee(\delta \cap \rho) .
$$

Indeed, as $\sigma \subseteq \gamma$ and $\delta \subseteq \gamma$, it follows that $\sigma \cap \rho \subseteq \gamma \cap \rho$ and $\delta \cap \rho \subseteq \gamma \cap \rho$. Therefore $\gamma \cap \rho$ is an upper bound of the equivalence relations $\sigma \cap \rho$ and $\delta \cap \rho$. It remains to show that it is the least upper bound. Let

$$
\begin{equation*}
\sigma \cap \rho \subseteq \tau, \quad \delta \cap \rho \subseteq \tau \tag{3}
\end{equation*}
$$

and $(u, v) \in \gamma \cap \rho$. Accordingly, $(u, v) \in \sigma \vee \delta$ and $(u, v) \in \rho$. Therefore there is a $\{\sigma, \delta\}$-chain

$$
c: u=v_{0}, v_{1}, \ldots, v_{\ell}=v
$$

If $\left(v_{i}, v_{i+1}\right) \in \rho$ for each $i<\ell$, then obviously c is a $\{\sigma \cap \rho, \delta \cap \rho\}$-chain. Therefore, by the inclusions (3) and the transitivity of τ, we have $(u, v) \in \tau$.

Let i be the smallest index such that $\left(v_{i}, v_{i+1}\right) \notin \rho$. Then either $v_{i} / \sigma \nsubseteq v_{i} / \rho$ or $v_{i} / \delta \nsubseteq v_{i} / \rho$. Accordingly, by Lemma 2, either $v_{i} / \rho \subseteq v_{i} / \sigma$ or $v_{i} / \rho \subseteq v_{i} / \delta$, which gives that either $(u, v) \in \sigma$ or $(u, v) \in \delta$. This implies $(u, v) \in \tau$. Thus, ρ is a distributive and dually distributive element.

We assume now that $\sigma \vee \rho=\delta \vee \rho$ and $\sigma \cap \rho=\delta \cap \rho$ and show that $\sigma=\delta$. Let $(u, v) \in \sigma$. If $(u, v) \in \rho$, then $(u, v) \in \sigma \cap \rho=\delta \cap \rho \subseteq \delta$ and therefore $(u, v) \in \delta$. If $(u, v) \notin \rho$, then from $(u, v) \in \sigma \subseteq \sigma \vee \rho=\delta \vee \rho=\delta \cup \rho$ it follows that $(u, v) \in \delta$. Therefore $\sigma \subseteq \delta$. The proof of $\delta \subseteq \sigma$ is similar. Accordingly, ρ is a neutral element of L.

Lemma 4. If there is a co-atom ρ in $\operatorname{Con} G$ such that there are at least 3 vertices in G / ρ, then ρ is a unique co-atom of $\operatorname{Con} G$ and, furthermore, ρ is the least upper bound of all congruence relations different from 1.

The proof is given in [${ }^{1}$].
Theorem 6. If $G / J(G)$ is edgeless [complete], then every $J(G)$-class G_{ι} is connected [complement-connected].

Proof. Let $G / J(G)$ be edgeless and $G_{\iota} \in G / J(G)$ be not connected. Let G_{ι}^{\prime} be an arbitrary connected component of G_{ι}. It is obvious that there are no edges between G_{ι}^{\prime} and $G-G_{\iota}^{\prime}$ and therefore $\left\{G_{\iota}^{\prime}, G-G_{\iota}^{\prime}\right\}$ is a congruence partition and the corresponding congruence relation ρ is a co-atom in $\operatorname{Con} G$ and $J(G) \nless \rho$, which is a contradiction with the definition of $J(G)$.

If $G / J(G)$ is complete, the proof is similar.
By A_{n} we mean the graph $(\{0,1, \ldots, n-1\},\{(i, j) \mid 0 \leq i<j<n\})$ (a linear ordering with n elements).

Theorem 7. If $G / J(G)$ is a linear ordering, then none of the $J(G)$-classes have a factor-graph isomorphic to A_{2}.

Proof. Let $G / J(G)=\left(V_{0}, E_{0}\right)$ be a linear ordering and $H \in G / J(G)$. Suppose there is an epimorphism $H \xrightarrow{f} A_{2}$ and $\left\{H_{1}, H_{2}\right\}$ is a partition corresponding to $\operatorname{Ker} f ;\left(f\left(H_{1}\right), f\left(H_{2}\right)\right) \in E\left(A_{2}\right)$.

We say that $H^{\prime} \in V_{0}$ is less than $H \in V_{0}$ if $H^{\prime} H \in E_{0}$. Let $\mathbf{G}_{1} \subseteq G / J(G)$ be the set of elements of $G / J(G)$ less than H and \mathbf{G}_{2} be the set of elements greater than H. It is obvious that the partition

$$
\left\{\left(\cup \mathbf{G}_{1}\right) \cup H_{1}, \quad\left(\cup \mathbf{G}_{2}\right) \cup H_{2}\right\}
$$

is a co-atom of $\operatorname{Con} G$ which is not comparable with $J(G)$. This is a contradiction.

Theorem 8. The radical $J(G)$ is a strongly neutral element of $\operatorname{Con} G$.
Proof. The statement is trivially true if $|G| \leq 2$. Let us assume that $|G| \geq 3$. As the graph $G / J(G)$ is J-semisimple, we know that $G / J(G)$ is either simple, complete, edgeless or linear (Theorem 3).

The cases when $G / J(G)$ is edgeless or complete are dual, so it is sufficient to consider only one of them. Let $G / J(G)$ be edgeless, $v \in V$ be an arbitrary vertex, $\sigma \in \operatorname{Con} G$, and $v / \sigma \nsubseteq v / J(G)$. Consequently, there is a vertex $u \in v / \sigma-v / J(G)$. By Theorem 6 the induced subgraph $v / J(G)$ is connected. Thereby, for any vertex $w \in v / J(G)$, there is a chain of vertices $v=v_{0}, v_{1}, \ldots, v_{\ell}=$ $w \in v / J(G)$ such that $v_{i} v_{i+1} \in E \cup E^{-1}, 0 \leq i \leq n-1$. We will prove by induction that all the vertices v_{i} lie in v / σ. Obviously, v lies in v / σ. Assume that $v_{i} \in v / \sigma$ and $v_{i+1} \notin v / \sigma$. Since there is an edge between v_{i} and v_{i+1} and u is contained in the module v / σ which does not contain v_{i+1}, there must be an edge between u and v_{i+1} as well. Since $G / J(G)$ is edgeless, this implies $u / J(G)=$ $v_{i+1} / J(G)$, a contradiction.

Let $G / J(G)$ be linear. Let $H=v / J(G)$ and v / σ be overlapping modules. By Theorem 1 the intersection $H \cap v / \sigma$ and set difference $H-v / \sigma$ are modules of the induced subgraph H, and thereby we have a partition of H into modules. It is easy to show that the corresponding factor-graph is linear, which is a contradiction with Theorem 7.

If $G / J(G)$ is simple, then $J(G)$ is the unique co-atom of Con G. If $|G / J(G)|=2$, then $G / J(G)$ is either complete, edgeless or linear. Thus we can assume without loss of generality that $|G / J(G)| \geq 3$. It follows directly from Lemma 4 that every congruence relation $\rho \in \operatorname{Con} G$ is comparable with $J(G)$ and therefore $J(G) \vee \rho=J(G) \cup \rho$ for every $\rho \in \operatorname{Con} G$.

5. PARTITION NUMBER OF A VARIETY

We will show in this section that the finite partition lattices Π_{ℓ} play an important role in studying the lattice identities holding in $\operatorname{Con} G$.

Let \mathcal{L} be the class of all lattices, $\mathcal{V} \subseteq \mathcal{L}$ be a lattice variety, and L_{1}, \ldots, L_{n} be arbitrary lattices. It is obvious that their direct product

$$
L=L_{1} \times L_{2} \times \ldots \times L_{n}
$$

lies in \mathcal{V} if and only if every L_{i} lies in \mathcal{V}. For example, L is modular [distributive] iff every L_{i} is modular [distributive].

As proved by Sachs in 1961 [$\left.{ }^{6}\right]$, every lattice identity that holds in every finite partition lattice must hold in every lattice. Thereby, for every lattice variety $\mathcal{V} \neq \mathcal{L}$, there is a unique natural number $\eta(\mathcal{V})$ such that $\Pi_{\eta(\mathcal{V})} \notin \mathcal{V}$ and $\Pi_{m} \in \mathcal{V}$ for every natural number $m<\eta(\mathcal{V})$. The natural number $\eta(\mathcal{V})$ is called a partition number of the variety \mathcal{V}.

For example, the class of all distributive lattices has the partition number 3 , the class of all modular lattices has the partition number 4.

Lemma 5. If \mathcal{V} is a lattice variety and $\eta(\mathcal{V})=2$, then every lattice in \mathcal{V} is trivial.
Proof. If $L \in \mathcal{V}$ is a nontrivial lattice, then it has a two-element sublattice isomorphic to Π_{2}. Therefore $\eta(\mathcal{V})>2$.

Let \mathcal{L}_{ℓ} denote the variety generated by the lattice $\Pi_{\ell-1}$. Obviously,

$$
\mathcal{L}_{1} \subseteq \mathcal{L}_{2} \subseteq \mathcal{L}_{3} \subseteq \ldots \subseteq \mathcal{L}_{\ell} \subseteq \ldots \subseteq \mathcal{L} .
$$

It follows from the Jónsson lemma $[7,8]$ that all these inclusions are proper, i.e. for every natural number $n>0$ there is a lattice identity that holds in Π_{n} but not in Π_{n+1}. For the case $n=1$, the suitable identity is $x=y$, for the case $n=2$, it is distributivity and for the case $n=3$, modularity. It turns out that the suitable identity for $n=4$ is

$$
\begin{aligned}
x_{0} \wedge\left(x_{1} \vee x_{2} \vee x_{3} \vee x_{4}\right)= & {\left[x_{0} \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)\right] \vee\left[x_{0} \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right)\right] } \\
& \vee\left[x_{0} \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)\right] \vee\left[x_{0} \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right)\right] .
\end{aligned}
$$

Obviously, the left-hand side is greater than or equal to the right-hand side. To show the opposite inequality, it is sufficient to mention that for arbitrary elements $a_{0}, a_{1}, \ldots, a_{4}$ of Π_{4} the equivalence relation $a_{0} \wedge\left(a_{1} \vee \ldots \vee a_{4}\right)$ is equal to one of

$$
\begin{aligned}
& a_{0} \wedge\left(a_{1} \vee a_{2} \vee a_{3}\right), a_{0} \wedge\left(a_{1} \vee a_{2} \vee a_{4}\right), \\
& a_{0} \wedge\left(a_{1} \vee a_{3} \vee a_{4}\right), a_{0} \wedge\left(a_{2} \vee a_{3} \vee a_{4}\right),
\end{aligned}
$$

because there are no chains of length 5 in Π_{4} and therefore the chain

$$
0 \leq a_{1} \leq a_{1} \vee a_{2} \leq a_{1} \vee a_{2} \vee a_{3} \leq a_{1} \vee a_{2} \vee a_{3} \vee a_{4} \leq 1
$$

must have two equal elements.
But this identity does not hold in Π_{5}. Take, for example, $x_{0}=(04), x_{1}=(01)$, $x_{2}=(12), x_{3}=(23)$, and $x_{4}=(34)$, where $(i j)$ denotes the minimal equivalence relation containing the pair (i, j).

A proof of the general case is similar to the proof of the case $n=4$. Let $X=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be the set of variable letters. A suitable identity that separates Π_{n} and Π_{n+1} is

$$
x_{0} \wedge\left(x_{1} \vee \ldots \vee x_{n}\right)=\bigvee_{\iota}\left[x_{0} \wedge\left(x_{\iota(1)} \vee \ldots \vee x_{\iota(n-1)}\right)\right]
$$

where the join in the right-hand side is calculated over all possible injections

$$
\{1, \ldots, n-1\} \xrightarrow{\iota}\{1, \ldots, n\} .
$$

6. IDENTITIES IN Con G

Let \mathcal{L} be the class of all lattices, $\mathcal{L}_{\mathcal{G}}$ be the class of congruence lattices of all finite graphs. We say that two lattice varieties \mathcal{V}_{1} and \mathcal{V}_{2} are equivalent and write $\mathcal{V}_{1} \sim \mathcal{V}_{2}$ iff $\mathcal{V}_{1} \cap \mathcal{L}_{\mathcal{G}}=\mathcal{V}_{2} \cap \mathcal{L}_{\mathcal{G}}$.

Lemma 6. Let G be a graph, \mathcal{V} be a lattice variety, and $G / J(G)=\left\{G_{i}\right\}_{i \in \mathcal{I}}$. The congruence lattice $\operatorname{Con} G$ lies in \mathcal{V} iff all the lattices $\operatorname{Con} G_{i}$ and the lattice $\operatorname{Con}(G / J(G))$ lie in \mathcal{V}.

Proof. Assume $\operatorname{Con} G \in \mathcal{V}$. Now $\operatorname{Con} G_{i} \in \mathcal{V}$, because there are lattice embeddings $\operatorname{Con} G_{i} \longrightarrow(J(G)] \leq G, \quad$ and $\quad \operatorname{Con} G / J(G) \in \mathcal{V}$, because $\operatorname{Con} G / J(G) \cong[J(G)) \leq \operatorname{Con} G$.

And, conversely, if every $\operatorname{Con} G_{i}$ and $\operatorname{Con} G / J(G)$ lie in \mathcal{V}, then by Theorem 8 there is a lattice embedding

$$
\operatorname{Con} G \longrightarrow(J(G)] \times[J(G)) \cong \operatorname{Con}(G / J(G)) \times \prod_{i \in \mathcal{I}} \operatorname{Con} G_{i}
$$

and therefore $\operatorname{Con} G \in \mathcal{V}$.
Let \mathcal{L}_{J} be the class of all congruence lattices of finite J-semisimple graphs. Let \mathcal{V}_{1} and \mathcal{V}_{2} be lattice varieties. We say that \mathcal{V}_{1} and \mathcal{V}_{2} are J-equivalent and write $\mathcal{V}_{1} \sim_{J} \mathcal{V}_{2}$ iff $\mathcal{V}_{1} \cap \mathcal{L}_{J}=\mathcal{V}_{2} \cap \mathcal{L}_{J}$.

Lemma 7. Two lattice varieties \mathcal{V}_{1} and \mathcal{V}_{2} are J-equivalent if and only if $\eta\left(\mathcal{V}_{1}\right)=\eta\left(\mathcal{V}_{2}\right)$.

Proof. Theorem 3 gives us a complete characterization of the class \mathcal{L}_{J}. It is obvious that if any of the direct powers Π_{2}^{k} lies in \mathcal{V}_{1} or in \mathcal{V}_{2}, then all Π_{2}^{ℓ}, $\ell=1,2,3, \ldots$, lie in \mathcal{V}_{1} or in \mathcal{V}_{2}, respectively. Therefore, \mathcal{V}_{1} and \mathcal{V}_{2} are J-equivalent if and only if they contain the same partition lattices $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{\ell}, \ldots$, i.e. iff $\eta\left(\mathcal{V}_{1}\right)=\eta\left(\mathcal{V}_{2}\right)$.

Theorem 9. Two varieties \mathcal{V}_{1} and \mathcal{V}_{2} are equivalent if and only if their partition numbers coincide, i.e.

$$
\mathcal{V}_{1} \sim \mathcal{V}_{2} \Leftrightarrow \eta\left(\mathcal{V}_{1}\right)=\eta\left(\mathcal{V}_{2}\right) .
$$

Proof. If $\mathcal{V}_{1} \cap \mathcal{L}_{\mathcal{G}}=\mathcal{V}_{2} \cap \mathcal{L}_{\mathcal{G}}$, then $\eta\left(\mathcal{V}_{1}\right)=\eta\left(\mathcal{V}_{2}\right)$. Indeed, if K_{n} is a complete graph of n vertices, then Con $K_{n} \cong \boldsymbol{\Pi}_{n}$ and therefore $\left\{\boldsymbol{\Pi}_{1}, \boldsymbol{\Pi}_{2}, \ldots\right\} \subseteq \mathcal{L}_{\mathcal{G}}$.

Let us prove the opposite implication. Let G be a finite graph. Let $\eta\left(\mathcal{V}_{1}\right)=$ $\eta\left(\mathcal{V}_{2}\right)$. Then, by Lemma 7, $\mathcal{V}_{1} \cap \mathcal{L}_{J}=\mathcal{V}_{2} \cap \mathcal{L}_{J}$. If G is J-semisimple, then obviously

$$
\begin{equation*}
\operatorname{Con} G \in \mathcal{V}_{1} \Leftrightarrow \operatorname{Con} G \in \mathcal{V}_{2} \tag{4}
\end{equation*}
$$

Assume that G is not J-semisimple and (4) is valid for all finite graphs smaller than G. Let $G / J(G)=\left\{G_{i}\right\}_{i \in \mathcal{I}}$. By Lemma 6 Con G lies in \mathcal{V}_{1} iff every Con G_{i} and Con $G / J(G)$ lie in \mathcal{V}_{1}. But G_{i} and $G / J(G)$ are smaller than G and therefore by (4) we get that $\operatorname{Con} G$ is in \mathcal{V}_{1} iff $\operatorname{Con} G_{i}, i \in \mathcal{I}$, and $\operatorname{Con} G / J(G)$ lie in \mathcal{V}_{2}, and by Lemma 6

$$
\operatorname{Con} G \in \mathcal{V}_{1} \Leftrightarrow \operatorname{Con} G \in \mathcal{V}_{2} .
$$

ACKNOWLEDGEMENTS

The author expresses his thanks to J. Rickard and K. Kaarli for their helpful and encouraging remarks.

REFERENCES

1. Buldas, A. Congruence lattice of a graph. Proc. Estonian Acad. Sci. Phys. Math., 1997, 46, 3, 155-170.
2. Buldas, A. Comparability graphs and the structure of finite graphs. Proc. Estonian Acad. Sci. Phys. Math., 1996, 45, 2/3, 117-127.
3. Spinrad, J. Two Dimensional Partial Orders. Ph.D. thesis, Princeton Univ., 1982.
4. Birkhoff, G. Lattice Theory. New York, 1948.
5. Grätzer, G. General Lattice Theory. Akademie Verlag, Berlin, 1978.
6. Sachs, D. Identities in finite partition lattices. Proc. Amer. Math. Soc., 1961, 12, 944-945.
7. Jónsson, B. Algebras whose congruence lattices are distributive. Math. Scand., 1967, 21, 110-121.
8. Smirnov, D. M. Varieties of Algebras. Russian Acad. Sci., Novosibirsk, 1992.

GRAAFID JA VÕREDE MUUTKONNAD

Ahto BULDAS

On uuritud graafide kongruentside võresid, milles kehtib fikseeritud võresamasus. On esitatatud täielik kirjeldus kõigi selliste graafide kohta, mille kongruentside võre rahuldab kindlat võresamasust.

