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CONNECTION BETWEEN SYLOW SUBGROUPS OF SYMMETRIC
GROUP AND THEIR SEMIGROUPS OF ENDOMORPHISM

(Presented by R.-K. Loide)

Abstract. Let m be a natural number and S,. be a symmetric group of the degree m.

If pis a prime number which is a divisor of |Sm|, then all the Sylow p-subgroups of

Sm are isomorphic to the direct product of groups

G(n,p)=(... ((C»WrC») Wr C») Wr...)WrCp» (n factors),

where C» is the cyclic group of the order p.

The following results are proved.
Theorem. The group G(n,p) is determined for each natural n and prime p by

its semigroup of endomorphisms in the class of all groups.

Corollary 1. Every Sylow subgroup of a finite symmetric group is determined

by its semigroup of endomorphisms in the class of all groups.

Corollary 2. Let G be a finite p-group. Then G is imbeddable into a finite
p-group G such that G is determined by its semigroup of endomorphisms in the class

of all groups.

1. Introduction

Let G be a fixed group. If for a suitable group H from the isomor-

phism of semigroups of all endomorphisms of groups G and H follows
the isomorphism of groups G and H, then we say that the group G is

determined by its semigroup of endomorphisms in the class of all groups.
For example, every finite Abelian group is determined by its semigroup
of endomorphisms in the class of all groups (['], Theorem 4.2). There

exist also examples of such groups which cannot be determined by their

semigroups of endomorphisms ([?], Theorem 7). In this connection let

us set a problem: for a given group G find a group G such that G =G,
G belongs to a well-known class of groups, and G is determined by its

semigroup of endomorphisms in the class of all groups. Some results
of this kind are well known. For example, if A is a suitable Abelian

group, then there exists a divisible Abelian group D such that the direct
sum ADD is determined by its semigroup of endomorphisms in the
class of all groups ([3], Corollary). In this paper we show that every
finite p-group G is imbeddable into a finite p-group G such that @ is
determined by its semigroup of endomorphisms in the class of all groups.

ТаШппа Tehnikaiilikool (Tallinn Technical University). Ehitajate tee 5, EE-0026
Tallinn. Estonia.

https://doi.org/10.3176/phys.math.1993.2.02

https://doi.org/10.3176/phys.math.1993.2.02


145

Let m be a natural number and S,, be a symmetric group of the

degree m. If p is a prime number which is a divisor of |Sn|, then all
the Sylow p-subgroups of S, are isomorphic to the direct product of

groups

G(n,p)=(...((CoWrC,) WrC,) Wr...) WrC, '(n factors),

where C, is the cyclic group of the order p ([*]). Our aim is to prove
the following theorem (Theorem 6.1).

Theorem. The group G(n,p) is determined for each natural n and

prime p by its semigroup of endomorphisms in the class of all groups.

Corollary 1. Every Sylow subgroup of a finite symmetric group
is determined by its semigroup of endomorphisms in the class of all

groups.

Corollary 2. Let G be a finite p-group. Then G is imbeddable

into a finite p-group G such that G is determined by its semigroup of
endomorphisms in the class of all groups.

Corollary 2 follows from the fact that every finite p-group is imbed-
dable into some Sylow subgroup of some finite symmetric group.

We shall use the following notations: End G denotes a semigroup of
all endomorphisms of a group G; J(G) — a set of all idempotents of

End G; <a, b,...) — a subgroup generated by elements a,b,...;

(A, B, ...> — a subgroup generated by subsets A, B, ...; ё — ап

inner automorphism generated by an element g; G’ — a commutator-

group о! G; [A,B]=<(a'b~'ab | acs A, beB);, Ко(х)={и© ЕпаС|
| yx=xy=y}.

2. Preliminaries

Let A and B be finite groups. Then the standard wreath product of
A and B, denoted as AWr B, is the semidirect product A2AB (here and

henceforth, h=semidirect product) of A 2 by B, where A? 15 the set of

all functions { : В — А апа

(fg) (b)=[(b)-g(b), clfe=][°

fe (b) =f (bc7!) (2.1)

for all b, ceß and f, g = AB. General properties of wreath products
are presented in [°]. | |

Let Ao={f=A2|j(b)=l for all b=~l}. Then A, is a subgroup of

AWr B and from (2.1) it follows that A 2 is a direct product of subgroups

b-'Acb=At, b= B. As A and A, are isomorphic, we identify below

Ao=A. Therefore,

AWrB=AB\B, AP=II,_, b-'Ab=ll_, A°.

The following two lemmas are simple corollaries from the definition

of the wreath product.

Lemma 2.1. 1 A= AM, then AWrß= (AAA;) Wrß =

=APp(A 2 Wr B). If C is a subgroup of A, then {C, B)=CWr.B,

Lemma 2.2. Each endomorphism u of A induces an endomorphism
й о А ММгВ by laws

bii=b, beß,

(b-lab)ü=b-'(au)b, beß, acA.
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Lemma 2.3 (['], Lemma 1.1). If G is a group and x =1(G), then

G=KerxAlmx and Imx={g= G | gx=g}.
From Lemmas 2.1 and 2.3 follows

Lemma 24. If xel(A) and % is induced by x, then

A WrB=Ker#\Im¥= (Ker x)A(lmxWr B),

Ker = (Kerx)2, ImZ=lmxWrB.
Lemma 25 ([®], Lemmas 4.2 and 4.3). Suppose that x is a pro-

jection of G=AWrB=AB\B onto B and y=EndG such that yx=

=xy=Xx. Then to y‘corresponds a family {Y»},_, of endomorphisms of

A such that

(aYs) (a,Ye) = (а\У.) (а’,) = (2.2)

[oг еасйа, а, ©Е А and b,c =B, bsc. If B is finite then this correspon-
dence is one-to-one. The endomorphism Y, of A is given by an equation
Yo=yators where ya=y|A, 7o is a projection of AP=II,_, b—lAb onto

b-lAb and my:b-'Ab—A 5 а natural isomorphism: (b~'ab)r,=a,
а ЕЛ.

Denote further y={Y»},_, -

Lemma 2.6 (['], Lemma 1.6). If G is a group and x&I(G) then

Ка (х)= End (Imx).

Lemma 2.7 (['], Lemma 1.5). [ x,yeEndG апа xy=yx then

(1т х)у< 1т х апа (Кег х)у < Кег х.

3. Some properties of the group G(n)

Let us fix a prime number p. Let A,, Ay, ...
be cyclic groups of the

order p. Define a group G(n) by induction:

G(2)=AlWr A2=AIA27\,A2,

G(n)=G(n—l) WrA,=(... ((A WrAz) WrAs) Wr.. ‚) \Мг Ал.

Below we drop brackets, i.e. G(n)=A;WrA; Wr...Wr A.. Then G(n)=

=<Al, v
ey

An) al’ld

|С(п) |=рР (3.1)

Lemma 3.1 ([¢], Lemma 2.6). The group G(2) splits ир

G(2) =A, Wr Ay= ([A2 Al"] XA1)M= ([A2, Al%:]2A2)2Ai
and A= [A2, Al'q?] ХАд.

Lemma 3.2 ([7], Тпеогет 2.1). Suppose x,угЕ 1(С),х, у е Ko(z)
апа Imz=lmy Wrlmx, where G is some group, Imy and Imx are

cyclic groups of the order p. If G* is another group such that End G =

~ End G* and x*, y*, 2* are idempotents which correspond to x, y, z by
this isomorphism, then Imz*=lmy* Wr Im x* and the groups Imy* and

Im x* are also cyclic groups of the order p.
In view of Lemma 3.2 it is assumed that n=3.

Lemma 3.3. There exist the idempotents x,, X3, Yl, ..., Yn, 21 ;-

..., 2n— of End G(n) such that:

(а) Imyj=A; < Kery; for each isj;

(b) A; =Kerx;, Imux;=d(A;|i#*2);
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(е) А, < Kerxy, 1т хо== (А; | 12>2);

(d) Kerxe={(...((Al%2)%) ...)A=A44.A,,
(€) yn, yyEKomy(2) апа Imzj=lmy;Wrlmy, for each j=l, ...

ю.,
n—l.

Proof. The proof is done by the induction on n. Suppose that n=3.
By Lemmas 3.1 and 2.1

@ (3) == С (2) МгАз==С(2) *+).Аз==
==([А», Аl^2] ХА ) ^ (А, Wr Aa) =

=(|A2, A] XAIY)AMA» WrA3)=
=( Az,A;A’ MQ)A’}»(A] Wr A3)=
=( AQ,A]A’ A'ÄAgAS)Ä(AI Wl' As) (32)

Choose x; and x; as projections of G(3) onto subgroups A, WrA; and
Ay Wr A3, respectively. Due to such a choice, (b) and (с) hold. It is easy
to show that (d) also holds. Indeed,

Ker xo= ([Ag, Al%:]XA)A= (A 42)A=AA,

By Lemma 3.1 =

Ay Wr Az= ([A3, A»*]AA3)AA2, (3.3)

A, Wr As= ([As, A)*:]AA3) AA,. (3.4)

Choose y;, y 2 and ys as projections of G(3) onto subgroups A,, A, and

As, respectively. Then (a) holds. Finally, choose zy=x; and z;=x,.

Clearly, by such a choice (e) holds.
Assume now that n>3 and for each group G(k), where k<<n, the

statements of the lemma are true. Then there exist the idempotents
Zy, X2, Yly +--» Yyn— of End G(n —1) such that

Imyj=A;<Kery; for each isj, (3.5)

A, Kerx,, Imx=(A; | is+2), (3.6)

A,cKerx;, Imz,=<(A; | j=2), (3.7)

Кег xo=A 42 й» (3.8)

(i, j=l, ..., n—l). These idempotents induce, by Lemma 2.2, endo-

morphisms w, X2, Jl, ..., да 0Ё G(n)=G(n—l) WrA,. By Lemma

24

Imx;=lmz; WrA,=(lm %, A»), ° (3.9)

Ker x;= (Ker z;)%=1I,_, b~'(Kerz)b, (3.10)

Imj,i=lmy; WrA, Kerji=(Keryi)* (3.11)

(i=1,...,n—1; j=l,2). From (3.8) and (3.10) it follows that the

statement (d) holds. Statements (b) and (c) follow from the formulas

(3.6), (3.7), (3.9) and (3.10).
In view of Lemma 2.3, G(n)=XKer 7;Alm§y; and, by Lemma 3.1,

Im Ü,=lm gi Wl‘ An=Ai Wl‘ An= ([An, AiAn] ÄAn)ÄAi. (3.12)

Let y; be a projection of G(n) onto subgroup A; (i=11,...,n—1).
Choose y» as a projection of G(n)=G(n—l)%ArA, onto A.. Clearly,
for such y, ..., y» (a) holds. Finally, choose z;=§; for each i=ll,

...

...,
n—l. Then the statement (e) follows from the equations (3.5),

(3.11) and (3.12). The lemma is proved.
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Fix now for the next reasonings the idempotents x;, xo, yi, ..., Yn,

2y, ..., 2n— as in Lemma 3.3.

Lemma 3.4. Kerx ) Кег хо== [А», A %)%~ G(n)’.
Proof. The proof is again based on the induction on n. If n=3,

then, by the construction of x; and x;, we have

Ker x,=[As, A\#2]4oA%, Ker xo=[A,, A42]4OA%,
Ker x; N Ker xo=[A,, A]c G (3)’

and the statement of the lemma is true.
Assume now that n>3 and for each group G(k), where k<<n, the

statement of the lemma is true. As in the proof of Lemma 3.3 the idem-

potents x; and x, are induced by idempotents z, and z; of End G(n—l).
By assumption of the induction |

Ker 7, | Ker o=[As, A42] 4541, (3.13)

From (3.10) and (3.13) it now follows that

Ker x; | Ker xo= (Ker ;)% (Ker Z3)=
= (Ker žl П Ker :—C-Q)An=
= [Ax, Ait:]4rdr c G(n)'.

The lemma is proved.
Since Imy; = C,, then G(n)’<Kery; and from Lemma 3.4 follows

Lemma 3.5. Kerx;)Ker xo<Ker y; for each j=l, ...,
n.

Бетмта 3.6. Кегул==((Кегх, [ Кег хо) ХА I^2-- 4) /
Ä(Az Wr...Wr An—l)Al.

Proof. Let us prove the lemma by induction. If n=3, then the state-

ment holds due to (3.2), Lemma 3.1 (applied to A, WrA;) апа

Lemma 3.4. Assume that n>3 and for G(k), where k<<n, the statement

of the lemma is true. Suppose that the idempotents ¥, ..., yn—l corre-

spond to G(n—l). Then G(n— I)=Ker jn-IXIm 7n-I=Ker Jn-1 Ani
and by assumption of the induction

Ker 7n-1= ((Ker z; ] Ker Z3)XAs+4s-1) A

A(A2 Wr... Wr Ap_g)n-. (3.14)

As Ker y,=G(n— 1)%., then from (3.13) and (3.14) it follows that

Кег yn=G (n — I)*= (Ker ga—lAn—l)s=
= ((([A2, Alt2] AAa KXA jds dnei)A
X (Az Wr...Wr An—z)An—t).ÄA„-l) A,—

= ([Az, A\A:] s A A AsAs) X

) (А» \Мг..
.
Мг Ал-1) ^»== ( (Кег х, П Ker x3) X

X AIA""'An)}»(AQ Wr...WrAn-—l)An.

The lemma is proved.

Lemma 3.7. If §l, ..., #а © [(С(п)) апа

YiYi=VYi, YyiYyi=VYj, (315)

Jixi=yjx,, —[lа==81

for each j=l, ..., n, then G(n)=<lmy, ...,
Im §n).

Proof. Suppose that the assumptions of the lemma are true. Denote

My={m¥y, ...,
Img,). Due to (3.15), ме have (g 7 gy €

е= Кег х,ПКегхо for each ge G(n). Consequently, Imy;clmy;-M
and G(n)=my, ...,

Imy.)=My-M, where M=Kerx,(]Kerx,.
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If G(n)s=M,, then by Sylow theorems there exists an invariant sub-

group N of G(n) such that My =NG(n) and the factor-group G(n)/N
is Abelian. Then G(n)’<N and by Lemma 3.4 M < G(n)’. Therefore,
М< М and MN=N=G(n). On the other hand, since My N, then
G(n)=My-McNM=MN=N. The obtained contradiction shows that

G(n)=M,. The lemma is proved.

4. Further properties of x;, Хо and gy, ..., Y»n

In this section denote G=G(n) and assume that x, xo, yl, ..., Yn
and 2y, ..., 2n— have the previous meaning. Suppose that a; is a gener-
ator of A;=lmy; = С,. Then A;={(a;).

Property 4.1. Кс(у;) = ЕпаС, [ог each j=l, ...,
n.

Property 4.1 follows from Lemmas 2.6 and 3.3. :

Property 4.2. xixo=xx; and Ke(xi) =z Ко(хо) 2EndG(n—l).

Proof. By Lemma 3.3 Imx;=<(A; | is=2) and Imx=(«A4; | j = 2).
In view of Lemma 2.3, x;x; and xox, act identically on the subgroups
As,

..., As. Since by Lemma 3.3 A, Kerx, and A, <Kerx,, then
Agx 1x9=Asxox;=Alxlxo=Alx2x,={l). Consequently, x;xo=x,X,.

From Lemma 2.1 it follows that Imx,=<A; | i#*2)=~= G(n—1) апа

Imxg=<(A; | j=2)=G(n—l). By Lemma 2.6, Kg(xl) = Ко(хо) =

=~ End G(n—l). The property is proved.
The following four properties follow from Lemma 3.3.

Property 4.3. xyr=y;xe=o.

Property 44. xiyi=ylxl=y.

Property 4.5. xoyp=y;xo=y; for each j=2,
...,

n,

Property 4.6. ynyj=yjy»=o for each j=l, ...,
n—l.

Property 4.7. The idempotent y. has no orthogonal complement.

Property 4.7 follows from the definition of the wreath product.

Property 48. There exist 2y, ...,21 =1(G) such that for each

j=l, ...,
n—l the following statements are true: (a) yj yn =Ko (2j);

(b) Imzj=lmy;Wr Im yx. _

Property 4.8 follows from Lemma 3.3.
Property 49. If u,v=EndG and ynu=Uu, Yn-Iv==v, uxe=ovx,=o,

then there exists we End G such that: (а) yaw=u; (b) Yy w=v;
(с) if y=EndG and yyn=yyn-I=o, then yw=o; (d) z.-w=w.

Proof. By Property 46 Imy.cKery,—, and Imy.— < Ker yn.

Basing on Lemmas 2.3 and 2.7 we have G= (MAlmy,—)Alm y,= (M)
Almy,) Almy,—;, where M = Kery,—i)Kery.. Therefore, G/M =

={anM)X{an-1M)=C,XCp. f u,v=sEndG and yuu=u, Yy, v=v,
ихэ== oхо==o, Шеп али, ал-10© Kerx,. As Kerx, is by Lemma 3.3 an

elementary Abelian p-group, we can define an endomorphism w of G by
setting w=mnu,, where n: G— G/M 1$ a natural homomorphism and

(asM)up=anu, (an-M)up=an—v. From the definition of w it follows
that у„== ли and yn—yw=yn—v. Since y.u=u and y.—,v=vo, then (a)
and (b) are true. If y=EndG and yy.=yy,—l=o, then ImycM c
< Ker w, yw=o and so (c) is also true.
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For the proof of (d) observe that by Property 4.8, yn, yn—l = K¢ (21—1).
Hence, Kerz,-i <M < Kerw, (Ker 2z,—) (21—1@w) = (Ker 2,—;) w=(I) and
so 2,—w and w act equally on the subgroup Ker z,—,. Since by Property
4.8 Im z,—y=<an—l, a,) and

An (Zn-IwW) = (@nYn) (2n-1W)=an(YrW)=anw,

an—l(2n—lo) = (An-IYn-1) (Zn—l@) =An (Yn—l®)=an—W,

then 2, ,w and w coincide on the subgroup Imz.—;. In view of the
equation G=Ker z,— Almz,—;, 2z,w=w holds. The property is proved.

Define for each yy, ..., y. a set

[y;]]={2=l(G) | 2yi=y;, yiz=2, zx,=y;x), 2Xa=lY;Xs}.

Property 4.10. If 2zEndQG, #, © [y;] and( 7/2== ], for each j=
== ], ..., п, еп г==l.

Property 4.10 follows directly from Lemma 3.7.

Property 4.11. If u=EndG and yju=o for each j=l,..., n,
then u=o.

This property follows from the fact that G={lmuy,
...,

Imya).

- Property 4.12. If 2zKs(x;) and yjz=o for each j=2,...,n,
then z=o.

Property 4.12 is evident. Indeed, by Lemma 3.3 Im xo={lmx; | i=2).

Property 4.13. There exists z=EndG such that: (a) yjz=
=y;2yj-170 for each j=2, ..., n; (b) { и Е Кс(№) and y.u=u=o,
then uz==o.

Proof. By the definition of the wreath product and Lemma 3.3 it
is clear that Imxo=(Asy...,Ax)=AsWr... WrdAn and (Ay...
veey

An)=A, Wr...Wr A,_,. Consequently, a map z defined by

(Kerx3)2==(l), ajz=ajl; [==2,...,П,

induces an endomorphism of G(n) such that z is injective on the sub-

group Im x,. By this definition, (a) is frue.

Suppose that u & Kg(x2) and y.u=uz=o. Then Imu=<{a,u)< Im x,,

anuz=l, an(u2)= (a.u)zsl, uzo and so (b) is also true. The property
is proved.

Property 4.14. |[y;]|is a power of p for each j=l, ...,
n.

Proof. Assume that 2z [y;]. From the definition of [y;] we have

Ker yj=Kerz and Imy;=~ Imz. Since G=Kery;Almy;, z is determined

by its action on the element a;. As гу;==у; then a;7'-a;z2 Kery,, i.e,
ajz=a;c for some ceKery;. From the equations zx,=y;x, and zx;=

=уу it follows that ¢ & Ker x; ) Ker xo. In addition, a;c is an element
of the order p. Conversely, if ¢ &Ker x; 1 Ker x such that a;c is an

element of the order p, then by Lemma 3.5 с е Кегу; апа а тар 2,
defined by ajz=ajc, (Kery;)z=(l), is an endomorphism of G and
z < [у/]. Consequently, |[y;]| is equal to the number of elements a;c
of the order p where ¢ Ker x;|Ker xo. This is a basic fact for the

proof of Property 4.14.
The proof is by induction on n. Suppose that n=3. In view of

Lemma 3.4

Ker Х, П Ker Xo=— [А2‚ AlA2]A’= HbeA, b-! [A2, AlA’] b

and therefore Kerx,1Kerx, is an elementary Abelian p-group. Since

a; commutes by Lemma 3.1 with each element of [A, A,%], then a
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commutes with each element of Kerx,|Ker x; and a;c is an element of
the order р for each c¢ e Kerx, )Kerx,. Consequently, |[y]]| is a

power of p.

Every element asc, of G(2), where ¢, &[4, A*], is an element of

the order p. This ayc; commutes with each element ¢, & b—'[Ay, A*]ob,
b = A3\(l). Hence, asc=ayc;c; is an element of the order p for each

с & Ker x; ) Ker x; and |[y2]| is a power of p.

Every element asc of the order p of G=G(3)=G(2) Wr A;, where

ce Кегх,[ Кег хо, is conjugate with as ([°], Theorem 10.1), i.e. there

exists d & Ker y 3 such that asc=d'asd. By Lemma 3.6

Ker ys= ((Ker x; ] Ker x2) }A4s)AA "% (4.1)

From (4.1) it follows that ¢ & Kerx,]Ker x; if and only if d & Ker x,()

N Ker x;. Therefore, the number of elements asc of the order p is equal
to [(KerxfKer x3) :CKe„cane„c2 (as)]. This number is a power of p

and so is |[ys]|. Consequently, for n=3 the property is true.
Assume now that n>3 and for G(k), where k<<n, the statement of

the property is true. Suppose that z,, Z» and yi, ..., yn—l are similar

idempotents for G(n—l) as x;, x» and yi, ..., y» are for G(n). By
assumption of the induction the number of elements a;c, of the order p,

where ¢; = Ker z, ) Ker 2= [A3, A*]44, is a power of p(j=l, ...

..., n—l). Since

Ker x, | Ker xo=[A,, A ;4] 44 = (Ker z, ] Ker Z3) 4=

= (Ker þi ] Ker Z 2) X (Hbefln\(l> b (Ker ¥, | Ker 73) b) =

== (Ker x, ] Ker z3) XS

and S is an elementary Abelian p-group, all the elements a;c of the

order p, where ¢ & Ker x, ] Ker xo, can be expressed in the form a;cc;
where ¢, &Ker z, 1 Ker Zs, a;c; is of the order p and c» is a suitable

element of S. Hence, the number of elements a;c is a power of p and so

is |[y;]l|. This holds for j=l, ...,
n— 1. Similar reasoning as in the

case n=3 shows that |[y.]| is a power of p. The property is proved.

Property 4.15. |{u €End G | yau=u, ux,=o}|= (p)?"".

Proof. Since G=Kery.Almy, the equations y.u=u and ux,=o
are equivalent to conditions (Kery.)u= {I) and (Imy.)u<Kerx,.
Therefore, the number of such endomorphisms « is equal to the
number of homomorphisms Imy,— Ker xo. As Imy;=A;=C, for each

j=1,...,n and by Lemma 3.3 Kerx;=A,%%, the number of the
mentioned homomorphisms is (p)?"". The property is proved.

5. A property of an automorphism of the order p of G(n)

Suppose that x;, x3, 1, ..., y» have the previous meaning and zy, ...

...y 2n— are chosen as in Property 4.8. Then A;=lmy;=<a;>=C,.
Denote G=G(n) апа

b=an, B=An=<b>, A=<al, oo sy an—-[>=G(n’— 1).

Непсе, С==С (п—1) \т А„==АМг В== АВ } В апа ;
—1 _Ав==П7 ,

b-*Ab*. (5.1)

By Lemma 3.3

Imz,=A, WrA,=A, Wrß (5.2)
for each k=l,

...,
n—l.
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Lemma 5.1. Let o be an automorphism of the order p of G and

aYn=Yna=4yn, Yja2j=yja for each j=l, ...,
n— 1. Then for eachi, j=

=l,
..., n—l; is%j, there exists an endomorphism и о С such that

the following statements are true: (a) yju=yja; (b) yauyi=y.uo;
(c) if ve End G and vy,=vy;=o, then vu=o.

Proof. Suppose that the assumptions of the lemma are true. Choose

i,je{l,
...,

n—l}, i=j. First we show that a;-a,a=a;a-a..
From yjaz;j=y;a and yiazi=y;a it follows that a,a=a;(y;a) & Imz;

and a;a=a;(yia) =lmz,. On the other hand, by Lemma 3.3 a;,a &

e Kery, and by Lemma 2.7 (Kery.)a < Kery.. Therefore, ауа ©

elmz; Kery, and a;o =lmz; Kery,. From the construction оЁ wy
апа г» in the proof of Lemma 3.3, it is clear that Imz.) Kery, =
==А„“»== А‚В. СопзедиепПу, ауа ЕЕ А/В—АВ апа` аа-ЕАВ—АВ. Етот
the direct product decomposition (5.1) follow ;

aia=aq;t-b-la;tb-
... - b—(p—l)aitp_‘bp—l’

aja=a;s- b—la,-s-b- L b—(f’—‘)a,-sp--bp—’

for some integers ¢, ..., tp—l, So, ..., Sp—l. .
In view of Lemma 2.5 a= (Yk)k=0,1,....7m—1; Ykec EndA. By definition

of such endomorphisms

a;Yr=a'’*, a;Yp=a;* for each k=0,1,...,p—1

and

a,-Yk-a,-Yl=a,-Y,-a,-Yk for each k?&l

Hence

aitk-ajsz=ajsl'aitk (53)

for each %,I=o,l, ..., p—l; ks=l. Since aiajsa;a;, from (5.3) we

obtain that

txs;=o for each kl. (5.4)

Assume that so=o. Then by (5.4) t{,= ... =t,—l=o, a;a=a;*, {5O
and again by (5.4) si=...=s,l=o,, a;o=a;%, §#o..ln view of
Fermat Theorem sf=s(modp) and #=l (mod p). Hence,

aiap__.a.top_. t
— —

—©;
=qa;"°, f F

2% . A;a”—=aj* =aj%.

But a?=l. Therefore, so=l{y=l and a;a=a;, aja=a;. As i is a suitable

element of {l,...,n—l}\{j} апа ба==ала==ал(упа) ==апуп==йл== ,
then ara=a, for each k=l, ..., n, i.e. a=l. This contradiction shows
that sp=o. Due to the direct product decomposition (5.1) ме have

a;-aja=a;u-a;. (55)

Let us construct now an endomorphism и. Apply Lemma 3.1 to the

wreath product (5.2) (take k=j):

Imzj=(NAA;) AAnr= (NAAn) MAj,

where N=[A,, A/*]=lmz; 1 Ker yj (| Ker y». Then the factor-group
Imz;/N is Abelian and

Im 2;/N= (A;N/N) X (AxN/N)=<(a;N)X{a.N) = C,XC,.

Choose u=z;nz where m:lmz;—lmz;/N is a natural homomorphism
апаг:<а,МУх<а,М)— G(n), (a.N)z=a;, (ajN)z=a;a. Due to (5.5)
the endomorphism u is correctly defined.
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Since aju=a;(zjnz)=a;(nz)=(a;N)z=a;a, then yu=y;o and (a)
is true. Similarly, a.u=a; and a.(uy:) =ayi=a;=a.wu, i.e. yuuy=
=y.u+#o and (b) is also true.

Suppose that v & End G(n) and vy,=vy;=o. Then

Imov < Ker y. N Ker y;. (5.6)

By Property 48 (a), Kerz;=Kery.Kery;. As G(n)=Kerz;Almz;,
!пеп— Кег у, [ Кег у;==Кег г;\ М < Кеги and by (5.6) Imvc Keru.
Hence, vu=o and (c) is true. This completes the proof of Lemma 5.1.

6. Main Theorem

Theorem 6.1. The group G(n) is determined by its semigroup of
endomorphisms in the class of all groups for each n=2.

Proof. Let us use induction on n. The group G(2) is determined
by its semigroup of endomorphisms in the class of all groups ([7],
Theorem 3.1). Assume now that n>>2 and the group G(k) is determined
for each k<<n by its semigroup of endomorphisms.

Let G be a suitable group such that

End G~End G(n). (6.1)

We will show that the groups G and G(n) are isomorphic.
As the semigroup End G is finite then so is the group G ([?], The-

orem 2). In the semigroup End G(n) there exist idempotents мl, xo, yy, ...

vevy Yn, 21, ..., 2n—l for which Properties 4.1—4.15 and Lemma 5.1 are

true. In view of (6.1) and Lemma 3.2 there exist such idempotents also
in the semigroup End G. Suppose further that xi, xo, yl, ..., Yn, 21, ...

...,
2n—l are idempotents of EndG such that Properties 4.1—4.15 апа

Lemma 5.1 are true.

From Lemma 2.6, Property 4.2 and the assumption of the induction
we conclude that Imx;= G(n—1) апа Imx;= G(n—l). Therefore,
Imx, and Imx, are p-groups. Since every finite Abelian group is deter-
mined by its semigroup of endomorphisms in the class of all groups
(['], Theorem 4.2), then, by Property 4.1 and Lemma 2.6, Imy;=С,
for each j=l, ...,

n. Suppose next that Im y;=<a;).
Further proof is developed in the following lemmas.

Lemma 6.2. The group G is a p-group.

Proof. By Lemma 2.7 and Property 4.3, (Ker x3)x; < Ker x,. Hence,
Ker xo= (Ker x; | Ker x2) A (Imx; N Kerx;) апа G=((Ker x, Кег х») A

A (Imx,; NKer x2)) Almx,. Since Imx; and Imx, are p-groups, then all

p’-elements of G are contained in the subgroup Ker x;) Ker x,.
From Properties 4.4 and 4.5 it follows that

Ker x; | Ker x; < Ker y; (6.2)

for each j=l,
...,

n. Assume that g is a prime different from p and h
is a suitable g-element of G. Then h < Ker x; ) Ker x,. Fix j= {l,

...,
n}.

If ze [y,], then by (6.2) zhe [yi]. Therefore, h acts on the set [y:]
so that the image is again contained in [y;]. As by Property 4.14 |[y;]|
is a power of p and h is a g-element, there exists j;& [y;] such that

g,-?z=;7,. Since j is a suitable element of {l,
...,

n}, then, by Property

4.10, h=l. Hence, all p’-elements of G are contained in its centre.
Consequently, G=G,XG, where G, and G, are Sylow p-subgroup and
Hall p’-subgroup of G, respectively.
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Assume {Ба{ л 1$ а projection of G onto its subgroup G,. Since

Imy;<G,, then y;n=o for each j=l, ...,
n. By Property 4.11 n=o.

Therefore, G=G, and G is a p-group. The lemma is proved.

Lemma 6.3. Imx;=<(a,, ..., a).

Proof. Denote A¢=<(ay, ..., an). By Property 4.5, Imy;clmx,
for each j=2, ...,

n. Hence, Ao< Imx,. If 1mx,5A4,, then there exists

an invariant subgroup Ny of Imx, such that Ao<=Ny and Im xo/Ny= C,.
Define now an endomorphism 2 о! G by setting 2z=xuv, where

u:lmx;—lmxy/Ny is a natural homomorphism and v is some iso-

morphism Imx»/N,=<{a,). Then 250 and y;2=o for each j=2, ...,
П.

By Property 4.12, z=o. This contradiction shows that Imx;=A,. The
lemma is proved.

°

Similarly, it follows from Property 4.11:

Lemma 6.4. G={ay,
..., an).

Lemma 6.5. The group Ker x; is an elementary Abelian p-group.

Proof. Denote P={geKerx, | 2?==l}. We show first that P is

ап Abelian subgroup of Kerx,. Choose а,ЬеР. By Property 4.8

Yn, Yn &Ko (2n—l) апа Imz,—y=lmyn,—y Wrlmy,. In view of Property
46 and Lemmas 2.3, 2.7, 3.1

Im zn-i= (NAlmyn-1) Almyn= (N Almyn) A Im yn—y,

where N=lmz,—iKery.—lNKery, and N is an elementary Abelian

p-group. Hence, Imz,—i/N={anlN)X<{anN)=C,XC, and there exist

endomorphisms u=2,—lyntty ап@ о==гл-Iуп-100 of G, where a.uo=a and

an-Ivo=>b. By this definition y.u=u, yr—jv=v and uxo=vx,=o. In view
of Property 4.9 there exists @w & End G such that the conditions (a)—(d)
of Property 4.9 are true. By condition (d) Imw= (Imz,-)w.

Suppose that ¢ is a suitable element of subgroup N. Then there

exists an endomorphism у о! G such that y=2z,—y.wo=y.w, and

a,wo=c. Then yy.=yy.—l=o and, by Property 49 (c), yw=o. There-

{оге, М — Кег@ and the group Im w= (Im2,—;)w is Abelian as Imz,—/N
is Abelian. Since a, b & Im w, then ab=ba. Consequently, P is an Abelian

subgroup of Ker x;.
Next we show that P=Ker x;. Clearly, P is an invariant subgroup

of G. Hence, (P,lmx;)=PAlmx,. By Property 4.3, Imy, < Ker x,.

Therefore, a; =Р. In view of Lemma 6.3, ay, ...,
@л ©Е Р) 1т хо. Етот

Lemma 6.4 it now follows that G=PAlmx,. As P <Ker x;, then P=

=Ker x,. Consequently, Ker x, is an elementary Abelian p-group. The

lemma is proved.
Denote A={muyy,

...,
Imys—y)=<(ay, ..., An-1).

Lemma 66. A=G(n—l).

Proof. By Property 4.13 there exists ze End G for which the con-

ditions (a) and (b) are true. Hence, a;2y;j-;=a;zl for each j=2, ...

...,n. In view of Lemma 23, a;zellmy;-; = <{a;-). Therefore,
(1т хэ) 2== <аэ, ..., ап)г<А. sтсе a;z7l, then (Imx;)z=A.

It is sufficient to show that z is injective on the subgroup Im x,.
By contradiction assume that there exists a =lmux, for which az=l.
Since Imy.=<{a,)< Imx, and by Property 4.5, y» = Ks(x2), it follows

from Lemmas 2.3 and 2.7 that т хо== (1т хо ПKery.)AImys. Hence,
there exists an endomorphism wu=xoyntlo=yntty of G such that a.uy=a.

Then Im u=<(a) and uz=o. On the other hand, by definition u & K¢(x2
yat=l, us=o. In view of Property 4.13 (c), uzs=o. This contradiction

shows that z is injective on Im x,. Consequently, A= (Im x»)z= Im x; =

&~ G(n—l). The lemma is proved.
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In view of Lemma 2.3, G=Ker y,hlmy,=Ker y.A{ar). By Prop-
erty 4.6, Imy;=<a;)<Kery. for each j=1,...,n—1. Hence, А <

c Ker y,. Our aim is to show that Kery.,=A? and G=AZ)\B, where

В==lт ул== <ал). In this connection we use Lemma 5.1. Let а‚=2l„ be

an inner automorphism о! С generated by a.. Since {an)= Cp, then

by Property 4.7 the order of a is p. Clearly, аул== упй== Ип. T

Lemma 6.7. a;-aja=aja-a; for each i,j=l, ...,
n— 1. `

Proof. As in the proof of Lemma 6.5, it follows from Property 4.8
that

Imzj=lmy; Wr Im y.= (N; L Im y;) A туг (N; A Im y.).A Im y;, (6.3)

where N;=lmz;NKery; Kery,, j=1,...,n—1. Hence, Im (yja)=

== m (y,ä„) c Imz; and by Lemma 2:3 y;az;j=yj;a. Therefore, a satisfies
the assumptions of Lemma 5.1.

Fix i,j=l, ...,
n—l; is=j. There exists, by Lemma 5.1, an endo-

morphism « of G such that the conditions (a), (b) and (c) are true. By
(a), aju=aja. In view of Lemma 2.3 ап@ (b), a.ues<la)=lmy;,
anuz=l. Since Im z;=<aj, an), then (Im z;)u= {a;a, a;).

Let ¢ be a suitable element of N; and v=2z;y,vo=ynvo, anUo==C.
Then v = End G, vy,=vy;=o and by Lemma 5.1 (c¢), vu=o, i.e. cu=l.

Hence, N;c Keru and by (6.3) the group (Imz;)u=<a;a,a;) is Abelian.
Therefore, a;-aja=aja-a; for eachi, j=l, ..., n—l; ij. If i=j, then
the equation a;-a;a=a;a-a; follows from the fact that Imz;=<{a;) Wr {an)
and from the definition of wreath product. The lemma is proved.

As а’ 15 for each t=l, ..., p—l also an automorphism of the order

p of the group G for which the assumptions of Lemma 5.1 are true, then
from Lemma 5.1 it follows that |

| (aia®) - (a;a') = (aja") - (a;as) |

for each i,j=l, ...,
n—l and5, #==o, 1, ..., р—-1; 555Ё. Непсе, ав == ба

{ог еас\ а © Аа`= алАа` апа ЬБ © Аа'—=а,„”'Аа„', 5=51. Оепоlе

C=A . (an—l Aan) Y

e

T (an_(p—l) Aanp—l). (64)

Then C is a subgroup of G and C < Kery,. By Lemma 6.4, C is an

invariant subgroup of G. Consequently, C=Ker y. and

G=Ker y, A Imy,=CA{an). (6.5)

We shall find the number of elements of G. Note that |{#t€End G |
упи==и, ихэ==o}| is equal to the number of all homomorphisms from
Imyn=С, !0 Кег хо. By Lemma 6.5, Ker x, is an elementary Abelian

p-group. Hence, the number of mentioned homomorphisms is equal to

| Ker xs|. By Property 4.15, |Кег х»|== (р)” . On the other hand, by

(3.1) |lmx|=|G(n—l)|=p"""" As G=Kerx;Almxz, then

|G| = | Ker xo| -| Im xo| = p "7+ Therefore, |С| == |С| :р =

=р° sтсе |А|= а!Аа„|=|o(п—l) |=р° ввеп

|С|== |l4|?. Consequently, the decomposition (6.4) is a direct product
decomposition, i.e.

С=П’!Пі=o ап_і Aani =А
<a">

(6.6)

From (6.5) and (6.6) it follows that G=A Wr <(a,). Since A= G(n—l)
and {an) = Cp, then G = G(n). The theorem is proved.
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Peeter PUUSEMP

SEOS SUMMEETRILISE RUHMA SYLOW’ ALAMRUHMADE ЗА

NENDE ENDOMORFISMIPOOLRUHMADE VAHEL

Olgu S, m-astme siimmeetriline riihm ja p suvaline algarv, mis on rilhma S

jargu teguriks. Siis rilhma S, iga Sylow’ p-alamriihm on isomorfne p. jarku tsiikli-

lise rithma C, korduvalt voetud (n korda) standardsete pdimikute

G(n,p)=(... ((C»WrC») Wr C») Wr...) Wr C»

otsekorrutisega.
Artiklis on toestatud jargmised väited.

Teoreem. Rihm G(n,p) on mddratud oma endomorfismipoolrihmaga kõigi

riithmade klassis iga naturaalarvu n ja algarvu p korral.

Järeldus 1. Lopliku simmeetrilise rihma {@а Sylow’ alamriihm on maddratud

oma endomorfismipoolriihmaga koigi rithmade klassis.

Järeldus 2. Iga loplik p-rihm ©С оп sisestatav sellisesse loplikku p-rihma G,

mis on mddratud oma endomorfismipoolriihmaga koigi rithmade klassis.

Пеэтер ПУУСЕМП

СВЯЗЬ МЕЖДУ СИЛОВСКИМИ ПОДГРУППАМИ СИММЕТРИЧЕСКОЙ

ГРУППЫ И ИХ ПОЛУГРУППАМИ ЭНДОМОРФИЗМОВ

Пусть р — произвольное простое число и Ср — циклическая группа порядка р.

Рассмотрим кратное стандартное сплетение

G(n, p) =(..((CoWrCp)WrCy,) Wr...)WrCy

(n pa3) группы С». Известно, что каждая силовская р-подгруппа конечной симмет-

рической группы степени т изоморфна прямому произведению групп С(л, р) для

подходящих л. В статье доказываются следующие результаты.

Теорема. Группа С(п, р) определяется своей полугруппой эндоморфизмов в

классе всех групп.

Следствие 1. Каждая силовская подгруппа конечной симметрической группы

определяется ее полугруппой эндоморфизмов в классе всех групп.

Следствие 2. Каждая конечная р-группа вложима в такую конечную р-еруп-

пу, которая определяется своей полугруппой эндоморфизмов в классе всех групп.
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