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Abstract. A family of stable (Schur) polynomials is generated, starting from a single stable

polynomial (or polytope) by means of a transform from the unit circle into itself. The transform is

linear in respect of polynomial coefficients, but nonlinear in respect of a free parameter. By

repeated use of the transform and the edge theorem, a sequence of stable polytopes is produced.
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1. INTRODUCTION - -

The stability of linear control systems with structured parameter pertur-
bations is a problem of current interest. In the continuous-time case, and

with independently varying polynomial coefficients, Kharitonov's theorem
[‘] provide necessary and sufficient robust stability conditions. Khari-

tonov's theorem fails to hold for discrete-time systems of fourth and higher
order [2].

The edge theorem [3] handles both the continuous-time and discrete-

time systems. It is particularly convenient forpolytopic perturbations, that

is, for linearly interdependent polynomial coefficients. Unfortunately, and

contrary to Kharitonov's theorem, the edge theorem suffers from a dimen-

sionality curse. For those reasons the search has continued for alternative

robust stability conditions and tests.

Many interesting results have been obtained for discrete-time systems
by the use of a bilinear transformation and the so-called "barycentric co-

ordinates" starting from the continuous-time case [> . Special kind of

parameter perturbations have been found out which do not destroy the

necessity of Kharitonov's conditions [4].
In this paper a different approach is proposed. The question is: do there

exist special perturbations which do not destroy the stability of a stable

system? The discrete-time case will be studied. For the sake of simplicity
only one free parameter will be dealt with. The key idea is to use such a
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linear-fractional transformation with a free parameter on the roots of a

polynomial, which maps the unit circle into itself 1.
A polynomial is called the Schur (stable) polynomial if all its roots lie

inside the unit circle. Our aim is to generate a family of Schur polynomials
starting from a single stable polynomial (or polytope). This family of poly-
nomials is not an interval polynomial, because the transform is nonlinear

in respect of the free parameter. Fortunately, the transform is linear in

respect of the polynomial coefficients. Hence we can generate different

kind of stable polyhedrons by the use of the edge theorem.

The paper is composed as follows. In Section 2, the transform with a

free parameter is recalled which does not alter the stability of discrete

polynomials [°]. In Section 3, the stability conditions for polytopes with a

free parameter are obtained by the use of the edge theorem. The transform

with a free parameter works as a generating rule. By repeated use of it we

can produce a sequence of stable polytopes starting from a stable one.

2. STABLE POLYNOMIALS WITH A FREE PARAMETER

Let us consider a polynomial

q(z) = Z.—=oa"z' a,€R,

with roots A, in the unit circle, |A| < 1, i = 1,...,n. We are looking for

another polynomial ;

b(zta) =Y dba > 0

with coefficients b, (L, a) € R depending linearly on the coefficients a;,
j =0,...,n and nonlinearly on a single parameter {

b(Ga) =Y Oa (2)

Our aim is to choose such functions f; (€) that the polynomial b(z;C,a)
will be stable if the polynomial a(z) is stable and if the parameter С is

placed in an interval e [C ).

It can be easily shown [s] that the polynomial (1) with coefficients (2)
has roots

(3)
7»_‘—?;

‚
$ = 1,...,л,н, (5) =ТТ7»‚

f .

i

-

f"!' () = z:::o (іп—_/‹:‚і) ( i)ci”-u’
(4)

where n[žclare binomial coefficients. The linear-fractional mapping (3)

transfor e unit circle into itselfand b,e Rif e (-1,1).
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Proposition 1. [°] The polynomial (1) with real coefficients
b, (C, a) defined by (2) and (4) will be Schur stable if the polynomial a(z)
is Schur stable and if the free parameter ©6 lies in the interval { € (-1,1).

Let us denote the mapping S:R" xR —R" from the coefficient space of

a(z) with a real free parameter C into the coefficient space of b(z) as

$ (а, 6) = Ь (г; 6, а) .

Неге апа тШе following we shall use transform (2)

with f,(¢) from (4). For ¢ =O, S (a,O) =b(z;o, a) = a (2).

3. STABLE POLYTOPES WITH A FREE PARAMETER

Let us now consider a polytope |

Р(а,5) = уа (2) + (1-))Ь (2)
, уе [O, 1]

of polynomials a(z) and b(z). The polytope P(a,b) is said to be stable if the

polynomials p (z;a, b,y) € P (a, b) are stable for all ye [O, I].

Applying the transform (2) to the polynomials a(z) and b(z), we obtain
a polytope

Р[s(а, 5),5(5, 5)] =35 (а, 5) + (1-))5(5, 6) , уе [o,l].

Proposition 2. The polytope P[S(a,t ),S(b,; )] will be stable for
any ¢ from the interval {e (-1, 1) if the polytope P(a,b) is stable.

Pr o o f: The proof is straightforward because the transform (2) is linear

with respect to the coefficients a;,j = 0,...,n. For some fixed t and Y>
Cfe (-1,1), Y€ [O, 1] we obtain the polynomial

plz;s(a,t),s(b, 0), =Y> Х,(ар +

i=o j=o ‚

+l-1%) Y, DSb=, 3f (&) [ya+ (1-1 b2 =

n=o j=o i=o j=o

= s[р(гза, Ь, 1 ), 5/.

The polynomial p(z;a,b,y, ) is stable by assumption. By proposition 1 the

polynomial S[p(z;a,b,yf),šf] is then also stable. Hence, the polynomial

p[z;S(a, 0), S(b,t).Y] e PIS(a, £),Sb, )) is stable for all ¢e (-1,1) and

Y€ [o,l] .
-‚ A

Let us now consider a polytope |

Ра,$(а, 5)] = ya(z) + (1-yWa(z;o),

where the polynomials a(z) and a(z;¢ ) = S[a(z),¢] are related by transform
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(2). Taking into account the properties of this transform, we can formulate
the following proposition.

Proposition 3. Suppose that the polytope Pla,S(a,()] is stable for
some C,Ce (-1,1). Then

1) the polytope P[S(a,(), S(a,t,)] will be stable, where ¢, = 28/ (1+ %) ;
2) the polytope Pla,S(a,-¢)] will be stable;
3) the polytopes P[S(a,§ )»S(a,t k+l)] will be stable, where

(5)
24

& = 0,1,2,....С-›!н! =

I+—šž

P r o o f: Let us denote b(z) = S[a(z),{]. Then, by proposition 2, the

polytope P[S(a,t),S(b,¢)] will be stable if the polytope P[a,S(b,¢ )] is sta-

ble. To prove the first assertion we have to show that P[S(a,(),s(a,¢,)] =

P[S(a,t), S(b,o)].
By the twofold use of transform (3), we obtain

(c c) _

ll,(š) —Cf
_

Ä;—š
VÕ ©

°

e

ог S(S[a(z), ¢], ¢,} = Sla(z), ¢], where

- — 6+6 .
= —.

1+ CCf

For ¢, =¢ we obtain ¢ = —35—2- = ¢, and we have proved the first assertion.
1+ С

Let now ¢=- ¢. Then s{S[a(z), {],- ¢} = S[a(2),o] = a(z). From the

stability of the polytope Pla,S(a,t)] follows, by the proposition 2, that the

polytope P{S(a,-{),S(S(a,£),-Cl} = P[S(a,-{),a) is stable. Hence the

second assertion holds.

By repeated use of the first assertion and proposition 2, we can easily
prove the third assertion. A

Using the edge theorem [*], we can generalize the assertions of proposi-
tion 3. Let us denote a polytope of m polynomials as follows

Р(а а„) S(@ @D+ +%8,0, Y =l,

and the repeated use of transform (2)

s(a,o) =S(S(a,O,O, k=1,2.. .

Proposition 4. Suppose that the polytopes Pla,S(a,()] and

Р [а, 5? (а, §)] are stable for some {, (e (-1,1). Then

1) the polytope Pla,S(a, ¢),S%a,t )] is stable,
2) the polytope Pla,S(a,t ),S(a,~¢ )] is stable,
3) the polytopes P[SX(a, ¢),s**(a,t ),S***(a,t )] are stable.
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P r o o f: From the stability of the polytope P[a,S(a,¢ )] it follows, by

propositions 3, that the polytope P[S(a,¢ ),5? (a,; )] is stable. Now all the

exposed edges of the triangle (polytope) Pla,S(a, ¢),5%(a, ¢)] are stable.

Therefore, by the edge theorem the whole triangle is robustly stable, i.e.

the polytope P[a, S(a, C), S2(a, С_,)] 1s stable.

In a similar way we can prove the assertions 2) and 3), using, accord-

ingly, the assertions 2) and 3) of proposition 3. A

Increasing the number of edges we can obtain similar statements for

polytopes of dimension k. For example, if е polytopes
Pla,s(a,t)],Pla,S%a,t)], ... ,Pla, SX(a,;)] are stable, then the polytopes

(polyhedrons) P [ s™(a,¢ ),
...,

sm+k (a,t )],m=l, 2,... are stable.

By the use of propositions 2 — 4 we can prove the stability of various

polygons and polyhedrons starting from the stability assumption of the

pOlytopeS P(a]9a2)9 P[al,S(al,š )]7 P[a29s(a29š )]
The case of special interest-arises if a,(z) =0

.
The origin is a fixed-

point of the transform (2) forany e (-1,1), I.e. Sk(O, 6) =O, &= 1,2,...
As a corollary of propositions 2 and 3, we obtain then the following.

Proposition 5. Suppose that the polytopes P(a,o) and Pla,s(a,t)]
are stablefor some ¢, (e (-1,1). Then

1) the pelytope P[o,a,s(a,t )] is stable,

2) the polytope P[o,a,s(a,~¢ )] is stable,

3) the polytopes P[O,Sk(a,t; ),Sk+l(a,§)], k=1,2,.. are stable.

E x am ple. Let us start with a (Schur) stable polynomial

a(z) = 22+0.7z+0.1,

and let { =0.2. Then we have, according to (1), {; =0.38, {,=0.69, {;=
0.94, and according 10 (2) - (4),

b(z, C) = 1142°+ 1.17&+0.28,

Ь(г 6) = 1282°+ 1.68;+ 0.51,

b(z,,) = 1.53*+ 2.58г+ 1.06, |

| Ь (г, 6,) = 1752°+ 3.25&+ 1.6,

Ь (г, -6) = 0.862°+0.29;.

By proposition 1 the polynomials b(z,§ ), b(z,s 1), b(z,¢ 2), b(z;t з) апа

b(z,~¢) are (Schur) stable.

Consider now the polytope _

Pla,b({)] = (1.14-0.14y2>+ (1.17-0.477)z+ 0.28-0.177,
Ye [O, 1]
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The polytope Pla,b(¢)] will be stable if the matrix H(a,b) = H(a)H'(b)
has no real eigenvalues A(H) in (-= ,0) [6], where

Bo @, а,—а,
О а, ... а-а ац-а,

Н (а) =

.. .

:

0 —a ... а- а-4 @„-| -а-а

—а —al oo —@-з а„—а„_2

We have

Ha =|

1 999 Hp) =|ll4 086

-0.10.9 —0.28 0.86

м, (Н) = 1.05,

Hl[a,b(o)] =

0.91 0.14
,

!

0.14 0.91 A, (H) =0.78.

Hence the polytope P[a,b(¢.)] is stable. By proposition 3, the polytopes

P[b().b(s,)] = (1.28-0.147)2"+(1.68-0.517)2+0.51 ~0.23,

P[b(L), b(s)] = (1.53 -0.252°+ (2.58 -0.907) z+ 1.06 - 0.55,

P[b (). b(y] = (1.75-0.2212°+(3.25-0.67)2+ 1.60-0.54y,
Pla,b(-0)] = (1.00-o.l4y)z°+(0.70-0.41y)z+0.28(1-7),

Ye [O, 1] are also stable.

For the polytope _

Pla,b({))] = (1.28-o.2By)z° + (1.68 -0.98y)z+0.51 -0.41y,

b
ep lna —MD =O6l,

'
0.280.89| A, (H) =1.17.

Hence the polytope Pla,b(g,)] is stable. Since the polytope Pla,b(?)] is

also stable, then, by proposition 4, the polytopes

Pla,b(§),b(s,)] = (y1+1.14yz+1.2873)22+(0.7y,+1.17yz+
+ 1.687;)z+o.ly,+0.28y,+0.51y,,

Pla,b().b(-{)] = (¥, +1.147,+0.867;)2"+ (0.7y + 1.17y,+0.297)z+
+o.ly, +0.28*{2,
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P[b(©).b(G bsy = (1147, +1.28y,+ 1.53y,) 2% + (1.17y +1.68y,+
+2.sBy,)z+ 0.28y,+0.517,+1.06y,,

у,+у2+у3 = 1, are stable.

Figure illustrates the example. In coefficient space the polynomial a(z)
is represented by the point A. Since A is stable, the curve GABCDE is sta-

ble by proposition 1. The polytope P[a,b(¢)] is represented by the line seg-
ment AB. By proposition 3, the line segments BC, CD, DE, AG are stable
if AB is stable. The polytope P[a,b(t),b( ¢,)] is represented by the triangle
ABC. By proposition 4, the triangles ABC, AGB, BCD, ... are stable if the
line segments AB and AC are stable. By proposition 5, the triangles AOB,
AOG, BOC, COD, ... are stable if line segments AO and AB are stable.

4. CONCLUSIONS

Some sufficient stability conditions for the polytopes of discrete poly-
nomials are obtained by means of a transform from the unit circle into
itself. This transform works as a generating rule. By the repeated use of it
and the edge theorem, a sequence of stable polytopes can be produced
starting from a stable one.

Stable polynomials and polytopes generated by the linear-fractional transform with a free

parameter €.



In this paper only one parameter { is allowed to vary independently.
This restriction is not principial — more complicated transforms with many
free parameters exist which map the unit circle into itself. In the next paper
we will consider the problem with the multiparametric stable transform.
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POLÜTOOPIDE ROBUSTSEST STABIILSUSEST

Ulo NURGES

On uwuritud diskreetsete poliinoomide robustse stabiilsuse probleemi.
Kasutades iihe vaba parameetriga teisendust poliinoomi juurte iihikringis
on genereeritud stabiilsete poliinoomide hulk ldhtudes iihest stabiilsest

poliinoomist (vOi poliitoobist). See teisendus on lineaarne poliinoomi
kordajate suhtes, kuid mittelineaarne vaba parameetri suhtes. Teisenduse

korduval rakendamisel koos nn. serva teoreemiga on leitud stabiilsete

poliitoopide perekond.

О РОБАСТНОЙ УСТОЙЧИВОСТИ ПОЛИТОПОВ

Юло НУРГЕС

Изучается mnpobnema — робастной — устойчивости — дискретных
многочленов. С помощью преобразования в единичном круге корней
многочлена с одним свободным параметром генерируется множество

устойчивых многочленов исходя из одного устойчивого многочлена

(или политопа). Это преобразование линейное — относительно

коэффициентов многочлена, и нелинейное относительно свободного

параметра. С помощью так наз. теоремы ребра и многократного
преобразования найдено семейство устойчивых политопов. ;
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