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Abstract. A modified conception of the theory of the first-order relativistic wave equations is given
and in the framework of the modified theory the Kemmer—Duffin spin-1 equation is considered.
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1. INTRODUCTION

The fundamental role of the Poincaré group in the quantum field theory
was discovered by E. P. Wigner [']. From the point of view in which free

particle states are given by unitary irreducible representations of the

Poincaré group, Wigner considered the problem of representations of the

group and revealed its structure. As it appears, the invariants of this group
have a direct physical meaning — they determine the mass and the spin of

the corresponding physical state.

On the other hand, the quantum field theory is based on the

homogeneous Lorentz group, since the field operators are the Lorentz

quantities. Therefore, the Poincaré representations are realized via Lorentz

representations. Such realizations have generally more components than
needed for a given physical state. In the free field case these superfluous
components are eliminated by additional conditions not ensuing from the

Poincaré group. In this sense, the relativistic wave equations can be used
to define a unique mass and a unique spin.

In this paper, we modify the well-known general principles of the

theory of the first-order relativistic wave equations and consider the
Kemmer-Duffin spin-1 equation in this modified theory. Contrary to the

ordinary procedure, we demandthevalidity of the discrete symmetric
after the unique spin and mass conditions have been applied. Further, we

do not demand the symmetry conditions to be valid algebraically, but only
when applied on the solutions of equations. In this way these conditions do
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not restrict the parameters connected with the superfluous spins contained
in the representation. In other words, using the procedure, we do not

subject the superfluous components to the same symmetry properties, as

the ones connected with a given spin. In fact, it seems more essential that
the symmetry properties are applied only to the given spin components [2].

The main advantage of our approach is the increase of the number of

arbitrary parameters in [-matrices, which offers more possibilities of

treating interactions and quantization. We hope that our approach enables

to avoid some well-known difficulties which exist in the ordinary theory.
The paper consists of two parts. In the first part, the modified

axiomatics of the building of the first-order relativistic wave equations is

given. In the second part, the Kemmer-Duffin spin-1 wave equation in the

framework of the modified theory is considered.

2. GENERAL THEORY

The requirement of relativistic invariance means that to each physical
system corresponds a unitary representation U of the Poincaré group P, ;.

We take the transformation property of the wave-function \у а$

(U(a, A) P) (р) = е”“Т(Л)®(A p), (1)

where
-

(a, A) € Pl, ;
and T(A) & а N-dimensional matrix

representation of the Lorentz group (A€ §01‚ 3 )- The finite-dimensional

representation of the Lorentz group is generally irreducible and its spin
content is determined by the decomposition

=
)

Tiso,= 2PY (2)

ЛЕ/

where DY denotes the irreducible representation of the rotation group SO3
and n;, its multiplicity. Besides the invariance with respect to the restricted

Poincaré group, the theory has to be invariant with respect to discrete

symmetries of which only the space inversion is considered here. To make

the theory space inversion invariant one must take only such

representations of Lorentz group for which

IT(A) = T(nAn)/,, (3i)

I, — nonsingular.
This choice yields the transformation

(U(n) U(a, A)W) (p) = eIT(A)y(A'p). (3ii)

Неге I, is the space inversion operator corresponding to the reflection in
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the Minkovski space

Ir : рд _›Бд g nuupu,

with n”V= diag(l,-1,-1,-1) as the metric tensor. It follows from Eq. (3)
that the operator 7, belongs to the commutant of the representation 7, ,

and due to the Weyl's theorem 3

(4)I = Y1,0.
.

e ле
. Е ЦЕ,

There is yet one restriction called H-unitary condition which is needed for

the Lagrangian theories. Hence, the Lorentz representation 7is assumed to

be H-unitary:
Т' (Л)Н = НТ(А'), (5)

H' = H, H — nonsingular.
Due to this relation the Weyl' theorem states that

H = ZH(]') .

=

(6)

To make the invariant system of functions with transformation law (1)
into a single-particle theory, one needs some additional restrictions not

proposed by the Poincaré group. These restrictions — the unique mass and

the unique spin conditions — are put on the operators contained in wave

equations. Since any n-th-order differential eguation is eguivalent to the

first-order system of eguations of the form Р”

(P, B*-x)w(p) =O, (7)

where B“ are N-dimensional matrices and K is a non-zero constant, only
the restrictions on [-matrices can be considered. Relativistic covariance

restricts the structure of -matrices, since under a homogeneous Lorentz
transformation \у transforms according to Eq. (1). Thus we must have

T (A) В,Т(^ = AW (8)

if Eq. (7) is to be covariant.

Written in terms of the generators SOO of the Lorentz representation 7,
this relation becomes

(B Spel = i(Myßs—l,6B,) (9)

or, in more detail

[Во 5) = 0, (101)

[[6o›so3]›Bo3] = -ВО’ (10i1)

B, = —i [By Soz) (10iii)
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(, р,... = 0,1, 2,3; 1, К, ...
= 1,2, 3). Thus, BO is the solution of Egs.

(10i) and (10ii) and B
‚

аге determined by Eq. (101ii). Incidentally, Weyl's
theorem states that

Во = ZB()(J)
X

(11)

Now, if we demand that the solutions of Eq. (7) describe a particle with

unique mass, i.e. if we assume

@ -xHv,(p) =O, A=l2..N, (12)

then Bu must satisfy the condition ]

" =PBN (13)

Thus, the spectrum of B, o (B,), is 0, £1 and Eq. (7) describes the

particle with the rest mass m, m? =р? = к° However, this mass m can

occur several times.

The separation of one desired spin s is possible thanks to the

decomposition (11). Taking into account the spectrum & (B,), we

conclude that Eq. (8) contains the spin s if

B(s) = By (s) %0, (14i)

and does not contain the spin j € J if

В° =0 (14ii)

for some ng, n; < n, i.e. if the submatrix BO (j) 1s nilpotent.

Usually е discrete symmetry conditions are put on [-matrices
algebraically, and before the single mass and the single spin have been

separated. It is more natural to follow a radically different procedure. That

is to impose the discrete symmetry properties by demanding its validity
only on the solutions of Eq. (7) with conditions (13) and (14). Thus for

space inversion invariance we shall demand that

P'BLY (P) = Lp"Bw(p), (15)

where the parity operator /, is required to be H-unitary, i.e.

I'H ="'HI.

Since we can apply decomposition (11), we get that

Bo Nl, G) = 1, G) B ) (16)

only for these j € J for which condition (14i) is fulfilled. For other spins
the space inversion invariance does not give rise to any restriction.
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Similarly, the hermiticity condition may be introduced by the condition

p"B,HY(p) = НР"В® (р). (17)

As a result of decompositions (6) and (11), we get

В ОНО = H()B, () (18)

only for these j € J for which condition (14i) is fulfilled. On the contrary,
on the blocks Bg(j), which obey condition (14ii), hermiticity condition

(17) does not generate any restriction.

The physical meaning of the last two conditions proceeds in part from

decomposition (11). Due to conditions (13) and (14) Eq. (7) yields only
solutions with unique mass and spin and therefore conditions (15) and (17)
mean the hermiticity and space inversion invariance of only the particle
selected by (13) and (14). On the contrary, the usual algebraic conditions

of discrete symmetries mean invariance under these symmetries of all the

particles contained in the representation. Otherwise we do not subject the

spin-s particle to the discrete symmetry properties of the spin-j particles,
s#j€ J. In principle, a spin-s particle cannot be looked upon as

composed by lower spin-j particles (s #j) according to the Clebsh-Gordon

procedure. A higher spin particle is in itself a phenomenon of nature. This

does not mean that the nilpotent parts of B are useless or superfluous: the

particle is characterized by the whole P(-matrix, and the parameters оЁ

nilpotent parts play an important role in the presence of interactions.

3. KEMMER-DUFFIN EQUATION

It is natural to wonder how the above-mentioned axioms determine the

B-matrices of the relativistic wave equations. For this purpose, let us

consider the Kemmer-Duffin spin-1 equation. To construct it, we depart
from the representation (1,0) @ (1/2,1/2) @ (0, 1). In the Gel'fand

basis [*] the generators have the form

т

. 1, j
§ = "2‘5115“ =

т .
. 0

5% =

йт

0 — (ij)
+

—ij 0
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where

| Jž 010
. iJž 0-1 0

;

100

m =—7 101, m

=—“2— 10 -1, 7 =OO0
010 01 0 00-1

are the generators of the representation D™ of the rotation group SO3. The

K-matrices have been defined by Hurley ['°], |
К, = (100),К,= (0 10),К, = (0 0 1)

апа

Jž
1 0 —.l

V=
>| О il.

0-42 0

The discrete symmetry operators, the hermitianizing matrix H and the

space inversion operator /, are expressed as

0 h
* A

H=h" 0
1, h =h,zo (19)

10

0-1

1
0 - |
d

| a

I=g, qO › 940 = 1, (20)

10 _

0-1

(hg)* = hg.

The general form of P, which satisfies condition of relativistic

invariance (9), is [1 1]

0 0x, '
-00 x .

BO= 2
|, (21)

X 3 X 4 0

.

The characteristic polynomial of B has the form

”
22det (By-X) = М(№ -2) (22)
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and the minimal polynomial is

2
Bo(po—z) = 0, (23)

Z = x]x3+xzx4.

If we takez = 1, unique masscondition (13) is satisfied and the minimal

polynomial guarantees the unique spin without any additional restrictions

on the parameters x;.
Now, let us consider discrete symmetries. Space inversion invariance

condition (15) generates the relation

Xy = gX,. (24)

The strong algebraic condition

BOIr = IrBO

yields the restrictions

X, = 4х), X 3 = gX,.

Hermiticity condition (17) generates the relations

Xy = h*xz*, X, = hx*l (25)

which coincide with the algebraic condition

BH = HP,.

Thus, we may draw a conclusion that discrete symmetries (15) and (17)
together coincide with the corresponding algebraic conditions. It is

natural, because in the present case the lower-spin part of B is trivial. As

is shown in [2] for the spin-3/2 particle, the difference between ordinary
algebraic conditions and modified conditions is essential.

Therefore, we have -

0 0 ° xm -х(КМ)*
00 x0 | !

+

) Jž 00 gxo | .Jž
0 0 -gxm —qx(KjV)

{-NZ
‚

вб= * | . (26В-1тоOРТ eskt 0 о
|©®

х gx х qx

S rkvikv o 0
х

/
дх

/

(hg)* = hg>o, ghxx' = 1.

These explicit forms of B-matrices imply the validity of the Kemmer-

Duffin algebra relation |

ВВРВУ+ВУВРВ' = пФВУ+ УРБ —
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and therefore there exists the Klein-Gordon divisor. As to the Proca

equation, for its equivalence to first-order Eq. (7) with B-matrices given
by (26), it is necessary 10 take g = i. In this case h* = —h, and the

parameters k 1 and x are connected, as | Al | xl> = 1. Therefore, the class of

the first-order wave equations based on the Kemmer-Duffin algebra is

larger than the Proca second-order wave equation.
For completeness, let us give P-matrices (26) in the Kemmer-Duffin

basis. By somewhat tedious calculation one obtains that

0 O -i (g+i)xo

0 0 (g—i)x O

BYo =
sa+i

itg—i

ко ° 5 |4+! 1(4 -1) 0 о)'
qx qx

0 0 0 0

| 0 0 (g-i)xd —i (q+li)xK;
0 0 i(qg+i)xe (q—i)xK;

j 1
j

—

21. . .

Вко 7

5|4-Во+ оо 0
"

qx qx

+ _

ooy -К 0 0
дх

7
9х

*

where (¢ )Z = EZ'ande”? is the antisymmetric tensor, €' >= 1. The

usual choice of parametersisg= 1, x=-li.

4. CONCLUSIONS AND DISCUSSIONS

The aim of this modified theory is to enlarge the number of parameters
in B-matrices. In this way we hope to avoid the difficulties that appear in

the ordinary theory (acausal modes оЁ propagation, indefinite

anticommutation relations). In fact, the acausal propagation of wave

appears even of the external field and is coupled in the Poincaré-invariant

way [l2]. Indeed, the Courant's characteristics method was used for the

estimation of causality of the Kemmer-Duffin spin-1 equation with

"dynamical" coupling and fixed parameters g = i, x = — i. The answer was

— noncausality in spite of the fact that the second-order Proca equation
with the same coupling gives rise to causal propagation. A natural question
arises now whether one can obtain the causality by the variation of the

parameters g and x. + |
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MÕNINGAID MÄRKUSI RELATIVISTLIKE LAINEVÕRRANDITE
KOHTA

Iraida JERSOVARein SAAR, Ilmar OTS,

On antud esimest jarku relativistlike lainevorrandite modifitseeritud

kisitlus. Selle modifitseeritud teooria raames on vaadatud Kemmeri-

Duffini vorrandit spinnile 1.

НЕКОТОРЫЕ ЗАМЕЧАНИЯ О РЕЛЯТИВИСТСКИХ ВОЛНОВЫХ

УРАВНЕНИЯХ

Рейн СААР, Ильмар ОТС, Ираида ЕРШОВА

Дано — модифицированное— представление O — релятивистских
BOJIHOBBIX YpaBHEHHAX первого порядка. В рамках
модифицированной теории — рассмотрено уравнение — Кеммера-
Дэффина для спина 1.
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