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Abstract. A quasigeostrophic model is derived, including the ground surface pressure tendency
equation along with the temperature equation as main prognostic equations. The model is

completed by the omega-equation with non-homogeneous boundary conditions. The obtained

model incorporates features of both the ordinary quasigeostrophic model for thermally stratified

fluid and the shallow-water barotropic model. The simplest realization of the obtained equations is

a one-level baroclinic model where temperature fluctuations are height-independent. As examples
of numeric integration show, the one-level model is capable of a qualitatively adequate description
of polar front evolution and accompanying formation of highs and lows in the lower troposphere.
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1. INTRODUCTION

Though most of recent quantitative results on atmospheric circulation
have been obtained using the full system of primitive equations, filtered

equations, i.e. the models where acoustic and buoyancy waves have been

filtered, have not lost their significance. Main advantage of the filtered

equations is that they, being essentially more simple in treatment than

primitive equations, provide a qualitatively true description of key
processes in the atmosphere. The most common in the family of filtered

equations is the quasigeostrophic (QG) model, the primary ideas of which
were outlined in ['™]. A profound treatment of the origin and nature of the

QG model is presented in [s],
The shortcoming of the QG model is that it does not provide

quantitatively reasonable forecasts. This has been the main reason for
numerous efforts to improve the QG model and develop filtered equations,
which are more general, use less restrictive assumptions and at the same
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time still retain simplicity. The development has been proceeded in two

main directions: 1) by incorporating into filtered equations terms

proportional to the second and higher powers of the Rossby number; 2) by
making transformations to special co-ordinate sets. The classical

generalization of the QG model is the semigeostrophic model [6]. In recent

years a number of filtered equations, called intermediate models, have
been described for the baroclinic atmosphere by [7], and for the barotropic
shallow-water case by [B].

As it turns out, the classical common QG model (and all the truncated
models of the second generation) employ along with the quasigeostrophic
assumption, which enables an approximate solution of the equation of

mechanical motion, another approximation, which may be called (using an

analogy with ocean dynamics) the rigid bottom approximation. This

approximation arises as a result of the use of the zero condition for the
vertical velocity at the lower boundary in the baric co-ordinate space.
Though valid in the shorter synoptic-scale domain of motions, the rigid
bottom approximation is not a neccessary part of the QG framework and
its application involves no simplifications in the model.

In this paper we will propose a complete quasigeostrophic model,
which does not apply the rigid bottom approximation and which

incorporates in full length all effects connected with the free boundary of

the atmosphere in pressure co-ordinates. As a result, a simple clear QG
approach will be created, which uses temperature and ground surface

pressure (GSP) as basic prognostic fields. The model is valid in the broad

range of synoptic and planetary scale motions. The common QG model

and the shallow-water model can be derived from it as special cases.

2. DECOMPOSITION OF THE GEOPOTENTIAL

In this paper the baric co-ordinates x, p are used, where x = (x, y)
present "horizontal" co-ordinates and the pressure p is the vertical co-

ordinate.
The total geopotential is in pressure co-ordinates

p P, (х› t) ž—
, ', t

@(x,p.l) = gZ(x) +RJ" TO6P.
p р

where Z presents the height of the ground surface above the sea-level, pg is

the actual pressure at the ground and T is the total temperature. For the

following treatment it is convenient to decompose the total geopotential as

a sum of the main component and thermal and baric fluctuations. For that

we present 7 as asum | |
Т(х, р, ) = Т) (р) + Т(х,р, 1,

where T is an appropriately chosen profile of the mean temperature. As a

consequence, the geopotential can be expanded as
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@(x,p, 1) = Dy(p) + P(X,p,l) +P, (X, 1). (2.1)

Here
„С9 Го(Р))

Фо(») = в2(о +к' *

-—ар (2.2)
' p P

is the mean component of the geopotential which does not depend on the

horizontal co-ordinates x and the time ¢ due to the use of the balanced

value for the mean ground surface pressure field

Z(x)dz'
py(X) =a ехр{—%]о TZ} (2.3)

0

a being the mean GSP at the sea-level. The componets @.. and @,
present the thermally and barically forced fluctuations of the geopotential
at the pressure level p:

p,(X,O) T(x,p',t
@,(% p,l) = к_[ AR i (2.4)

p p

p,(X, 1) ТО (P')
@, (x,l) = RJ" —dp'.

p (X, 1)
„ю р

® (2.5)

The presentation of the geopotential by formulae (2.1)—(2.5) is exact,
no limiting assumptions or approximations are used here. Meanwhile, in

practice, using the smallness of the pressure fluctuation at the ground

6 =p.-Py

thermal and baric components of the geopotential can be approximated
with a good accuracy as

Ü( )
, '9

D..(X,p, 1) =RIP A Шбр'‚ (2.4а)
р Р

@, (x,l) =
25 (2.5a

e

Po
where

c, = JRT,[py(x)]

is the speed of external buoyancy waves. The approximations used cause

an error in the horizontal pressure force, which does not exceed a few per
cent, and they are applicable both for primitive eguations and for the OG
model. The approximation of thermal and baric geopotentials by formulae
(2.4a and (2.5a must be accompanied by the replacement of the inital
domain occupied by the atmosphere in the p-space

o<p<p (x1 (2.6)

by the domain
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o<p SpO (х). (2.6a

In the approximated case the thermal geopotential P, becomes zero at

the mean lower boundary p = рр ассог@пе to (2.4a Meanwhile, the
fluctuative part of the geopotential is not zero at this level:

Thus $
b which, according to (2.5a is proportional to the fluctuation

of the free surface in pressure co-ordinates from the mean value,
determines approximately the fluctuative part of the geopotential at the
mean GSP level.

The horizontal pressure force is caused entirely by the baric and

thermal fluctuations P, and Pr. The interference of these two fields
causes all the diversity of the vertical structure of cyclones and

anticyclones including such characteristic features of baric systems as

tilting of axes of cyclones and anticyclones, weakening and disappearing
of surface highs and lows with height, conversion of a mid-tropospheric
thermal low into the baric high at the ground, etc. The significance of

expansion (2.1) is that it moves to the foreground the role of the ground
GSP fluctuations in atmospheric processes. Using presentation (2.1), the

problem of the dynamics of the fields 7and & arises.

3. THE QUASIGEOSTRCPHIC MODEL IN VARIABLES TEMPERA-

TURE - GSP FLUCTUATION

We will apply the beta-plane approximation for the Coriolis parameter

f=fo+B' (y"yo)’ B = (af/a.v)).„s
and consider the atmosphere above the flat ground in pressure co-ordinates

O<p< Py = a.

Application of quasigeostrophic assumptions to the full set of primitive
equations [9’ 101 in the pressure co-ordinates leads to prognostic equations
for T and §

d
O .

ŽŠŽT=T-+W/c, (3.1)

d,
Št=-o, 3.2drš о, (3.2)

where d,/df and dg/dr are geostrophic total derivatives

%9% 2 -

A V, —== У, 3.3
dt õt+vB dt õt+vg (3.3)
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and the overbar denotes vertical averaging
—— 1 a

(......) = —I (......) @р.
а“ 0

W is the heating rate per unit mass, ¢, — the gas constant. The reference

temperature
4Т а@К 0 0

T,(p) = —Ty(p) —p— = ~Tyo-— >O, (3.4)
r C, dp 0, 9р

where 6, is the mean potential temperature, presents the basic stability
parameter of the mean atmosphere. The following relation holds between

T; and the stability parameter ¢ used in ]; Т, = р?с /R. The vertical

velocity « = dp/dtis determined by horizontal wind as

® (х, р, ) = —Jgdivv(x,p', ndp', o = u)lp:a, (3.5)

and the wind velocity is

V=V+V, (3.6)

where geostrophic and ageostrophic components are determined by
relations

foevxvg = -V (P, +D)), (3.7а)

dg
ле XV, =~ avg—B- (Y — Y) e‘,xvg+F. (3.7b

Here F presents the turbulent friction force.

Since prognostic Egs. (3.1) and (3.2) include besides temperature and
GSP advections the vertical velocity w, it is convenient to apply Egs. (3.1)
and (3.2) along with the omega-equation which in case of relations (3.1)-
(3.7) 1s

2

[p%p+ll.2A ]9 = —5, (3.8а)
др | Р

d 0 2.0(_. —leA—) =6, (3.8b
др Р/ р=а

ol_,=o. (3.8с)

_

РО К
5 = ]—žä(An+evrot F) +f—2A (Ar+ W/cp) ,

(3.9)

P
?

e 1
o= ;AAš-j-;(-) (Anfevrot F)p=a. (310)

Here A =V?
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l, = |JRTy(a)/fy, I = JRTi (p) /1,

are the external and internalRossby deformation radii, Ат апа Agare the

geostrophic advections of temperature and GSP fluctuations

AT=—ng T, Aš=—ngš, (3.11a

, 18 the vertical unit vector, and

АТ\ = —ngn (3.11b)

is the advection of the geostrophic absolute vorticity

1
n-= j;v (ФЬ+ФТ) +f. (3.12)

Eq. (3.8a and the boundary condition (3.8b are exact and no

simplifications are made at their founding. They are derived from the
condition of the coincidence of two various prognostic equations for the

absolute vorticity 1. An equation for the absolute vorticity follows from

the ageostrophic relation (3.7b after acting with the operator erot and it

has the form of the common QG vorticity equation
d

Я, 09
erot F, (3.13)

another equation (which we omit here as it is not needed further in this

paper) can be obtained extracting the time-derivative from relation (3.12)
and using Egs. (3.1) and (3.2). A comparison of these two equations for

n leads to a diagnostic relation

0

A [zž——q +jad—fzfm]- š—w -

a
Pp Р

]
g

К [(ча W
— (A, +erot F) - —e;AAš - —Aj P [AT+ —].fO PO fo р Р C„

The omega-equation (3.8a follows from here after applying the

operator (—pd /dp), while the boundary condition (3.8b presents the

obtained relation at the sea-level p = a. Egs. (3.1), (3.2) and (3.8) perform
the QG prognostic system of equations with temperature and GSP in the

role of ruling fields. As the variable transformation 7, < 1 is, according
to (3.12), a one-to-one mapping, this system is equivalent to the QG model

in variables n — o consisting of Egs. (3.8), (3.12) апа (3.13). The main

advantages of the system (3.1), (3.2), (3.8) in comparison with (3.8),

(3.12), (3.13) is that it

1) exploits the prognostic fields 7 and &, which are the primary
quantities obtained from synoptic observations;
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2) is easier to solve, because it presents a system consisting of two

prognostic and one diagnostic equation, while the alternative system
consists of two diagnostic equations and one prognostic equation.

3) is easy to interpret.
The energy density for the system (3.1), (3.2), (3.8) is

аГ т° о 2/t
Е = s[\'B+К?і+се (;) :| (314)

A fraction of energy is located in the pressure deviations & — the free

surface acts like an elastic membrane. As a consequence, the differential

conservation law for energy may be compiled for the vertically averaged
energy only

šš+div b Sp (3.15а)

where

ЗЕ = ng+v(<l>T+ D), (3.15b)

RTW.a-
Sr= — +У Е. . (3.15

О& срТі
e ( c)

The existence of the free boundary and the use of two prognostic
equations in our system causes some differences in comparison with

ordinary QG model in the potential vorticity treatment, too. Namely, two

different potential vorticities exist simultaneously — the baroclinic vorticity
Q and the barotropic vorticity K:

1
p

9PTO = foA (Ф,‚+Ф,) +/ ]Одр Т‚-,
(3.16a

— Л
к =

ТА (@, +®,) +f-~D,. (3.16b)
fo c

Q and K evolve according to the equations
d д W8 P
O— Е=-—{ -—

‚dtQ rot

5 focp i,
(3.17а)

d ——
——

ŽK-rotF = -div y' 17'. (3.17b
dt 8

Here v' =v -v, and m'=mn-m are е departures of the
8.. j 8 ed v .

geostrophic wind and absolute vorticity from the vertical mean values. As

it can be seen, Q becomes a conservative quantity in the absence of friction
and diabatic heating, while the conservation of K takes place in the
absence of friction and vertical fluctuations v'gand n'. Note that K is not
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the vertical mean of Q. In the principal plane, relations (3.16) and (3.17)
can be used as the base system instead of Egs. (3.1), (3.2) and (3.8) for the
computation of the dynamics of the atmosphere. In this case, (3.16a and
(3.16b must be considered as equations for temperature and GSP

determination. .

4. COMPARISON WITH THE ORDINARY QUASIGEOSTROPHIC
MODEL

The obtained model differs from the ordinary QG model in the lower

boundary treatment. In our model the lower boundary of the atmosphere is
a free surface in the baric space, which evolves according to Eq. (3.2). In

the common model the lower surface is fixed and, as a consequence, the

evolutionary Eq. (3.2) is replaced by the condition

(olp _,

=0 (4.1)

Thus, the common model is grounded on the assumption that in Eq.
(3.2) the individual time derivative of the GSP d £/dt can be treated as a

negligibly small quantity. In its nature this asgsumption expresses the

hypothesis that the ground surface pressure field and (which is equivalent)
the mass distribution in the atmosphere are adjusted to temperature and

velocity fields. Approximation (4.1) is quite similar to the "rigid lid"

approximation, often applied in ocean dynamics, and by analogy it may be

called the "rigid bottom" approximation.
Assumption (4.1) is quite common among filtered models. For

instance, in models which use the generalized z-co-ordinate [l l]

' { = zo[l - (B )У]
a

the boundary condition is
dz

z=— = 0.
d!

А$ г- o, the last condition is equivalent to (4.1).
Changes, which appear in the QG model, if the "exact" Eq. (3.2) is

replaced by the rigid bottom condition (4.1), can be characterized as

follows: :

1. The eguations for « (3.8a and for n (3.13) remain the same including
the expression for sources S (3.9);

2. The boundary condition (3.8b is replaced by the rigid bottom condition

(4.1); ;
3. In the case of the full model two alternative systems of eguations are

possible — equations for 7, &, ((3.1), (3.2), (3.8a or for n,s,0
((3.8a), (3.12), (3.13)). In the rigid bottom approximation only the

second setis valid;
4. The GSP is not zero in the rigid bottom case, though, differently from



110

the full system, it cannot be calculated from an evolutional equation but

using the diagnostic relation (3.12) only.
5. Energy density lacks the fraction, related to the free boundary

deviations (compare with (3.14)):

E =
1 У° +КЁ

.

2\ & Т,
6. The expression for K-vorticity (3.16b modifies and coincides with the

vertically averaged absolute vorticity:

1 —

К = f—OA ((DT+ (Db) +f.

The O-vorticity (3.16a and Egs. (3.17) remain the same.

To find out when the rigid bottom model is justified, it is neccessary 10

study the conditions when Eq. (3.2) may be replaced by condition (4.1). In

the short-scale domain

а | » 1, (4.2)

taking into account the definition of the term ¢ (3.10), the exact boundary
condition (3.8b may be approximately replaced by the relation

о, = ‚—Аё. |

Together with Eq. (3.2) the condition d5/0r = 0 follows from here. This

means that the GSP fluctuations will not be activated if they are absent at

the initial moment. Therefore, the zero-condition (4.1) is approximately
valid in the short scale domain, indeed.

To motivate the rigid bottom condition (4.1), often ] ап argument 1s

used that typical values of ® п the middle atmosphere, say at a level p =

500 hPa, are much larger than those at the lower boundary. The easiest

way to verify this argument is to model the vertical velocity @ according
to Eq. (3.8) for typical simple model conditions. It is easy to solve (3.8) in

the case of the constant stability parameter 7; using the Fourier

transformation in horizontal co-ordinates x = (x, y). Let (p), S;(p) and

oi(p) be the Fourier coefficients of w(x,p), S(x,p) and o(x,p) (the time

variable ¢ is omitted), then the solution of Eq. (3.8) is

2ao’k p
(а +1) /2

а

= — /£ . ,p)S, (p')dp', 4.o,
М. (a) +joqk(p p)S, (p)dp (4.За)

р a 2 M pp' o/2

-e) o
| 1/р

1/2|‘р +\ а

4, (р, р') = "'(—‚) (4.3b
o р ‚\ @/2 M +ya/2

Р - [PP =¢ ] o
P + \а

2,2
@ = ,/I+4lik , (4.3c
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M, = I+2OK £o, (4.3d

2 2 , ,2
апа &° = К, + /‹у.

Some profiles of w;/a are presented in Fig. 1 for o; = 0 and for

singular sources of unit power S = 8(p - pg) as functions of the argument
pla for waves with the scale L (= 1/k) = [; and L = 2/;. Modelling is carried

out in case /; = 800 km, [, = 2800 km, which assumes the model

parameters
@ = 45°N, T, = 280K, T, = 32K. (4.4)

The vertical velocity at the ground w( consists of a considerable fraction

of the maximum value of ® (which is reached at the level pg) in the

domain L > 500 km, which corresponds to the planetary-scale movements

(wavelengths about 2000 km). This result is in good agreement with the

observable space-scales of the GSP fluctuations.

As a consequence, we can conclude that the approximate boundary
condition (4.1), which realizes the rigid bottom model in the QG
framework, is valid for synoptic scale movements L < 500 km, while for

planetary scales (L > 500 km) the "full" model with Eq. (3.2) and the

boundary condition (3.8b must be employed.
In the principal plane, the "full' model is more precise than the

common one, because it does not utilize the additional rigid bottom

approximation. Besides, it is more convenient to solve the evolutional

equation for the GSP and temperature fields than to solve the evolutional

equation for the absolute vorticity and, in addition, to solve at every time

step the elliptical diagnostic Eq. (3.12) with respect to the GSP and

temperature fields. And last, but not least: differently from the common

QG model our system incorporates the shallow-water model as a special
subcase. The shallow-water equations can be obtained, neglecting
temperature fluctuations and considering the GSP evolution in accordance

with Eq. (3.2) and with the omega Eq. (3.8).

Fig, 1. Relative vertical velocity ®, in the case of a singular unit source at the level p' = 250

500, 750 hPa. A -1/k = 800 km; B - 1/k = 1600 km.
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5. THE ONE-LEVEL BAROCLINIC MODEL

The simplest model which incorporates baroclinic effects in the rigid
bottom case is the two-level QG model [Ю]. In the presence of the free

boundary the most simple baroclinic model can be represented by a one-

level system. The one-level model follows if we assume that the

temperature fluctuations 7 are independent of the pressure. The

corresponding model is then presented by the two-dimensional fields

€(x,t) and T(x,l).
Strictly speaking, the assumption of the two-dimensionality of 7 is not

exactly consistent with Eq. (3.1) — from the assumption 97/aplt op

=Oit

does not follow the same for the successive moments, because_t?ne term

w/p depends to some degree on pressure. To get a closed two-dimensional

model, an exact equation for temperature (3.1) must be replaced with an

approximate one where all forcing terms are independent of the vertical
co-ordinate.

Since @/p is roughly constant in the wide pressure-range in the middle

atmosphere and depends significantly on the pressure near the lower and

upper boundaries only, the two-dimensional approximation for the

temperature equation may be obtained by averaging vertically Eq. (3.1).
Then the resulting two-dimensional baroclinic QG model will be

д7
_ АТ„(Э)Ш‚ (5.1)

ot Ap C,

Jš = Ap+o (5.2)

Неге @ is assumed to be the exact solution of the problem (3.8), 7; is a

constant typical for the troposphere, and W is the height-independent
diabatic forcing. The temperature and GSP advections are

Ар = -\,У Т, А =-vV6. (5.3)

where v, and v are the baric and vertically averaged thermal components
of the geostrophic windB

2

1 Ce
v, = —е хУФ, = — е хУЁ, (5.4а)Ь

fO y b afO v

;_т = Ie;,xVCDTT = Eeva T. (5.4b)
h A

Expressions (5.3) and (5.4) are exact in the case of the height-independent
temperature.

Note that the temperature advection is caused by the baric wind, and the

GSP advection is caused by the mean thermal wind. Such character of the

advective interaction between temperature and GSP fields gives ап

explanation to the frontal instability and the polar front meandering.
According to the classical model of the polar front ['2], the surface highs
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and lows are placed under the descending and ascending nodes of the

temperature wave (Fig. 2). Causing the clockwise revolving of descending
nodes and the contra-clockwise revolving of ascending nodes, they
increase the amplitude of the frontal wave.

To verify whether the one-level baroclinic model is capable of

describing the polar front evolution, we have carried out numerical

integration of Egs. (5.1) and (5.2), assuming W = 0 and calculating ®

from Eq. (4.3). The friction force F was modelled, using the relation

5.5F =fOF(vg+vfr), (5.5а)

where v
”

is defined by the formula

Л,х Vo = F (5.5b)

and
3 piu’ o

Ё = — —

—, 5.5
др 2 др

(5.36)

и=b/ hy й) = /2к/ , hy = RT,/g. (5.5d

Here « is the turbulent friction coefficient ( x = m?/s), h, is the boundary
layer depth, hy — the height scale of the troposphere and the small

parameter p (at midlatitudes p = 0.05) presents the relative depth of the

boundary layer. Relations (5.5a)—(5.5¢) perform a linear equation for the

friction forcing F, which is easy to solve for the constant u. The used

friction model is consistent with the energy law (garantees the monotone

dissipation of mechanical energy) and allows to model the friction force in
the entire depth of the atmosphere. Of course, really the main friction

forcing is located in the boundary layer, where it coincides in broad lines

with the Ekman model. The main difference with the Ekman model is that

in our case the boundary layer is baroclinic. The model, presented by
(5.5a)—(5.5c), may be considered as an extension of the baroclinic

boundary layer treatment [l3-16] to the whole depth of the atmosphere.

Fig. 2. Polar front and the corresponding baric field at the ground surface. Arrows show the baric

winds. The baric winds are height-independent and try to increase the slopes of the descending and

ascending nodes of the frontal wave.



114

The integration domain was 10%x10*km, which was covered by a grid
64x64 points. The fast Fourier transform was used to compute spatial
derivatives. For the integration in time the fourth-order Runge-Kutta
scheme was used with the time step 1 hour. The polar front evolution was

modelled in the beta-plane with the initial temperature disturbance in the
form of a sinusoidal wave:

T

T(x) = -arctg [l [y — уосозёл. (5.6)
х L Х

Here 27,, presents the total decrease of temperature across the front, 2L is
the characteristic width of the front, x, (typically 5000 km) and y,

(typically 100 km) are the wavelength and the amplitude of the initial
wave. The GSP is absent at the initial moment. In Fig. 3 the evolution of

the front is presented in accordance with Egs. (5.1) and (5.2) for model

parameters ¢=60°N,7,=280K,7;=32K,u=0.05,7,,=10K, L=soo

km, y, = 100 km, x 5 = 5000 km. In Fig. 3A the initial front is shown, Fig.
3B presents the front after a four-day evolution and Fig. 3C — after an

eight-day evolution. The evolution of the front and the corresponding
development of the GSP field is quite realistic. The rise of mature ground

Fig. 3. The polar front and ground surface pressure field evolution according to the one-level

baroclinic model. A -initial front; B - after 4-day evolution; C - after 8-day evolution.
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cyclones and anticyclones takes about one week in our example. The
maximum of the pressure fluctuations 12.8 hPa is reached on the eighth
day, after which GSP begins to decrease steadily due to friction. If the GSP
fluctuations are eliminated by replacing the equation for the GSP (5.2) by
the relation & = 0, then the frontal meandering demonstrated in Fig. 3
becomes impossible and the evolution of the front reduces to the eastward

translation of the initial front shown in Fig. 3A without changes in the
wave amplitude.

Thus, the one-level model explains the enlargement of the amplitude of
the wave and the meandering of the front by a quick generation of the GSP

highs and lows under the descending and ascending nodes of the wave,

which then starts to revolve the nodes of the front, enlarging the slopes of
the wave.

The described mechanism does not act in all cases because it is quite
sensitive to the choice of the model parameters. The front becomes
unstable and begins to meander, if the temperature gradient at the front

axis, T,,/L, is large enough and the friction is moderate (u << 1). For

instance, the demonstrated model becomes stable if the temperature
amplitude is reduced twice (7, = 5 K instead of the used value 10 K). The

friction decreasing (un= 0) has a double effect on the flow. Firstly, the

growth rate of the GSP amplitude increases significantly. Secondly, the

numeric integration scheme becomes unstable and some kind of short-

scale turbulence is activated in the model. A significant stabilizing effect

has the adding of the term ~y to the initial temperature profile (5.6). An

explanation to this is that an additional uniform temperature gradient
causes an additional thermal westerly wind, uniform in the y-direction and

increasing with height, which tries to smear the initial wave (5.6) before
the revolving mechanism is activated.

The general conclusion, which follows from the preliminary numeric

integration of the one-level model, is that it gives a realistic description of
the polar front meandering and that this model may be useful for the study
of the baroclinic instability connected with the polar front and the polar
jet-stream.
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KVAASIGEOSTROOFILINE MUDEL TEMPERATUURI JA ALUS-

PINNA RÕHUGA BAASVÄLJADE ROLLIS

Rein ROOM

On tuletatud atmosfddri diinaamika kvaasigeostroofiline mudel, kus

prognostilisteks baasvorranditeks оп temperatuurividlja ja aluspinna
rohuvilja evolutsioonivorrandid. Mudeli muudab täielikult suletud

siisteemiks vertikaalse kiiruse diagnostiline vorrand réhukoordinaatides

mittehomogeense ddretingimusega aluspinnal. Baasviljadena absoluutset

poorist, geopotentsiaali ja vertikaalkiirust kasutavast tavamudelist erineb
uus mudel dédretingimuste iildisema kisitluse poolest. Saadud siisteemi

integreerimine ja interpreteerimine on lihtsamad kui tavamudeli puhul.
Tuletatud mudelvdrrandite lihtsaim erijuht on nn. iihekihiline barokliinne

mudel, kus temperatuurivilja hilbed keskvédirtusest ei sdltu korgusest
atmosfidris. Nagu selgub toodud niidetest, kirjeldab iihekihiline mudel

Oigesti polaarfrondi evolutsiooni, sellega kaasnevat jugavoolu
mittestatsionaarset looklemist ппр madal- ja korgrohkkondade
moodustumist aluspinnal.

КВАЗИГЕОСТРОФИЧЕСКАЯ МОДЕЛЬ С ТЕМПЕРАТУРОЙ И

ДАВЛЕНИЕМ НА ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ В РОЛИ

ГЛАВНЫХ ПОЛЕЙ

Рейн РЫЫМ

Pa3BHTa квазигеострофическая модель динамики атмосферы,
использующая в роли основных уравнений прогностические

уравнения для давления на подстилающей поверхности и для

температуры. Систему — замыкает —диагностическое — уравнение
вертикальной — скорости в — изобарических — координатах C

неоднородным краевым условием на нижней границе. От обычной

модели, использующей в качестве базовых полей абсолютную
завихренность H вертикальную CKOPOCTb, полученная —модель

отличается более общими краевыми — условиями, простотой
интегрирования и ясностью интерпретации. Наипростым частным

случаем развитых уравнений является однослойная бароклинная
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модель, в которой отклонения температуры от среднего значения не

зависят от высоты B — атмосфере. Примеры — численного

интегрирования однослойной модели показывают, что эта модель

дает качественно правильное описание эволции полярного фронта,
сопутствующей — меандрации струйного течения U генерации
циклонов и антициклонов в нижней тропосфере.
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