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Abstract. Methods under consideration are intended to solve systems of nonlinear equations in n

variables where the number of equations m is greater or equal to n and the Jacobian may be ill-

conditioned. Two approaches for solving such problems are examined. The first one is based on the

computation of the weighted pseudoinverse being, as a rule, concurrent with great computational
efforts and therefore the corresponding algorithms are appropriate for solving only small

dimensional problems, especially if m>>n. The second approach rests on solvingapproximately
corresponding preconditioned linear equations by taking finitely many steps of an iterative

procedure. Thus they are applicable to large scale nonlinear problems as well.

Key words: nonlinear equations, least squares solution, weighted pseudoinverse, preconditioner,
Neumann's series, regularization.

Giving up some extra work for the numerical stability is particularly
justified for problems in which the evaluation of function values and their

derivatives are expensive and dominate the other costs. For instance,
inverse problems are usually nonlinear and often involve very complicated
subproblems with partially unknown properties. As a rule, they are ill-

conditioned and numerically unstable. In this case it is reasonable to

combine the algorithm with a preconditioner to reduce the condition

number.

METHODS

The problem is to solve the nonlinear equation,

F(x) =O, (1)

where F: DcR" -R™ ,m#n and F is continuously differentiable. If the

equation (1) has any solution in the сіаззіс№оиBт in the
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least squares sense, i.e. minimizing the functional

1
T(x) = IF@ ;. (2)

1. For solving (1) or for seeking a local minimum of (2), one might use

the iterative method

Xk+l 5 447 WF (x)]*WF(x)), (3)

where A,: = [WF'(x)]*W = [F'(xk)]*v“w, We RX" and[F(x)] ,
means the W 7 — weighted pseudoinverse of F'(x) [l].

If m>n and F’(x) and W have a full rank, then one gets

o 1 =%~ [WF (x)I7'WF (x), (4)

which for m=n coinsides with the standard Newton method, and taking

W=W =ol[F(x)] T,ak>o, one obtains the Gauss-Newton method

for m>n. Here [-]7 denotes the dual mapping.
Let Pg(,) denote the orthogonal projector of R" on to the range of

F’(x), and let P, (x) be defined by the relation Py, (x) =PR (x)+— Р›
where Py, = W"W, and Wis ап лхт matrix approximating [F’ (x)]" . Let

A denote a positive scalar satisfying the inequality ”Ak“ <A, =A< ап

Pe= Paar)

Lemma I[*3]. Let on some set S = {xe Rn:”x—x()“ <p} the

following conditions befulfilled

| tF1l sc, vres.

”F'(X) —F’(y) ” SL“X—yH, vaye S,
then

“PR(x)—PR(y)HSLOHX—y"' VX,)’GS,

where .
2 Ly = CL.

Remark 1. From Lemma ] it follows that there exist positive scalars
N andNsuchthat °

| P
riy

=PrinPR VPO| = | PRy =Prey ) -Pro) FO |=

=Nlx-yll, Vxyes,

andfor XX,1 € S

A=RPR SNP P(x) ] -
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where

sup|| (1 = Pgyy )F(X) || SN", N'=N"Lj and М = )М.
хЕ 5

. д =4

Since, in general, the equality PRixy = PRt x)
does not hold, then

— — — — — —
— -3

Priy) "PrR»)PrR(» = (PR(y) ~Pr(x)) U—=PRr(x)) +PRx) = PR(x)*

For W = [F'(xg)]" we have

|Рво = Preoll = | Proy =Presy)Poll 1Presy =Prew|-
— —2 — —

—

Ре(х) = Pr») = PR(x)PR(x) _PR(x)POPR(x) — (PR(x)_PR(x)PO) PR(x)*

By Lemma 1 and Remark 1

- — _
_

|Рк -РРЕк| < (у+ Мр) |Р„Ё () ,
where

sup|| (7 = Pry YF(O) | <N", N'=N"Ly, N=Lj|i-Py|
ХЕ 5

and N = AN'.

First, we will examine convergence properties of (4) with

W= [F (xo)]+,and thus Pp(,y = ProyPo:

Theorem I.Zetm2n, Xy € К", $5 = {хе Кп:"х—хон <p} and the
following conditions are valid in S:

1° operatorF has Frechet-derivative and || [F' (x)]'| <C ;

2° derivative F’ satisfies Lipschitz condition

IF(x)-Р() | < Мх -; |
3° derivative F’(x) hasfull rank.

-
- LC

If &= N+Nr+—2—||POF(xo) || <1 апа г= C"POF(xO) "/(1 -$) <р

then the sequence generated by (4) with W=[F’(xy)l* has a limit x which

appears to be a solution 0] the equation Pg,\F(x) =0 with

“xk — xoll < г апа

"х -x "Srõk |k .

Proof. IfA and B are m x n and n xm matrices, respectively, then

(AB)*=B*A*,
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provided rank(A) = rank(B) = n [4]. Оп е basis of this relation one

concludes that `

А,= ([F'(x)]*FXx))* [F'x)]* = ’ (хр) ]°Е (хо) [Е (хо) ]° =

= [F'(x)]*Po = [F '(x)]*PrPo = [F'(x)]* Pk.

According to Taylor expansion, one obtains

Б,…г(х‚…) = (Pyyl—PralPOF() +P {(P - F (x) A ) F(x)+
] -

+ -[0 [F' (xk) -F (xk+t(xk+] —xk))]AkF(xk)dt }.

Further

Py—F (x)A, = PP —F (x)A P, = (P, —F (x) [F (x,) ТОР, = 0

since P, =F(x)[F(x)]* and

- -
- LC -

|PesiF @, < [N+Nr+ THPkF(xk) H] NPFt | <

= D

k+lsõlprtxp|</Porto lõ**',
5 5

k

I%+ 1
= x| S €|PeF () || < €| PoF () ||,

k

pr—xk"Sr(õ - p 2k,

'|р * k

pr—xo" <r(l-9") <rzp, "х —xk“ <rö,

* . * 34l
—

ey klgn„xk' “PR(x*) P, F(x )" - kh—r)noo”PkF(xk)“ =O.

In particular, if W is an (m х m)-unitary matrix then it can be shown that

[WEF’(x)]*=[F’(x)|*W!, and therefore x* appears to be a solution of the

nonlinear normal equation P]. The problems of global convergence for (3)
and the concept of appropriate level functions are discussed in the next

section.

2. When large-scale nonlinear problems are to be solved, then the exact

solution of associated linear equations at each iteration can be very

expensive, not to speak of matrix inversion. In this case, the use of an

inexact standard iterative method (e.g. truncated-Newton, truncated
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Gauss-Newton, etc.) may be justified, which is based on solving
corresponding equations approximately, frequently via the conjugate
gradient method. Iterative methods solve Kx = g sometimes faster than
elimination methods. Moreover, finding a current approximate solution x,

vsiith high accuracy may not be necessary when x, is far from the solution

х. -

In particular, if the Newton equation F' (x}) (x,, ,-x,) = -F(x,) is

to be solved within the tolerance nk“ F (x,) “ (n,>o), then the quantity

n, accurate to a factor, coincides with the quantity Y, Where

||l—F' (xk)Ak” =7, and A= [F (xk)]—l. The sequence {n,} is known

as forcing sequence, and it can be used for controlling the computational

process; specifically, the approximation rate y, = O”F(x к) H ensures that

the sequence (x,) converges guadratically (e.g. [6' 7]). The search direction

is usually assessed by the norm of the residual. However, the norm of the

residual happens to be not always a good predictor of a good search

direction, especially if the problem to be solved is ill-conditioned [B’ 9] and

hence preconditioning is needed. In particular, for symmetric and positive
definite linear systems of equations Kx = g, a combination of iterative

methods and a preconditioner based on incomplete Cholesky factorization

(LU factorization) is applicable. That is, one solves iteratively the

equivalent system № 'Кх = N" 'g, where N is the matrix representation of

the incomplete factorization. The convergence properties of the iterative

process can be further improved by ušing a polynomical preconditioner

C(N'K)N'Kx = C(NON2,

where C(X) is a preconditioning polynomial (usually C(X) = )„-1)
andC (N_l K) is the associated polynomical preconditioner ['9). Ё М апа К

are symmetric, then sois the preconditioner C(N"]K) №М' апа several

variants of the conjugate gradient methods can be put to use.

The execution of one step of the iteration method (e.g. see [1 1])

Хн т Х, ekakC(ak [F (x,) ]ТЕ (xk)) [F' (xk) ]ТЕ(xk) ‚ @,>0,

where the parameter €, determines the stepsize and

Cloy,x) = C(oy [F (x)ITF (1)) = I+¥, +...+ va

¥, =l-o,[F(x)] TF (x,) with g (¢=l) an integer for w9~! can be

regarded as the execution of one step of the ordinary iteration method as

applied to the preconditioned system
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o, C (0, x,) [F'(x)]TF(x) = 0, (5)

where o [F’ (х)]т plays the role of W.

Letus take A= akC(ak,x,f) [ " (xk)]T and rewrite it as

A, = o[F (xk)]T[Pk+Ek2+...+EZ' )» where E,= P,-a,F(x) x

[F (x)17.1f 0< o, <2/K, where || F' (x) || <K, for all x e S, then there

exists a positive scalar p such —аг ” Ek" <u<l — апа

limO[F(x)]T[P,+E +...+E777= [F +,
Jim

@, [F (5] [P +E, 1)= )

and for the iterative process

Хн 5 %5~ EAF (x), (6)

where the parameter €, determines the stepsize one obtains.

Theorem 2. Let, in addition to the conditions I°-2° ofTheorem 1,
the following conditions befulfilled in S.

8
k1252

1° 6 = ё) = I—£o+£O(N+uq) o 8 A L”POF(xO) Н <l,

A=A =min{—2—(l+u+...+uq—l),C(l+uq)};g-1 K,

. .

~1/2

2 O<eOSek_lSEk = mm{l,ek_l,fi 1/ +.

f r= Ä(IIPOF(xO) H/(l -6) <р) ‚
then the seguence generated by (6)

has a limit which appears to be a solution of the eguation

[F' (x)] 'F(x) = 0 with |x, —x;|| <r and

”xk -x Н < 78°

(cf. also Theorem 2 [2]). | |

Proof. Since

|Р,- Р GpA <] POРр 1 р)Т <

and Ak = AkPk’ then

НАЙ =Н[ )T(F(x)A-P)+[F (x) 1"l <c(l+p)?.

On the other hand, .

2 -1

||Ak”£—K—O(l+p+...+pq )
| |
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and in the capacity of )„q _,
one can take

—та ) @ 9-1 9kq_l = mm{-k—o-(l +U+...+u° ), C(l+p) }
Taking U=l in Theorem 1 [3] and bearing in mind а! o, stands in it

for the regularization parameter, the straightforward application of this
theorem yields Theorem 2 under consideration here.

If F'(x) has full rank, then another possibility to obtain the next iterate

X 4 18 to solve at each iteration the linearized preconditioned equation (5),

ie. the equation WF'(x) (x-x) = W,F(x,) with W, =A, =

o,C (o, х,) [F’ (x,)]
T

or, equivalently, to compute Xpol =% —

[W,F (x)1'W,F(x), while [WFGx)]"'W, =B"(x) x

[F’ (xk)]T= [F'(x)]* . B(x) = [F (x)]TF' (x). The preconditioner

W, suffers from the disadvantage that for ill-conditioned Jacobian a rank

reduction may occur when the matrix B(x) is constructed. To overcome

this drawback, a regularization technigue is necessary.

Let H be an arbitrary symmetric positive definite matrix. One

possibility to handle safely the rank-deficient (ill posed) problems is to use

instead of B(x) the matrix M(x): = B(x) +BH with B> 0, not trying
necessarily to find an optimal value for B but choosing it simply large
enough to eliminate the singularity of the matrix B(x). Doing so, one

obtains the following regularized iterative process

X1=%, —D,[F (xk)]TF(xk), (7)

where D, = D}[l+...+Q!"'],0, = 1-M,D}, M, = M(B,, x,) andD)
is an approximation to м;‘ such that || gk" <l, while lim D, = M;' and

4 — ©°
lim D, [F’ (xk)]T = [F" (xk)]+. In particular, if O<a, <

g °

Bk—on

<2/ (Ky 2+alH ), а, <@, then Dg = 0,/ is a proper choice.

On the basis of Theorem 1 [3]‚ опе can prove for (7) analogous theorem
as Theorem 2 for (6).

Alternatively, for solving (1) one might at each iteration to solve the

linearized preconditioned equation W F(x) (x-x) = WF (x,) with

Wk = Dk[F(xk)]T ,
Or to compute Xrrl 75 —[WkF' (xk)];WkF(xk) ,

where [-]* denote the reflexive generalized inverse [WkF’ (x,)] t =

B*D”',and
'

kk
>

lim [WF (x)]l*W, = [F(x)]".
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R e mark 2. For improving the accuracy of the approximation for

[F'(x)]* based on the Neumann series, one can use the Chebyshev
acceleration procedure (e.g. see [1 l]). When x; (i = 1,...,n) vary widely in

magnitude, it is reasonable to transform the variable space x = Dx where

D is a diagonal matrix.

MOTIVATION OF METHODS

The usual convergence analysis is based on the monotonicity test of the

objective function

T(x,,) £T(xp), (8)

where {x;} is a sequence generated by a particular local method. But

frequently IIF(x)ll is not monotonically decreasing. For badly nonlinear

F(x) monotonicity in 7(x) may only ultimately occur when iterates {x;}
are sufficiently close to the solution x*

.
Sometimes the use of relaxation

parameter determining the appropriate step size produces a decrease of

IIF(x)ll but at a cost of a lower speed of convergence.
That is why one is interested in solving a weighted least squares

problem
1

®(x): = SIWFW, (9)

where W is a weighting matrix. In some case a simple weighting strategy

is not sufficient and a dynamic weighting strategy is needed, i.e. one

recalculates the matrix W at each iteration once again or periodically after

several iterations. Thus, in general, W=W(x). The introduction of a

weighting matrix means that one changes the notion of the distance, i.e.

instead of llyllš = yTy one uses ||y||šv = yTWTWy, where |l-Ily means, 10

general, a seminorm. In particular, if W is a symmetric positive definite

matrix, it is usually called a scaling matrix or preconditioner. The basic

idea of preconditioning is to introduce a preliminary scaling on the vector

of independent variables and dependent variables. For example, instead of

solving a linear equation Kx=g explicitely one often solves the equivalent

preconditioned system '
MKx = Mg, (10)

where M is a scaling matrix. Specifically, using a diagonal weighting
matrix D as a preconditioner rescales the dependent variables, i.e. one

changes their units. IfM is a proper approximation to K~!
or K*, it will be

a lot more efficient to solve (10) than Kx=g, because the spectral condition

number cond,(MK) =x (MK) is considerably less than x(K) or than that
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T 2 т

к(К Ю = к (К which is the case when the Gauss transformation is

used.

For a given matrix A the objective function of nonlinear 1
‹

east square

(NLSQ) problems may be written as

1 `

11T(4): = JIAF;. (11)

The solution (11) defines a level function T(x|A) and an associated

with him level set in x; [B]

С,(А) = {хе ЯТ(4А) <Т(хД[А)},хе 5 С К".

The condition

T(xk+l|A) ST(xklA) (12)

is equivalent to the requirement
X.l € G(A) for some A.

Obviously, _
O=TGIGE)T) sTHIGHT)

for all x € S, where x denotes a solution of the NLSQ problem, A = ./(х*)+
and J(x) = F'(x). Thus the monotonicity test

i ol Gk(.l(x*) + (13)

would be as natural as (12). Note that this test uses a norm in the space of

independent variables R"
,
which in many cases is more preferable than the

usual monotonicity test (8) specifying a norm in the space R™. For

instance, when for expanding the domain of convergence of a Gauss-

Newton type method one uses a suitably chosen relaxation (damping)
parameter A to guarantee the convergence of it from a poor starting point,
then for steep valiey it 1s desirable to avoid the bottom of the valley as long
as the full step of the method is unacceptable ['2]. The property of global
convergence is a criterion of robustness of the algorithm and therefore

finding an appropriate globalization procedure is highly desirable for

solving ill-conditioned NLSQ-s. Usually the line search or the trust region
strategy is used for globalization of a method. Another efficient way for

choosing damping parameter for ill-conditioned problems based on test

(12) has been proposed by Deuflhard [B].
As pointed out in [B], the choice A = W(x) = J(x)* turns out to be a most

natural choice, since

X,y =%, —grad (T(x|J(x)* )| ,

X=Xk

i.e. the Gauss-Newton direction for the problem (2) is the steepest descent
direction of T(x|J (x,) *) . Indeed, since
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J®I@ =(J ()T(o))*=J (%) J (x)and J (x) ] ()] (x*) = J(x*),
one obtains

+
—

* +*
+ —grad (T(xlJ(xk) )|x=xk = J(x) J(x) J(x) F(x)|x=xk =

= J(x) *F (x,)

Therefore T(le(xk) *) 1s called the natural level function. But, in

general,

X e G(J(x) *

except for a special case xk=x* (unfortunately, the element x" is unknown)

and therefore a global convergence proof cannot be based on the natural

monotonocity test (13) and other convergence criteria are necessary. P.

Deuflhard introduced the concept of appropriate level functions [l3] and

showed that the natural level function T (x| J (x;)
* ) is locally appropriate

in xz, and there exists some neighbourhood U(x;) with J (y) ТЕЛ
0 (%) for

all ye U(, where Ay(x,) denotes the set of matrices for each of

them, the level function 7(x|A) is locally appropriate in x; [B’ 1
Let r(x) = (I-J(x)J(x)T )F(x), Ax = —J(x)"

F(x),
and for fixed

x; let A(x) be some matrix set such that

(Ax,) "grad T(x]A) <o,if Ax,#o, Vx €S, for all AcA(x).

Definition [%]. A level function T(x|A) is said to be locally
appropriate in x; if and only if Ae A,(x,) ,

where a special sub-set

Ay (x) cA (x) is defined by

"Ar(xk) || <”AF(xk) || if Ax,#o, forall Ae A (x).

In general, the definition yields a not easily controllable condition

о (х): =|ww" —wi st wl <1 for T(W) to be a locally
appropriate level function. In particular, for W = [F'(x,)]* and for all

x € S, one obtains |

sup I [F" (хО) )* (PO—POPR (x))F' (хо) ! <l.

хЕ 5

I.е. с (х) < к (/ (хо) ) Lop <l.
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ASPECTS OF NUMERICAL REALIZATION

A common complaint about normal equation methods is that they are

less accurate than orthogonal methods, since the latter ones preserve the
condition number x of the original problem, while during the solution of
the normal system the condition number is squared. This argument is

partially true since it ignores the presence of the term к” in the bound of

the approximate pseudosolution error for the perturbed problem. Let us

consider the system

Kx = g, (14)

and a perturbed system

(K+oK)x= g+ dg. (15)

A sufficient condition of rank conservation of the problem (12) is the

inequality | k*|[llsKll < 1. On the basis of the results by Wedin ['4] and

Stewart [l5], one obtains

õxil /x £x { (1 +xp)a+7yß}, (16)

—
+

к= к(Ю =Пкк*|,к = —< =—К оа= ПЗК
1-ко 3 _uskilet]” К

3¢ gl Il
B =

———g
, 'Y = —g._—, p — Salgll Il kIl x| Il &Il|

where x is the pseudosolution of the problem (14), r is residual

corresponding to x,and & = x+ &x is the pseudosolution of the perturbed

problem (15). Hence, for problems with large residual ‚ е right-hand
side of (16) includes the term with x> whose adverse influence is

unavoidable regardless of the successful choice of the numerical method

as applied to the problem. Thus, the use of a preconditioner might be

fruitful.

Moreover, if J(x) is highly ill-conditioned, even a very small residual

cannot guarantee an accurate solution. In other words, the rounded

solution of an equation may have a large residual. The situationismore

complicated when an accurate solution has a large residual, specifically
when S(x): = [F" (x)]TF(x) is larger in some sense than J(x)LY (x)

(obviously, if ||F(x)| is large, then it may cause [ S(x)| to be also

large). It is known that in the latter case the sequence {x;} generated by the
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Gauss-Newton method is always divergent even if J(x)Т (x) 1s

invertible [l6]. Then Newton-type methods (e.g. augmented Gauss-

Newton methods) as applied to (8) or (11) might be useful since they
exploit more completely information on v? T(x) or methods with the

convergence order p23, as they are based on a quadratic model. Besides,

sometimes, the latter permit to reduce the run times in seconds on the

computer. Yet one reason for using methods with the convergence order

higher than that of the Newton method is that variants of the Gauss-

Newton method may experience great difficulty or fail completely if

У Т(х) is singular or ill-conditioned at the solution point x, since they are

based on a linear model. On the other hand, using even very rough
approximations, the second-order derivatives in methods based on a

quadratic model may provide their numerical stability [^ 18].

NUMERICAL EXPERIMENTS

A computer experimentation which is aimed at comparing the relative

performance of methods was carried out for:

1. The Fridman method

В
SUC 10 _

2 2
y 547480x) »8(x) =J(x) Fx), o = ”F(xk) || /Hg(xk) || .

2. The two-step gradient method of Маги Iег [l9]

X, =X —og(x) +BJ(x) T(x)g(x),

where the parameters o, and B, are determined by the system

В/рвк)|?+ о]вк)+РС || = ,

2

в/)T()8() |+ o 7 (xp g() |2+ |8 () |2 = 0

3. The modified Newton method.

4. The Newton method a) with derivatives b) with finite-differences.

5. The method defined by (4) with W, = A,;.
6. The Gauss-Newton method.

7. The cubically convergent method [2o]

%ot = V- [FQ2y, —xsx) 17 F )))

», = % 2) j%%aF ))
where f{.,;.) denotes a finite-difference approximation to J(x).
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8. The combination of the latter with the Newton method with finite-

differences.

9. The Kogan method [2l]
| 1 -

X, 1= X [F (xk— žrk (xk) Л F(xk) ,

where '), = [F’~(xk)]'l.

This paper is not intended to give a numerical comparative study of

me.thods upder consideration with the other related methods. For the sake

of illustration only some results on their numerical behavior are presented
in the table.

The set of test problems containing 14 problems for systems of

nonlinear equations of Argonne National Laboratory plus Freudenstein
and Roth function and Box three-dimensional function for nonlinear least

.Test | men-

sion

jeee boeobЕО

в| @[в5|v
5|3|ехю|1м |-— п) )и| - | ю s

6|6 [ 2300|е | 2300|13|5| 3|в | | м9|
e4—
IOIKJEJEEOOI AOI
3 o~ Foo bes byjajajajaj|äjaja |
ою 67644 4433 i3 |
11jt[езю|ежоо|е | в |6 8|в—|-|6 7—

OIOI2A 22 O2]CICMB C OMNNO jsja 0
38 ю|35 |is||7]6]7]71-[6]5|
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sgžlares was taken from [%2], and the same starting points were used asin

Bl
All the problems were run on a EC 1060 computer under a FORTRAN-

IV compiler. The calculus was performed in double precision and stopped

||xk+ —xk" <lO~
.

Termination of the routine also occurred when the

number of iterations exceeded the given maximum value 300. The table

gives iteration number k at which the presigned accuracy was achieved

and "-" denotes the failure (nonconvergence).
In conclusion, we discussed the methods mainly on the theoretical

basis. One reason for doing so is that mathematical properties exhibit

indisputable features of the algorithms; in contrast to the computer
experiments their numerical results presented in papers and books often

show contradictory aspects. Also, mathematical aspects fix limits of what
can be expected from the use of an algorithm.
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EBASTABIILSETE MITTELINEAARSETE VÕRRANDISÜSTEEMIDE
LAHENDAMISEST

Otu VAARMANN

On vaadeldud m убггап@ )а n otsitavaga (m=>n) mittelineaarse
vorrandisiisteemi lahendamist juhul, kui selle Jacobi maatriksi
konditsiooniarv vOib olla vdga suur. On uuritud sellise iilesande
lahendusmeetodeid, mis pohinevad: 1) Jacobi maatriksi kaalutud

pseudopoordmaatriksi arvutamisel, 2) vastavate lineaarsete vorrandite

ligikaudsel lahendamisel mone iteratsioonimeetodi abil. On esitatud
saadud teoreetilisi uurimistulemusi illustreerivad arvutustulemused.

О РЕШЕНИИ ПЛОХО ОБУСЛОВЛЕННЫХ НЕЛИНЕЙНЫХ
СИСТЕМ УРАВНЕНИЙ

Оту ВААРМАНН

Для решения — плохо обусловленных CHCTEM — нелинейных

уравнений с т уравнениями и л неизвестными (m2n)

применяются итерационные методы, основанные на вычислении

взвешенной псевдоинверсии для — якобиана и на приближенном
решении соответствущих — линейных — уравнений C — помощью

некоторого итерационного — метода. —Доказаны — теоремы — ©

CXOZHMOCTH рассматриваемых — методов. —Для иллюстрации

полученных теоретических — выводов — приводятся — результаты
численных экспериментов.
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