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The celebrated van der Pol equation (VDPE) has played an important
role in many physical applications, such as in electronic and mechanical as

well as in biological systems. The original idea by van der Pol and van der

Mark [l] to use this equation in heart dynamics has indeed been fruitful

>3, explaining several biological phenomena in mathematical terms. Due

to the existence of several oscillating subsystems in the heart, the main

mathematical problem is to understand the dynamics of a driven VDPE.

Most of the known results describe the behaviour of the standard

symmetric VDPE with a driving function. '
‚ 3

The early results by Cartwright and Littlewood [*] and Levinson [°]
describe the dynamics of an acceleration-driven VDPE. It was shown that

certain steady-state subharmonic responses with two different multiples of

the forcing frequency can occur simultaneously. In contemporary
understanding this transient response means transient chaos. Later,

Hayashi [°] has shown the existence of a drifting phenomenon which

topologically means a quasiperiodic motion. Based on these and a lot of
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other results, Guckenheimer and Holmes [’] gave a detailed description of

specific phenomena for an acceleration-driven VDPE showing the phase-
portraits and their blow-ups. To sum up, the following has been described

in this connection [7‘lo]:
— hard-mode instability leading to the complete entrainment;
— soft-mode instability with two distinct modes;
— mode-locking;
— irregular response.
A velocity-driven symmetric VDPE has been studied by Shaw [,

resulting in the description of phase-mixing and its consequences. If the

driving force is an asymmetric sine or bias, then the blue sky catastrophy
can occur with the global stability loss [l2].

A bias as a forcing means actually asymmetry. Beside the mentioned

study ['2], not much is known for an asymmetrically driven VDPE.

Subharmonics (not irregular motion) for such a case were discussed by
Cartwright =T A systematic study of asymmetric sy{stems, I.e. systems
with bias, has been started by Abraham and Simé [ 4]. First they have

found that the acceleration bias only leads to periodic orbits ("cigars") as

possible French duck effect, while the periodical driving leads to chaotic
attractors. In the corresponding "symmetric" case only transient chaos was

observed. In the "asymmetric" case the period doubling was described and
in the chaotic regime a window of period 7 was found. In the case of

double bias (acceleration and velocity), several types of periodic orbits

have been found and bifurcations had been described.
As the full bifurcation diagram for the asymmetric VDPE is absent (up

to the knowledge of the authors), the problem needs further analysis.
The acceleration-driven asymmetric VDPE

w+f(w)w+w = Asinßt (1)

is considered. Here flw) is an asymmetric (with respect to the origin) quadratic
function with the roots w; <O, wy > 0. It is expedient to emphasize

—4h

° 7(9) =——— (w-Wj) (W-Ww,) (2)

(W2—Wl)

that determines f(w) by the roots and ordinate 4 < 0 of its minimal value (Fig. 1).
This form is suitable from the viewpoint of a mathematical model proposed by
the authors for modelling the heart dynamics [ls]. Equation (1) with fiw)
determined by (2) is solved numerically using standard Runge-Kutta procedure.
The bifurcation diagram is found from the phase plane shown in Fig. 2. At every
1 = (2п + 2/3)ж

‚
п = 1,2,..., Ше @s!апсе Гот Ше origin

r= W) +w(9)| (3)

is calculated and plotted versus the control parameter A in order to get the
bifurcation diagram The transients are left out and the final result is shown
in Fig. 3. The other parameters of Eqs. (1) and (2) are the following:
B= 1‚ W = -0.2, Wy = 19, Ь = -1.6.
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The following regions can be distinguished in the bifurcation diagram:
simple entrainment with 1 periodical orbit (PO) for A > 1.1;
period-doubling cascade according to the Feigenbaum scenario with

2PO, 4PO, BPO, ...up to the accumulation point at A ~ 0.96;
chaotic regime (strange attractor) with periodic windows SРО

(A~0.905), 7PO (A ~0.854), ЭРО (А -- 0.826),..., the forming of
which is due to an interior crisis; intermittency occurs around
A ~0.678 that leads to a 3PO for a large interval 0.26 < A < 0.678;

a narrow range of chaotic regime again for 0.22 < A < 0.26 preceded by a

period-doubling;
quasiperiodic regime for small values of A < 0.22.

Fig. 1. Character ofquadratic function filw).

Fig. 2. Phase plane. —

Fig. 3. Bifurcation diagram.
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This result enlarges essentially ourknowledge about driven VDPE. The

previous results by Abraham and Simé [l4], who showed the existence of a

chaotic regime for an asymmetric VDPE, are now complemented by the

full bifurcation diagram with such new results as (i) — a wide domain of

3PO with adjacent intermittency, and (ii) — a quasiperiodic domain for

small values of control parameter A. Further research is in the progress.
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