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ON THE FLOW INDUCED BY TOROIDAL VORTICITY
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Abstract. Recently toroidal vorticity distributions for the vortex ring were obtained

analytically. But the stream function distribution for the pronounced toroidal structure

of vorticity was not defined. The present paper is devoted to overcoming this

inconsistency. The stream function distribution described below is found.

1. Introduction

Vortex motion or flow with vorticity plays an essential role in

almost all kinds of fluid motion of interest. In order to explore the fun-

damental mechanisms of vortex dynamics, the motion of vortex tubes

has been studied extensively, both experimentally and theoretically.
Recently some analytical solutions were obtained in the form of vor-

ticity distributions for this kind of problem ["2]. But these solutions will
be complete only after the stream function has been determined. The

paper deals with overcoming this inconsistency in the case when vor-

ticity has a pronounced toroidal form. The approach is based on the idea
of equating the values of a stream function on the boundary between
the inner and outer regions under consideration, where the inner region
is a vortex core and the outer one is arranged at a great distance from
the centre of the vortex. The results have been found for the vortex ring
in a viscous fluid ['].

2. Statement of the problem :

In the frame of cylindrical coordinates (x,r, #) for axially symmetric
vorticity, the fundamental solution of the Poisson equation

O. | д’ф 10¢ (1)=
ox?' I дг° ror

may be written in the form [?]
oo oo 2A

r С(2, о)о соs @4гао а0q’(’»x)=-4;t—‘fff“—'—(—g—g*______—;_:_—'—:__——“ (2),
оо о уУ(х—г)?--о?-|-г?— 20гсоs@

where § and ¢ are vorticity and stream function.

Eesti Teaduste Akadeemia Termofiiiisika ]а Elektrofiiiisika Instituut élnstitute of
Thermophysics and Electrophysics, Estonian Academy of Sciences). Paldiski mnt. 1,
EE-0001 Tallinn. Estonia.

https://doi.org/10.3176/phys.math.1993.2.05

https://doi.org/10.3176/phys.math.1993.2.05


174

For the isolated circular vortex filament the integral (2) is simplified
and can be presented as follows [3]:

2n
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9(7 к) — (R f — 222— --
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r 2 2

— (R (2—)Ky — ZEw)), (3)

kß?=4nßr/ (x*+ (r+Ry)?).

Неге Г 15 the given circulation of the vortex filament, K(k) and E(k)
are the complete elliptic integrals of the first and the second kind, re-

spectively.
This expression is defined in the classical theory of inviscid fluid

and is widely used in the vortex dynamics and in turbulence simulations.
It is the basic relation for the determination of the flow induced by
vorticity. The possibility of simplifying integral (2) is based on the
presentation of vorticity as a delta-function. In the case where vorticity
differs from the delta-function the stream function has not been found
vet. We shall focus on the form of vorticity distribution

x*+l2*+l° 0), (4)t=C(t) exp (-——————2—-)1 (rt)

where /,(rt) is a modified Bessel function.
The problem for the vortex ring in a viscous fluid was formulated

in [']. _

The solution of this problem is (4). Here x=x*/y2vt, r=r*/y2vi,

t=Ro/V2vt are dimensionless variables, C=A{=*?¢? The expression

(4) tends to delta-function for t— o 0 and in this case the distribution

of the stream function can be obtained by (3). In the other limit case,
where T —O, (4) yields

2 2

r— Bt exp(———)-c-:ð—r——'), B=const. (5)

The stream function in that case can be determined too

Ф(г, х) = В! [7l?—6/5 exp( — -t—22—) dt — exp ( ——%Ё )]r2/R2,

(6)
R= (r’*4x?)'2.

Neither the first nor the second case describes pronounced toroidal vor-

ticity. Our aim is to obtain the stream function distribution when vor-

ticity has the form determined by (4).
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3. Stream function for the vortex ring

We consider the case where 1 is of the same order of magnitude as

one and will expand:

(7)f 2 ) —

00

Smer,exp ( — …Ёо

/ (гт) = „þðЕ, (го)2Н, (8)

where S, Fr are constant coefficients.
The equation for the stream function in spherical coordinates is

%
h

JR? +_7г;—(‹;;9`_ >
=

=
þ

mðoFkSmT2k+lß2k+2 +m 2h3k+2 | (9)

h=cos (¢), hs=sin (¢), x=Rh, r=Rh..

We shall find the inhomogeneous solution of eq. (1) in the form

=2 2R¥P"HP, (k). ° (10)
k=o m=o

This representation makes it possible to divide the variables and to get
the equation for determining Pg,m

(2k+2m—+-4) (2k+2m+-3)P, +P, —Ё- P, =FpSyt**tlhZ+2, (11)

The solution of eq. (11) consists of recurrent expressions

Pk,m(h.) =A::nh2‘(k+”+A<k’f;”h2f—|— e +A»(;:,)mНО +A(£?"lh2*,

where
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iSRSAL — (12)
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i=k01,..., 0. |
The following solution of the homogeneous equation is known and can be

presented in the form [*]

фо= ® (Maß*-K.RI) >
(h). (13)

k=o
%

Неге J.(h) and B.(h) are Gegenbauer functions of the first and the
second kinds, M, and K, are constants.

Due to the symmetry of the vortex ring

Ф==o, r=o (14)

the solution (13) was simplified

o 2 þ:ð MRS, (). (15)
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The use of solution (12) is not convenient due to the variables being
unlimited. Therefore the denominator in integral (2) was presented in
the form of expansion [°] at a great distance R from the centre of the
vortex ring

а-!==) (х — г) ?--0?-|-г? — 20r cos $ =

N 2 { г х 1 112

=R l[ I—?(~R—QCOS (9)+?2) +fi (22+92)1 =

=R'(l+a,R!+a»R-*+oa3R-34+0 (R-4)).

Here

al=%gcos (B)+Tð—z, | (16)

simy[ (%) 2+() eeost 0+Zfozcos 0) |-~ (02422

a3=~g—(7;—9 cos (9)+—[ð—z)[(—þ—)2zþ+ (—l,;—)2 о? cos? (0) --

+ 2 2q 05 (0) — 240 ]. |
Substitution of this expansion into eq. (2) and integration by 0 gives
the distribution of the stream function outside the circle of radius R

06=5 (%) {@5 %) teo+

:
5

|l,
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where integrals

(Lomany= ff õ(e, z)o”"z" dz do (18)

take the values

«to)Y'=(to22%= (27) !

(Le?2)=2x,

(to*y= (27) 241 exp( —3;—)( %_т_)гм (1.1 %2)
2

Here M( 1,1, 12—) is a tabulated confluent hypergeometric function.

The complete solution consists of homogeneous and inhomogeneous
solutions and may be found as follows: We can get the system of linear

equations for the determination of M, by making g@o+@: equal to ¢. П

the boundary between the vortex core and the region located at a great
distance from the point of maximum value of vorticity. After solving it,
we found o and then the sum go+¢;. The obtained solutions for v=o.l
(dashed curve) and tv=l.o (continuous curve corresponds to the pro-
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nounced toroidal vorticity form)
are shown in the Figure. The

approximation of (7), (8) from

[°] was used and the number
of points in the boundary was

equal to fourteen.
The Figure shows that the

isolines of the stream function

corresponding to t=l are also
concentrated at an increased
distance from the symmetry
axis. The considered case lies
between the case with a cir-
cular vortex filament and the
one where the vortex ring is

degenerated and occupies total

space. The obtained results
conform to this reasoning and
make it possible to find the

velocity field in this situation.
The presented approach can

also be wused for different
vorticity distributions.
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TOORIKUJULISE KEERISELISUSE INDUTSEERITUD VEDELIKU LIIKUMISEST

Varem analiiiitiliselt saadud selgelt toorina viljendatud keeriselisuse jaotusele on

leitud voolufunktsiooni miiramise metoodika. Voolufunktsiooni jaotus on esitatud 150-

joontena. *

Феликс КАПЛАНСКИЙ

ОБ ИНДУЦИРОВАННОМ ТОРОИДАЛЬНОЙ ЗАВИХРЕННОСТЬЮ

ДВИЖЕНИИ ЖИДКОСТИ

Предложена методика определения функции тока для аналитически найденного

ранее распределения завихренности в виде ярко выраженного тора. Ее распреде-

ление представлено в виде изолиний.
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