UDC 512.542
Peeter PUUSEMP*

CONNECTION BETWEEN SYLOW SUBGROUPS OF SYMMETRIC GROUP AND THEIR SEMIGROUPS OF ENDOMORPHISM

(Presented by R.-K. Loide)

Abstract

Let m be a natural number and S_{m} be a symmetric group of the degree m. If p is a prime number which is a divisor of $\left|S_{m}\right|$, then all the Sylow p-subgroups of S_{m} are isomorphic to the direct product of groups $$
G(n, p)=\left(\ldots\left(\left(C_{p} \mathrm{Wr} C_{p}\right) \mathrm{Wr} C_{p}\right) \mathrm{Wr} \ldots\right) \mathrm{Wr} C_{p} ; \quad(n \text { factors }),
$$

where C_{p} is the cyclic group of the order p.
The following results are proved.
Theorem. The group $G(n, p)$ is determined for each natural n and prime p by its semigroup of endomorphisms in the class of all groups.

Corollary 1. Every Sylow subgroup of a finite symmetric group is determined by its semigroup of endomorphisms in the class of all groups.

Corollary 2. Let G be a finite p-group. Then G is imbeddable into a finite p-group \bar{G} such that \bar{G} is determined by its semigroup of endomorphisms in the class of all groups.

1. Introduction

Let G be a fixed group. If for a suitable group H from the isomorphism of semigroups of all endomorphisms of groups G and H follows the isomorphism of groups G and H, then we say that the group G is determined by its semigroup of endomorphisms in the class of all groups. For example, every finite Abelian group is determined by its semigroup of endomorphisms in the class of all groups ([${ }^{1}$], Theorem 4.2). There exist also examples of such groups which cannot be determined by their semigroups of endomorphisms ($\left[{ }^{2}\right]$, Theorem 7). In this connection let us set a problem: for a given group G find a group \bar{G} such that $G \subset \bar{G}$, \bar{G} belongs to a well-known class of groups, and \bar{G} is determined by its semigroup of endomorphisms in the class of all groups. Some results of this kind are well known. For example, if A is a suitable Abelian group, then there exists a divisible Abelian group D such that the direct sum $A \oplus D$ is determined by its semigroup of endomorphisms in the class of all groups ([$\left.{ }^{3}\right]$, Corollary). In this paper we show that every finite p-group G is imbeddable into a finite p-group \bar{G} such that \bar{G} is determined by its semigroup of endomorphisms in the class of all groups.

[^0]Let m be a natural number and S_{m} be a symmetric group of the degree m. If p is a prime number which is a divisor of $\left|S_{m}\right|$, then all the Sylow p-subgroups of S_{m} are isomorphic to the direct product of groups

$$
G(n, p)=\left(\ldots\left(\left(C_{p} \mathrm{Wr} C_{p}\right) \mathrm{Wr} C_{p}\right) \mathrm{Wr} \ldots\right) \mathrm{Wr} C_{p} \quad \text { (} n \text { factors) }
$$

where C_{p} is the cyclic group of the order $p\left(\left[{ }^{4}\right]\right)$. Our aim is to prove the following theorem (Theorem 6.1).

Theorem. The group $G(n, p)$ is determined for each natural n and prime p by its semigroup of endomorphisms in the class of all groups.

Corollary 1. Every Sylow subgroup of a finite symmetric group is determined by its semigroup of endomorphisms in the class of all groups.

Corollary 2. Let G be a finite p-group. Then G is imbeddable into a finite p-group \bar{G} such that \bar{G} is determined by its semigroup of endomorphisms in the class of all groups.

Corollary 2 follows from the fact that every finite p-group is imbeddable into some Sylow subgroup of some finite symmetric group.

We shall use the following notations: End G denotes a semigroup of all endomorphisms of a group $G ; I(G)$ - a set of all idempotents of End $G ;\langle a, b, \ldots\rangle$ - a subgroup generated by elements a, b, \ldots; $\langle A, B, \ldots\rangle$ - a subgroup generated by subsets $A, B, \ldots ; \hat{g}-$ an inner automorphism generated by an element $g ; G^{\prime}$ - a commutatorgroup of $G ;[A, B]=\left\langle a^{-1} b^{-1} a b \mid a \in A, b \in B\right\rangle ; K_{G}(x)=\{y \in \operatorname{End} G \mid$ $y x=x y=y\}$.

2. Preliminaries

Let A and B be finite groups. Then the standard wreath product of A and B, denoted as $A \mathrm{Wr} B$, is the semidirect product $A^{B} \lambda B$ (here and henceforth, $\lambda=$ semidirect product) of A^{B} by B, where A^{B} is the set of all functions $f: B \rightarrow A$ and

$$
\begin{align*}
& (f g)(b)=f(b) \cdot g(b), \quad c^{-1} f c=f^{c} \\
& f^{c}(b)=f\left(b c^{-1}\right) \tag{2.1}
\end{align*}
$$

for all $b, c \in B$ and $f, g \in A^{B}$. General properties of wreath products are presented in [${ }^{5}$].

Let $A_{0}=\left\{f \in A^{B} \mid f(b)=1\right.$ for all $\left.b \neq 1\right\}$. Then A_{0} is a subgroup of $A \mathrm{Wr} B$ and from (2.1) it follows that A^{B} is a direct product of subgroups $b^{-1} A_{0} b=A_{0}^{b}, b \in B$. As A and A_{0} are isomorphic, we identify below $A_{0}=A$. Therefore,

$$
A \mathrm{Wr} B=A^{B} \lambda B, \quad A^{B}=\Pi_{b \in B} b^{-1} A b=\Pi_{b \in B} A^{b} .
$$

The following two lemmas are simple corollaries from the definition of the wreath product.

Lemma 2.1. If $A=A_{1} \lambda A_{2}$, then $A \mathrm{Wr} B=\left(A_{1} \lambda A_{2}\right) \mathrm{Wr} B=$ $=A_{1}^{B} \lambda\left(A_{2} \mathrm{Wr} B\right)$. If C is a subgroup of A, then $\langle C, B\rangle=C \mathrm{Wr} B$.

Lemma 2.2. Each endomorphism u of A induces an endomorphism \tilde{u} of $A \mathrm{Wr} B$ by laws

$$
\begin{aligned}
& b \tilde{u}=b, \quad b \in B, \\
& \left(b^{-1} a b\right) \tilde{u}=b^{-1}(a u) b, \quad b \in B, \quad a \in A .
\end{aligned}
$$

Lemma 2.3 ($\left.{ }^{1}\right]$, Lemma 1.1). If G is a group and $x \in I(G)$, then $G=\operatorname{Ker} x \lambda \operatorname{Im} x$ and $\operatorname{Im} x=\{g \in G \mid g x=g\}$.

From Lemmas 2.1 and 2.3 follows
Lemma 2.4. If $x \in I(A)$ and \tilde{x} is induced by x, then $A \mathrm{Wr} B=\operatorname{Ker} \tilde{x} \lambda \operatorname{Im} \tilde{x}=(\operatorname{Ker} x)^{B} \lambda(\operatorname{Im} x \operatorname{Wr} B)$, Ker $\tilde{x}=(\operatorname{Ker} x)^{B}, \quad \operatorname{Im} \tilde{x}=\operatorname{Im} x \operatorname{Wr} B$.
Lemma 2.5 ([$\left.{ }^{6}\right]$, Lemmas 4.2 and 4.3). Suppose that x is a projection of $G=A \mathrm{Wr} B=A^{B} \lambda B$ onto B and $y \in$ End G such that $y x=$ $=x y=x$. Then to y corresponds a family $\left\{Y_{b}\right\}_{b \in B}$ of endomorphisms of A such that

$$
\begin{equation*}
\left(a Y_{b}\right)\left(a_{1} Y_{c}\right)=\left(a_{1} Y_{c}\right)\left(a Y_{b}\right) \tag{2.2}
\end{equation*}
$$

for each $a, a_{1} \in A$ and $b, c \in B, b \neq c$. If B is finite then this correspondence is one-to-one. The endomorphism Y_{b} of A is given by an equation $Y_{b}=y_{A} \tau_{b} \pi_{b}$ where $y_{A}=y \mid A, \tau_{b}$ is a projection of $A^{B}=\Pi_{b \in B} b^{-1} A b$ onto $b^{-1} A b$ and $\pi_{b}: b^{-1} A b \rightarrow A$ is a natural isomorphism: $\left(b^{-1} a b\right) \pi_{b}=a$, $a \in A$.

Denote further $y=\left\{Y_{b}\right\}_{b \in B}$.
Lemma 2.6 ([1], Lemma 1.6). If G is a group and $x \in I(G)$ then $K_{G}(x) \cong \operatorname{End}(\operatorname{Im} x)$.

Lemma 2.7 ([1] Lemma 1.5). If $x, y \in$ End G and $x y=y x$ then $(\operatorname{Im} x) y \subset \operatorname{Im} x$ and $(\operatorname{Ker} x) y \subset \operatorname{Ker} x$.

3. Some properties of the group $\boldsymbol{G}(\boldsymbol{n})$

Let us fix a prime number p. Let A_{1}, A_{2}, \ldots be cyclic groups of the order p. Define a group $G(n)$ by induction:

$$
\begin{aligned}
& G(2)=A_{1} \mathrm{Wr} A_{2}=A_{1} A_{2} \lambda A_{2} \\
& G(n)=G(n-1) \mathrm{Wr} A_{n}=\left(\ldots\left(\left(A_{1} \mathrm{Wr} A_{2}\right) \mathrm{Wr} A_{3}\right) \mathrm{Wr} \ldots\right) \mathrm{Wr} A_{n}
\end{aligned}
$$

Below we drop brackets, i. e. $G(n)=A_{1} \mathrm{Wr} A_{2} \mathrm{Wr} \ldots \mathrm{Wr} A_{n}$. Then $G(n)=$ $=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ and

$$
\begin{equation*}
|G(n)|=p^{1+p+\ldots+p^{n-1}} \tag{3.1}
\end{equation*}
$$

Lemma $3.1\left(\left[^{6}\right]\right.$, Lemma 2.6). The group $G(2)$ splits up

$$
G(2)=A_{1} \mathrm{Wr} A_{2}=\left(\left[A_{2}, A_{1}^{A_{2}}\right] \times A_{1}\right) \lambda A_{2}=\left(\left[A_{2}, A_{1}^{A_{2}}\right] \lambda A_{2}\right) \lambda A_{1}
$$

and $A_{1} A_{2}=\left[A_{2}, A_{1} A_{2}\right] \times A_{1}$.
Lemma 3.2 ([$\left.{ }^{7}\right]$, Theorem 2.1). Suppose $x, y, z \in I(G), x, y \in K_{G}(z)$ and $\operatorname{Im} z=\operatorname{Im} y W r \operatorname{Im} x$, where G is some group, $\operatorname{Im} y$ and $\operatorname{Im} x$ are cyclic groups of the order p. If G^{*} is another group such that End $G \cong$ \cong End G^{*} and x^{*}, y^{*}, z^{*} are idempotents which correspond to x, y, z by this isomorphism, then $\operatorname{Im} z^{*}=\operatorname{Im} y^{*} \mathrm{Wr} \operatorname{Im} x^{*}$ and the groups $\operatorname{Im} y^{*}$ and $\operatorname{Im} x^{*}$ are also cyclic groups of the order p.

In view of Lemma 3.2 it is assumed that $n \geqslant 3$.
Lemma 3.3. There exist the idempotents $x_{1}, x_{2}, y_{1}, \ldots, y_{n}, z_{1}, \ldots$ \ldots, z_{n-1} of End $G(n)$ such that:
(a) $\operatorname{Im} y_{i}=A_{i} \subset \operatorname{Ker} y_{i}$ for each $i \neq j$;
(b) $A_{2} \subset \operatorname{Ker} x_{1}, \quad \operatorname{Im} x_{1}=\left\langle A_{i} \mid i \neq 2\right\rangle$;
(c) $A_{1} \subset \operatorname{Ker} x_{2}, \quad \operatorname{Im} x_{2}=\left\langle A_{i} \mid i \geqslant 2\right\rangle$;
(d) $\operatorname{Ker} x_{2}=\left(\ldots\left(\left(A_{1} A_{2}\right)^{A_{3}}\right) \ldots\right)^{A_{n}}=A_{1}{ }^{A_{2} A_{3} \ldots A_{\mathrm{n}}}$;
(e) $y_{n}, y_{j} \in K_{G(n)}\left(z_{i}\right)$ and $\operatorname{Im} z_{j}=\operatorname{Im} y_{j} \mathrm{Wr} \operatorname{Im} y_{n}$ for each $j=1, \ldots$
..., $n-1$.
Proof. The proof is done by the induction on n. Suppose that $n=3$. By Lemmas 3.1 and 2.1

$$
\begin{aligned}
& G(3)=G(2) \mathrm{Wr} A_{3}=G(2)^{A_{3}} \lambda A_{3}= \\
& \begin{array}{l}
=\left(\left[A_{2}, A_{1} A_{2}\right] \times A_{1} A_{1} A_{2} \lambda\left(A_{2} \mathrm{Wr} A_{3}\right)=\right. \\
=\left(A_{2}, A_{1} A_{2} A_{3} \times A_{3} A_{3} A_{3}\right) \lambda\left(A_{2} W \mathrm{Wr} A_{3}\right)= \\
=\left(\left[A_{2}, A_{1} A_{2}\right) \lambda A_{2} A_{3} A_{3} \lambda A_{1} \mathrm{Wr} A_{3}\right)= \\
=\left(\left[A_{2}, A_{1} A_{2} A_{3} \lambda A_{2} A_{3}\right) \lambda\left(A_{1} \mathrm{Wr} A_{3}\right) .\right.
\end{array}
\end{aligned}
$$

Choose x_{1} and x_{2} as projections of $G(3)$ onto subgroups $A_{1} \mathrm{Wr} A_{3}$ and $A_{2} \mathrm{Wr} A_{3}$, respectively. Due to such a choice, (b) and (c) hold. It is easy to show that (d) also holds. Indeed,

$$
\text { Ker } x_{2}=\left(\left[A_{2}, A_{1} A_{2}\right] \times A_{1}\right)^{A_{3}}=\left(A_{1}^{A_{2}}\right)^{A_{3}}=A_{1}{ }^{A_{2} A_{3}} .
$$

By Lemma 3.1

$$
\begin{align*}
& A_{2} \mathrm{Wr} A_{3}=\left(\left[A_{3}, A_{2} A_{3}\right] \lambda A_{3}\right) \lambda A_{2}, \tag{3.3}\\
& A_{1} \mathrm{Wr} A_{3}=\left(\left[A_{3}, A_{1} A_{3}\right] \lambda A_{3}\right) \lambda A_{1} . \tag{3.4}
\end{align*}
$$

Choose y_{1}, y_{2} and y_{3} as projections of $G(3)$ onto subgroups A_{1}, A_{2} and A_{3}, respectively. Then (a) holds. Finally, choose $z_{1}=x_{1}$ and $z_{2}=x_{2}$. Clearly, by such a choice (e) holds.

Assume now that $n>3$ and for each group $G(k)$, where $k<n$, the statements of the lemma are true. Then there exist the idempotents $\bar{x}_{1}, \bar{x}_{2}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}$ of End $G(n-1)$ such that

$$
\begin{align*}
& \operatorname{Im} \bar{y}_{i}=A_{j} \subset \operatorname{Ker} \bar{y}_{i} \text { for each } i \neq j, \tag{3.5}\\
& A_{2} \subset \operatorname{Ker} \bar{x}_{1}, \operatorname{Im} \bar{x}_{1}=\left\langle A_{i} \mid i \neq 2\right\rangle, \tag{3.6}\\
& A_{1} \subset \operatorname{Ker} \bar{x}_{2}, \operatorname{Im} \bar{x}_{2}=\left\langle A_{i} \mid j \geqslant 2\right\rangle, \tag{3.7}\\
& \text { Ker } \bar{x}_{2}=A_{1} A_{2} \ldots A_{n-1} \tag{3.8}
\end{align*}
$$

$(i, j=1, \ldots, n-1)$. These idempotents induce, by Lemma 2.2 , endomorphisms $x_{1}, x_{2}, \tilde{y}_{1}, \ldots, \widetilde{y}_{n-1}$ of $G(n)=G(n-1) \mathrm{Wr} A_{n}$. By Lemma 2.4

$$
\begin{align*}
& \operatorname{Im} x_{j}=\operatorname{Im} \bar{x}_{j} \operatorname{Wr} A_{n}=\left\langle\operatorname{Im} \bar{x}_{j}, A_{n}\right\rangle, \tag{3.9}\\
& \operatorname{Ker} x_{j}=\left(\operatorname{Ker} \bar{x}_{j}\right)^{A_{n}}=\Pi_{b \in A_{n}} b^{-1}\left(\operatorname{Ker} \bar{x}_{j}\right) b, \tag{3.10}\\
& \operatorname{Im} \tilde{y}_{i}=\operatorname{Im} \bar{y}_{i} \operatorname{Wr} A_{n}, \quad \operatorname{Ker} \tilde{y}_{i}=\left(\operatorname{Ker} \bar{y}_{i}\right)^{A_{n}} \tag{3.11}
\end{align*}
$$

($i=1, \ldots, n-1 ; j=1,2$). From (3.8) and (3.10) it follows that the statement (d) holds. Statements (b) and (c) follow from the formulas (3.6), (3.7), (3.9) and (3.10).

In view of Lemma 2.3, $G(n)=\operatorname{Ker} \tilde{y}_{i} \lambda \operatorname{Im} \tilde{y}_{i}$ and, by Lemma 3.1,

$$
\begin{equation*}
\operatorname{Im} \tilde{y}_{i}=\operatorname{Im} \bar{y}_{i} \operatorname{Wr} A_{n}=A_{i} \operatorname{Wr} A_{n}=\left(\left[A_{n}, A_{i} A^{A}\right] \lambda A_{n}\right) \lambda A_{i} . \tag{3.12}
\end{equation*}
$$

Let y_{i} be a projection of $G(n)$ onto subgroup $A_{i}(i=1, \ldots, n-1)$. Choose y_{n} as a projection of $G(n)=G(n-1)^{A_{n} \lambda A_{n}}$ onto A_{n}. Clearly, for such y_{1}, \ldots, y_{n} (a) holds. Finally, choose $z_{i}=\tilde{y}_{i}$ for each $i=1, \ldots$ $\ldots, n-1$. Then the statement (e) follows from the equations (3.5), (3.11) and (3.12). The lemma is proved.

Fix now for the next reasonings the idempotents $x_{1}, x_{2}, y_{1}, \ldots, y_{n}$, z_{1}, \ldots, z_{n-1} as in Lemma 3.3.

Lemma 3.4. Ker $x_{1} \cap \operatorname{Ker} x_{2}=\left[A_{2}, A_{1} A_{2}\right] A_{3} \ldots A_{n} \subset G(n)^{\prime}$.
Proof. The proof is again based on the induction on n. If $n=3$, then, by the construction of x_{1} and x_{2}, we have

$$
\begin{aligned}
& \text { Ker } x_{1}=\left[A_{2}, A_{1} A_{2}\right]^{A_{3}} \lambda A_{2} A_{3}, \quad \text { Ker } x_{2}=\left[A_{2}, A_{1}{ }^{A_{2}}\right]^{A_{3}} \lambda A_{1} A_{3}, \\
& \text { Ker } x_{1} \cap \operatorname{Ker} x_{2}=\left[A_{2}, A_{1} A_{2}\right]^{A_{3}} \subset G(3)^{\prime}
\end{aligned}
$$

and the statement of the lemma is true.
Assume now that $n>3$ and for each group $G(k)$, where $k<n$, the statement of the lemma is true. As in the proof of Lemma 3.3 the idempotents x_{1} and x_{2} are induced by idempotents \bar{x}_{1} and \bar{x}_{2} of End $G(n-1)$. By assumption of the induction

$$
\begin{equation*}
\operatorname{Ker} \bar{x}_{1} \cap \operatorname{Ker} \bar{x}_{2}=\left[A_{2}, A_{1} A_{2}\right]^{A_{3} \ldots A_{n-1}} . \tag{3.13}
\end{equation*}
$$

From (3.10) and (3.13) it now follows that

$$
\begin{aligned}
\text { Ker } x_{1} \cap \text { Ker } x_{2} & =\left(\operatorname{Ker} \bar{x}_{1}\right)^{A_{n}} \cap\left(\operatorname{Ker} \bar{x}_{2}\right)^{A_{\mathrm{n}}}= \\
& =\left(\operatorname{Ker} \bar{x}_{1} \cap \operatorname{Ker} \bar{x}_{2}\right)^{A_{n}} \\
& =\left[A_{2}, A_{1}^{A_{2} A_{2}}\right]_{3} \ldots A_{s} \subset G(n)^{\prime} .
\end{aligned}
$$

The lemma is proved.
Since $\operatorname{Im} y_{j} \cong C_{p}$, then $G(n)^{\prime} \subset \operatorname{Ker} y_{j}$ and from Lemma 3.4 follows
Lemma 3.5. Ker $x_{1} \cap \operatorname{Ker} x_{2} \subset \operatorname{Ker} y_{j}$ for each $j=1, \ldots, n$.
Lemma 3.6. $\operatorname{Ker} y_{n}=\left(\left(\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}\right) \times A_{1} A_{3} \ldots A_{\mathrm{a}}\right) \lambda$

$$
\lambda\left(A_{2} \mathrm{Wr} \ldots \mathrm{Wr} A_{n-1}\right)^{A_{\mathrm{s}}} .
$$

Proof. Let us prove the lemma by induction. If $n=3$, then the statement holds due to (3.2), Lemma 3.1 (applied to $A_{2} \mathrm{Wr} A_{3}$) and Lemma 3.4. Assume that $n>3$ and for $G(k)$, where $k<n$, the statement of the lemma is true. Suppose that the idempotents $\bar{y}_{1}, \ldots, \bar{y}_{n-1}$ correspond to $G(n-1)$. Then $G(n-1)=\operatorname{Ker} \bar{y}_{n-1} \lambda \operatorname{Im} \bar{y}_{n-1}=\operatorname{Ker} \bar{y}_{n-1} \lambda A_{n-1}$ and by assumption of the induction

$$
\begin{gather*}
\operatorname{Ker} \bar{y}_{n-1}=\left(\left(\operatorname{Ker} \bar{x}_{1} \cap \operatorname{Ker} \bar{x}_{2}\right) \times A_{1} A_{3} \ldots A_{\mathrm{n}-1}\right) \lambda \\
\lambda\left(A_{2} \mathrm{Wr} \ldots \mathrm{Wr} A_{n-2}\right)_{n-1}^{A_{n-1}} . \tag{3.14}
\end{gather*}
$$

As $\operatorname{Ker} y_{n}=G(n-1)^{A_{n}}$, then from (3.13) and (3.14) it follows that

$$
\begin{aligned}
& \text { Ker } y_{n}=G(n-1)^{A_{n}}=\left(\operatorname{Ker} \bar{y}_{n-1} \lambda A_{n-1}\right)^{A_{n}}= \\
& =\left(\left(\left(\left[A_{2}, A_{1} A_{2}\right]^{A_{3} \ldots A_{n-1}} \backslash A_{1} A_{3} \ldots A_{n-1}\right) \lambda\right.\right. \\
& \left.\left.\lambda\left(A_{2} \mathrm{Wr} \ldots \mathrm{Wr} A_{n-2}\right)^{A_{n-1}}\right) \lambda A_{n-1}\right) A_{n}= \\
& =\left(\left[A_{2}, A_{1}{ }^{A_{2}}\right]_{A_{3} \ldots A_{n}} \times A_{1} A_{3} \ldots A_{\mathrm{s}}\right) \lambda \\
& \lambda\left(A_{2} \mathrm{Wr} \ldots \mathrm{Wr} A_{n-1}\right)^{A_{n}}=\left(\left(\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}\right) \times\right. \\
& \left.\times A_{1} A_{3} \ldots A_{n}\right) \lambda\left(A_{2} \mathrm{Wr} \ldots \mathrm{Wr} A_{n-1}\right)^{A_{n}} .
\end{aligned}
$$

The lemma is proved.
Lemma 3.7. If $\tilde{y}_{1}, \ldots, \tilde{y}_{n} \in I(G(n))$ and

$$
\begin{array}{ll}
y_{i} \tilde{y}_{i}=\tilde{y}_{j}, & \tilde{y}_{j} y_{i}=y_{i}, \tag{3.15}\\
\tilde{y}_{i} x_{1}=y_{i} x_{1}, & \tilde{y}_{i} x_{2}=y_{i} x_{2}
\end{array}
$$

for each $j=1, \ldots, n$, then $G(n)=\left\langle\operatorname{Im} \tilde{y}_{1}, \ldots, \operatorname{Im} \tilde{y}_{n}\right\rangle$.
Proof. Suppose that the assumptions of the lemma are true. Denote $M_{0}=\left\langle\operatorname{Im} \tilde{y}_{1}, \ldots, \operatorname{Im} \tilde{y}_{n}\right\rangle$. Due to (3.15), we have $\left(g \tilde{y}_{j}\right)^{-1}\left(g y_{j}\right) \in$ $\in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$ for each $g \in G(n)$. Consequently, $\operatorname{Im} y_{j} \subset \operatorname{Im} \tilde{y}_{j} \cdot M$ and $G(n)=\left\langle\operatorname{Im} y_{1}, \ldots, \operatorname{Im} y_{n}\right\rangle=M_{0} \cdot M$, where $M=\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$.

If $G(n) \neq M_{0}$, then by Sylow theorems there exists an invariant subgroup N of $G(n)$ such that $M_{0} \subset N \neq G(n)$ and the factor-group $G(n) / N$ is Abelian. Then $G(n)^{\prime} \subset N$ and by Lemma $3.4 M \subset G(n)^{\prime}$. Therefore, $M \subset N$ and $M N=N \neq G(n)$. On the other hand, since $M_{0} \subset N$, then $G(n)=M_{0} \cdot M \subset N M=M N=N$. The obtained contradiction shows that $G(n)=M_{0}$. The lemma is proved.

4. Further properties of x_{1}, x_{2} and y_{1}, \ldots, y_{n}

In this section denote $G=G(n)$ and assume that $x_{1}, x_{2}, y_{1}, \ldots, y_{n}$ and z_{1}, \ldots, z_{n-1} have the previous meaning. Suppose that a_{j} is a generator of $A_{j}=\operatorname{Im} y_{j} \cong C_{p}$. Then $A_{j}=\left\langle a_{j}\right\rangle$.

Property 4.1. $K_{G}\left(y_{j}\right) \cong$ End C_{p} for each $j=1, \ldots, n$.
Property 4.1 follows from Lemmas 2.6 and 3.3.
Property 4.2. $\quad x_{1} x_{2}=x_{2} x_{1}$ and $K_{G}\left(x_{1}\right) \cong K_{G}\left(x_{2}\right) \cong$ End $G(n-1)$.
Proof. By Lemma 3.3 $\operatorname{Im} x_{1}=\left\langle A_{i} \mid i \neq 2\right\rangle$ and $\operatorname{Im} x_{2}=\left\langle A_{j} \mid j \geqslant 2\right\rangle$. In view of Lemma 2.3, $x_{1} x_{2}$ and $x_{2} x_{1}$ act identically on the subgroups A_{3}, \ldots, A_{n}. Since by Lemma $3.3 A_{2} \subset \operatorname{Ker} x_{1}$ and $A_{1} \subset \operatorname{Ker} x_{2}$, then $A_{2} x_{1} x_{2}=A_{2} x_{2} x_{1}=A_{1} x_{1} x_{2}=A_{1} x_{2} x_{1}=\langle 1\rangle$. Consequently, $x_{1} x_{2}=x_{2} x_{1}$.

From Lemma 2.1 it follows that $\operatorname{Im} x_{1}=\left\langle A_{i} \mid i \neq 2\right\rangle \cong G(n-1)$ and $\operatorname{Im} x_{2}=\left\langle A_{j} \mid j \geqslant 2\right\rangle \cong G(n-1)$. By Lemma 2.6, $K_{G}\left(x_{1}\right) \cong K_{G}\left(x_{2}\right) \cong$ \cong End $G(n-1)$. The property is proved.

The following four properties follow from Lemma 3.3.
Property 4.3. $x_{2} y_{1}=y_{1} x_{2}=0$.
Property 4.4. $x_{1} y_{1}=y_{1} x_{1}=y_{1}$.
Property 4.5. $x_{2} y_{j}=y_{j} x_{2}=y_{j}$ for each $j=2, \ldots, n$.
Property 4.6. $y_{n} y_{j}=y_{i} y_{n}=0$ for each $j=1, \ldots, n-1$.
Property 4.7. The idempotent y_{n} has no orthogonal complement.
Property 4.7 follows from the definition of the wreath product.
Property 4.8. There exist $z_{1}, \ldots, z_{n-1} \in I(G)$ such that for each $j=1, \ldots, n-1$ the following statements are true: (a) $y_{j}, y_{n} \in K_{G}\left(z_{j}\right)$; (b) $\operatorname{Im} z_{j}=\operatorname{Im} y_{i} \mathrm{Wr} \operatorname{Im} y_{n}$.

Property 4.8 follows from Lemma 3.3.
Property 4.9. If $u, v \in \operatorname{End} G$ and $y_{n} u=u, y_{n-1} v=v, u x_{2}=v x_{2}=0$, then there exists $w \in \operatorname{End} G$ such that: (a) $y_{n} w=u$; (b) $y_{n-1} w=v$; (c) if $y \in \operatorname{End} G$ and $y y_{n}=y y_{n-1}=0$, then $y w=0$; (d) $z_{n-1} w=w$.

Proof. By Property 4.6 $\operatorname{Im} y_{n} \subset \operatorname{Ker} y_{n-1}$ and $\operatorname{Im} y_{n-1} \subset \operatorname{Ker} y_{n}$. Basing on Lemmas 2.3 and 2.7 we have $G=\left(M \lambda \operatorname{Im} y_{n-1}\right) \lambda \operatorname{Im} y_{n}=(M \lambda$ $\left.\lambda \operatorname{Im} y_{n}\right) \lambda \operatorname{Im} y_{n-1}$, where $\quad M=\operatorname{Ker} y_{n-1} \cap \operatorname{Ker} y_{n} . \quad$ Therefore, $\quad G / M=$ $=\left\langle a_{n} M\right\rangle \times\left\langle a_{n-1} M\right\rangle \cong C_{p} \times C_{p}$. If $u, v \in$ End G and $y_{n} u=u, \quad y_{n-1} v=v$, $u x_{2}=v x_{2}=0$, then $a_{n} u, a_{n-1} v \in \operatorname{Ker} x_{2}$. As Ker x_{2} is by Lemma 3.3 an elementary Abelian p-group, we can define an endomorphism w of G by setting $w=\pi u_{0}$, where $\pi: G \rightarrow G / M$ is a natural homomorphism and $\left(a_{n} M\right) u_{0}=a_{n} u,\left(a_{n-1} M\right) u_{0}=a_{n-1} v$. From the definition of w it follows that $y_{n} w=y_{n} u$ and $y_{n-1} w=y_{n-1} v$. Since $y_{n} u=u$ and $y_{n-1} v=v$, then (a) and (b) are true. If $y \in \operatorname{End} G$ and $y y_{n}=y y_{n-1}=0$, then $\operatorname{Im} y \subset M \subset$ \subset Ker $w, y w=0$ and so (c) is also true.

For the proof of (d) observe that by Property 4.8, $y_{n}, y_{n-1} \in K_{\sigma}\left(z_{n-1}\right)$. Hence, $\operatorname{Ker} z_{n-1} \subset M \subset \operatorname{Ker} w,\left(\operatorname{Ker} z_{n-1}\right)\left(z_{n-1} w\right)=\left(\operatorname{Ker} z_{n-1}\right) w=\langle 1\rangle$ and so $z_{n-1} \mathrm{~W}$ and w act equally on the subgroup $\operatorname{Ker} \boldsymbol{z}_{n-1}$. Since by Property $4.8 \operatorname{Im} z_{n-1}=\left\langle a_{n-1}, a_{n}\right\rangle$ and

$$
\begin{aligned}
& a_{n}\left(z_{n-1} w\right)=\left(a_{n} y_{n}\right)\left(z_{n-1} w\right)=a_{n}\left(y_{n} w\right)=a_{n} w, \\
& a_{n-1}\left(z_{n-1} w\right)=\left(a_{n-1} y_{n-1}\right)\left(z_{n-1} w\right)=a_{n-1}\left(y_{n-1} w\right)=a_{n-1} w,
\end{aligned}
$$

then $z_{n-1} w$ and w coincide on the subgroup $\operatorname{Im} z_{n-1}$. In view of the equation $G=\operatorname{Ker} z_{n-1} \lambda \operatorname{Im} z_{n-1}, z_{n-1} w=w$ holds. The property is proved.

Define for each y_{1}, \ldots, y_{n} a set

$$
\left[y_{i}\right]=\left\{z \in I(G) \mid z y_{j}=y_{i}, y_{j} z=z, z x_{1}=y_{i} x_{1}, z x_{2}=y_{i} x_{2}\right\} .
$$

Property 4.10. If $z \in \operatorname{End} G, \tilde{y}_{j} \in\left[y_{i}\right]$ and $\tilde{y}_{i} z=\tilde{y}_{j}$ for each $j=$ $=1, \ldots, n$, then $z=1$.

Property 4.10 follows directly from Lemma 3.7.
Property 4.11. If $u \in \operatorname{End} G$ and $y_{j} u=0$ for each $j=1, \ldots, n$, then $u=0$.

This property follows from the fact that $G=\left\langle\operatorname{Im} y_{1}, \ldots, \operatorname{Im} y_{n}\right\rangle$.
Property 4.12. If $z \in K_{G}\left(x_{2}\right)$ and $y_{i} z=0$ for each $j=2, \ldots, n$, then $z=0$.

Property 4.12 is evident. Indeed, by Lemma $3.3 \operatorname{Im} x_{2}=\left\langle\operatorname{Im} x_{i} \mid i \geqslant 2\right\rangle$.
Property 4.13. There exists $z \in \operatorname{End} G$ such that: (a) $y_{i} z=$ $=y_{i} z y_{j-1} \neq 0$ for each $j=2, \ldots, n$; (b) if $u \in K_{G}\left(x_{2}\right)$ and $y_{n} u=u \neq 0$, then $u z \neq 0$.

Proof. By the definition of the wreath product and Lemma 3.3 it is clear that $\operatorname{Im} x_{2}=\left\langle A_{2,}, \ldots, A_{n}\right\rangle=A_{2} \mathrm{Wr} \ldots \mathrm{Wr} A_{n}$ and $\left\langle A_{1}, \ldots\right.$ $\left.\ldots, A_{n-1}\right\rangle=A_{1} \mathrm{Wr} \ldots$ Wr A_{n-1}. Consequently, a map z defined by

$$
\left(\text { Ker } x_{2}\right) z=\langle 1\rangle, \quad a_{j} z=a_{j-1} ; \quad j=2, \ldots, n,
$$

induces an endomorphism of $G(n)$ such that z is injective on the subgroup $\operatorname{Im} x_{2}$. By this definition, (a) is true.

Suppose that $u \in K_{a}\left(x_{2}\right)$ and $y_{n} u=u \neq 0$. Then $\operatorname{Im} u=\left\langle a_{n} u\right\rangle \subset \operatorname{Im} x_{2}$, $a_{n} u \neq 1, a_{n}(u z)=\left(a_{n} u\right) z \neq 1, u z \neq 0$ and so (b) is also true. The property is proved.

Property 4.14. $\left|\left[y_{j}\right]\right|$ is a power of p for each $j=1, \ldots, n$.
Proof. Assume that $z \in\left[y_{i}\right]$. From the definition of $\left[y_{i}\right]$ we have $\operatorname{Ker} y_{i}=\operatorname{Ker} z$ and $\operatorname{Im} y_{j} \cong \operatorname{Im} z$. Since $G=\operatorname{Ker} y_{j} \lambda \operatorname{Im} y_{j}, z$ is determined by its action on the element a_{j}. As $z y_{j}=y_{j}$ then $a_{i}{ }^{-1} \cdot a_{j} z \in \operatorname{Ker} y_{j}$, i. e., $a_{j} z=a_{j} c$ for some $c \in \operatorname{Ker} y_{j}$. From the equations $z x_{1}=y_{j} x_{1}$ and $z x_{2}=$ $=y_{i} x_{2}$ it follows that $c \in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$. In addition, $a_{j} c$ is an element of the order p. Conversely, if $c \in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$ such that $a_{j} c$ is an element of the order p, then by Lemma $3.5 c \in \operatorname{Ker} y_{j}$ and a map z, defined by $a_{j} z=a_{j} c$, ($\left.\operatorname{Ker} y_{j}\right) z=\langle 1\rangle$, is an endomorphism of G and $z \in\left[y_{j}\right]$. Consequently, $\left|\left[y_{i}\right]\right|$ is equal to the number of elements $a_{j} c$ of the order p where $c \in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$. This is a basic fact for the proof of Property 4.14.

The proof is by induction on n. Suppose that $n=3$. In view of Lemma 3.4

$$
\text { Ker } x_{1} \cap \operatorname{Ker} x_{2}=\left[A_{2}, A_{1}^{A_{2}}\right]^{A_{3}}=\Pi_{b \in A_{s}} b^{-1}\left[A_{2}, A_{1} A_{2}\right] b
$$

and therefore $\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$ is an elementary Abelian p-group. Since a_{1} commutes by Lemma 3.1 with each element of $\left[A_{2}, A_{1}^{A_{2}}\right]$, then a_{1}
commutes with each element of $\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$ and $a_{1} c$ is an element of the order p for each $c \in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$. Consequently, $\left|\left[y_{1}\right]\right|$ is a power of p.

Every element $a_{2} c_{1}$ of $G(2)$, where $c_{1} \in\left[A_{2}, A_{1} A_{2}\right]$, is an element of the order p. This $a_{2} c_{1}$ commutes with each element $c_{2} \in b^{-1}\left[A_{2}, A_{1}{ }^{A_{2}}\right] b$, $b \in A_{3} \backslash\langle 1\rangle$. Hence, $a_{2} c=a_{2} c_{1} c_{2}$ is an element of the order p for each $c \in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$ and $\left|\left[y_{2}\right]\right|$ is a power of p.

Every element $a_{3} c$ of the order p of $G=G(3)=G(2) \mathrm{Wr} A_{3}$, where $c \in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$, is conjugate with a_{3} ($\left[^{5}\right.$, Theorem 10.1), i. e. there exists $d \in \operatorname{Ker} y_{3}$ such that $a_{3} c=d^{-1} a_{3} d$. By Lemma 3.6

$$
\begin{equation*}
\operatorname{Ker} y_{3}=\left(\left(\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}\right) \times A_{1} A_{3}\right) \lambda A_{2}^{A_{3}} . \tag{4.1}
\end{equation*}
$$

From (4.1) it follows that $c \in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$ if and only if $d \in \operatorname{Ker} x_{1} \cap$ $\cap \operatorname{Ker} x_{2}$. Therefore, the number of elements $a_{3} c$ of the order p is equal to $\left[\left(\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}\right): C_{\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}}\left(a_{3}\right)\right]$. This number is a power of p and so is $\left|\left[y_{3}\right]\right|$. Consequently, for $n=3$ the property is true.

Assume now that $n>3$ and for $G(k)$, where $k<n$, the statement of the property is true. Suppose that \bar{x}_{1}, \bar{x}_{2} and $\bar{y}_{1}, \ldots, \bar{y}_{n-1}$ are similar idempotents for $G(n-1)$ as x_{1}, x_{2} and y_{1}, \ldots, y_{n} are for $G(n)$. By assumption of the induction the number of elements $a_{j} c_{1}$ of the order p, where $c_{1} \in \operatorname{Ker} \bar{x}_{1} \cap \operatorname{Ker} \bar{x}_{2}=\left[A_{2}, A_{1} A_{2}\right]^{A_{3} \ldots A_{n-1}}$, is a power of $p(j=1, \ldots$ $\ldots, n-1$). Since

$$
\begin{aligned}
& \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}=\left[A_{2}, A_{1} A_{2}\right]_{A_{3} \ldots A_{n}}=\left(\operatorname{Ker} \bar{x}_{1} \cap \operatorname{Ker} \bar{x}_{2}\right) A_{n}= \\
& =\left(\operatorname{Ker} \bar{x}_{1} \cap \operatorname{Ker} \bar{x}_{2}\right) \times\left(\Pi_{b \in A_{n} \mid\langle 1\rangle}{ }^{b-1}\left(\operatorname{Ker} \bar{x}_{1} \cap \operatorname{Ker} \bar{x}_{2}\right) b\right)= \\
& =\left(\operatorname{Ker} \bar{x}_{1} \cap \operatorname{Ker} \bar{x}_{2}\right) \times S
\end{aligned}
$$

and S is an elementary Abelian p-group, all the elements $a_{j} c$ of the order p, where $c \in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$, can be expressed in the form $a_{j} c_{1} c_{2}$ where $c_{1} \in \operatorname{Ker} \bar{x}_{1} \cap \operatorname{Ker} \bar{x}_{2}, a_{j} c_{1}$ is of the order p and c_{2} is a suitable element of S. Hence, the number of elements $a_{j} c$ is a power of p and so is $\left|\left[y_{j}\right]\right|$. This holds for $j=1, \ldots, n-1$. Similar reasoning as in the case $n=3$ shows that $\left|\left[y_{n}\right]\right|$ is a power of p. The property is proved.

Property 4.15. $\left|\left\{u \in \operatorname{End} G \mid y_{n} u=u, u x_{2}=0\right\}\right|=(p)^{p^{n-1}}$.
Proof. Since $G=\operatorname{Ker} y_{n} \lambda \operatorname{Im} y_{n}$, the equations $y_{n} u=u$ and $u x_{2}=0$ are equivalent to conditions $\left(\operatorname{Ker} y_{n}\right) u=\langle 1\rangle$ and $\left(\operatorname{Im} y_{n}\right) u \subset \operatorname{Ker} x_{2}$. Therefore, the number of such endomorphisms u is equal to the number of homomorphisms $\operatorname{Im} y_{n} \rightarrow \operatorname{Ker} x_{2}$. As $\operatorname{Im} y_{j}=A_{j} \simeq C_{p}$ for each $j=1, \ldots, n$ and by Lemma 3.3 $\operatorname{Ker} x_{2}=A_{1} A_{2} \ldots A_{n}$, the number of the mentioned homomorphisms is $(p)^{p^{n-1}}$. The property is proved.

5. A property of an automorphism of the order p of $G(n)$

Suppose that $x_{1}, x_{2}, y_{1}, \ldots, y_{n}$ have the previous meaning and z_{1}, \ldots \ldots, z_{n-1} are chosen as in Property 4.8. Then $A_{j}=\operatorname{lm} y_{j}=\left\langle a_{j}\right\rangle \cong C_{p}$. Denote $G=G(n)$ and

$$
b=a_{n}, \quad B=A_{n}=\langle b\rangle, \quad A=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle=G(n-1) .
$$

Hence, $G=G(n-1) \mathrm{Wr} A_{n}=A \mathrm{Wr} B=A^{B} \lambda B$ and

$$
\begin{equation*}
A^{B}=\Pi_{k=0}^{p-1} b^{-k} A b^{k} . \tag{5.1}
\end{equation*}
$$

By Lemma 3.3

$$
\begin{equation*}
\operatorname{Im} z_{k}=A_{k} \operatorname{Wr} A_{n}=A_{k} \operatorname{Wr} B \tag{5.2}
\end{equation*}
$$

for each $k=1, \ldots, n-1$.

Lemma 5.1. Let α be an automorphism of the order p of G and $\alpha y_{n}=y_{n} \alpha=y_{n}, y_{j} \alpha z_{j}=y_{i} \alpha$ for each $j=1, \ldots, n-1$. Then for each $i, j=$ $=1, \ldots, n-1 ; i \neq j$, there exists an endomorphism u of G such that the following statements are true: (a) $y_{i} u=y_{j} \alpha$; (b) $y_{n} u y_{i}=y_{n} u \neq 0$; (c) if $v \in \operatorname{End} G$ and $v y_{n}=v y_{j}=0$, then $v u=0$.

Proof. Suppose that the assumptions of the lemma are true. Choose $i, j \in\{1, \ldots, n-1\}, i \neq j$. First we show that $a_{i} \cdot a_{i} \alpha=a_{i} \alpha \cdot a_{i}$.

From $y_{i} \alpha z_{j}=y_{j} \alpha$ and $y_{i} \alpha z_{i}=y_{i} \alpha$ it follows that $a_{j} \alpha=a_{j}\left(y_{j} \alpha\right) \in \operatorname{Im} z_{j}$ and $a_{i} \alpha=a_{i}\left(y_{i} \alpha\right) \in \operatorname{Im} z_{i}$. On the other hand, by Lemma $3.3 a_{i}, a_{i} \in$ $\in \operatorname{Ker} y_{n}$ and by Lemma $2.7 \quad\left(\operatorname{Ker} y_{n}\right) \alpha \subset \operatorname{Ker} y_{n}$. Therefore, $a_{j} \alpha \in$ $\in \operatorname{Im} z_{j} \cap \operatorname{Ker} y_{n}$ and $a_{i} \alpha \in \operatorname{Im} z_{i} \cap \operatorname{Ker} y_{n}$. From the construction of y_{k} and z_{k} in the proof of Lemma 3.3, it is clear that $\operatorname{Im} z_{k} \cap \operatorname{Ker} y_{n}=$ $=A_{k} A_{n}=A_{k}{ }^{B}$. Consequently, $a_{j} \alpha \in A_{j}{ }^{B} \subset A^{B}$ and $a_{i} \alpha \in A_{i}{ }^{B} \subset A^{B}$. From the direct product decomposition (5.1) follow

$$
\begin{aligned}
& a_{i} \alpha=a_{i}^{t_{0}} \cdot b^{-1} a_{i}^{t_{1}} b \cdot \ldots \cdot b^{-(p-1)} a_{i}^{t_{p-1}} b^{p-1} \\
& a_{j} \alpha=a_{j}^{s_{0}} \cdot b^{-1} a_{j}^{s_{1}} b \cdot \ldots \cdot b^{-(p-1)} a_{j}^{s_{p-1}} b^{p-1}
\end{aligned}
$$

for some integers $t_{0}, \ldots, t_{p-1}, s_{0}, \ldots, s_{p-1}$.
In view of Lemma $2.5 \alpha=\left\{Y_{k}\right\}_{k=0,1, \ldots, n-1} ; Y_{k} \in$ End A. By definition of such endomorphisms

$$
a_{i} Y_{k}=a_{i}^{t_{k}}, \quad a_{j} Y_{k}=a_{i}^{s_{k}} \quad \text { for each } k=0,1, \ldots, p-1
$$

and

$$
a_{i} Y_{k} \cdot a_{j} Y_{l}=a_{j} Y_{l} \cdot a_{i} Y_{k} \quad \text { for each } k \neq l
$$

Hence,

$$
\begin{equation*}
a_{i}{ }^{t_{k}} \cdot a_{j}^{s_{i}}=a_{i}^{s_{i}} \cdot a_{i}{ }^{t_{k}} \tag{5.3}
\end{equation*}
$$

for each $k, l=0,1, \ldots, p-1 ; k \neq l$. Since $a_{i} a_{j} \neq a_{j} a_{i}$, from (5.3) we obtain that

$$
\begin{equation*}
t_{k} s_{l}=0 \quad \text { for each } k \neq l \tag{5.4}
\end{equation*}
$$

Assume that $s_{0} \neq 0$. Then by (5.4) $t_{1}=\ldots=t_{p-1}=0, a_{i} \alpha=a_{i} t_{0}, t_{0} \neq 0$ and again by (5.4) $s_{1}=\ldots=s_{p-1}=0, a_{j} \alpha=a_{j} s_{0}, s_{0} \neq 0$. In view of Fermat Theorem $s_{0}^{p} \equiv s_{0}(\bmod p)$ and $t_{0}^{p} \equiv t_{0}(\bmod p)$. Hence,

$$
a_{i} \alpha^{p}=a_{i} t_{0}^{p}=a_{i}^{t_{0}} ; \quad a_{j} \alpha^{p}=a_{i} s_{0}^{p}=a_{i}^{s_{0}} .
$$

But $\alpha^{p}=1$. Therefore, $s_{0}=t_{0}=1$ and $a_{i} \alpha=a_{i}, a_{j} \alpha=a_{j}$. As i is a suitable element of $\{1, \ldots, n-1\} \backslash\{j\}$ and $b \alpha=a_{n} \alpha=a_{n}\left(y_{n} \alpha\right)=a_{n} y_{n}=a_{n}=b$, then $a_{k} \alpha=a_{k}$ for each $k=1, \ldots, n$, i. e. $\alpha=1$. This contradiction shows that $s_{0}=0$. Due to the direct product decomposition (5.1) we have

$$
\begin{equation*}
a_{i} \cdot a_{i} \alpha=a_{j} \alpha \cdot a_{i} \tag{5.5}
\end{equation*}
$$

Let us construct now an endomorphism u. Apply Lemma 3.1 to the wreath product (5.2) (take $k=j$):

$$
\operatorname{Im} z_{j}=\left(N \lambda A_{j}\right) \lambda A_{n}=\left(N \lambda A_{n}\right) \lambda A_{j}
$$

where $N=\left[A_{n}, A_{i} A_{n}\right]=\operatorname{Im} z_{i} \cap$ Ker $y_{j}^{\prime} \cap \operatorname{Ker} y_{n}$. Then the factor-group $\operatorname{Im} z_{j} / N$ is Abelian and

$$
\operatorname{Im} z_{j} / N=\left(A_{j} N / N\right) \times\left(A_{n} N / N\right)=\left\langle a_{j} N\right\rangle \times\left\langle a_{n} N\right\rangle \cong C_{p} \times C_{p}
$$

Choose $u=z_{j} \pi z$ where $\pi: \operatorname{Im} z_{j} \rightarrow \operatorname{Im} z_{j} / N$ is a natural homomorphism and $z:\left\langle a_{j} N\right\rangle \times\left\langle a_{n} N\right\rangle \rightarrow G(n), \quad\left(a_{n} N\right) z=a_{i}, \quad\left(a_{j} N\right) z=a_{j} \alpha$. Due to (5.5) the endomorphism u is correctly defined.

Since $a_{j} u=a_{j}\left(z_{j} \pi z\right)=a_{j}(\pi z)=\left(a_{j} N\right) z=a_{j} \alpha$, then $y_{j} u=y_{j} \alpha$ and (a) is true. Similarly, $a_{n} u=a_{i}$ and $a_{n}\left(u y_{i}\right)=a_{i} y_{i}=a_{i}=a_{n} u$, i. e. $\quad y_{n} u y_{i}=$ $=y_{n} u \neq 0$ and (b) is also true.

Suppose that $v \in$ End $G(n)$ and $v y_{n}=v y_{i}=0$. Then

$$
\begin{equation*}
\operatorname{Im} v \subset \operatorname{Ker} y_{n} \cap \operatorname{Ker} y_{j} \tag{5.6}
\end{equation*}
$$

By Property 4.8 (a), $\operatorname{Ker} z_{j} \subset \operatorname{Ker} y_{n} \cap \operatorname{Ker} y_{j}$. As $G(n)=\operatorname{Ker} z_{j} \lambda \operatorname{Im} z_{j}$, then $\operatorname{Ker} y_{n} \cap \operatorname{Ker} y_{j}=\operatorname{Ker} z_{i} \lambda N \subset \operatorname{Ker} u$ and by (5.6) $\operatorname{Im} v \subset \operatorname{Ker} u$. Hence, $v u=0$ and (c) is true. This completes the proof of Lemma 5.1.

6. Main Theorem

Theorem 6.1. The group $G(n)$ is determined by its semigroup of endomorphisms in the class of all groups for each $n \geqslant 2$.

Proof. Let us use induction on n. The group $G(2)$ is determined by its semigroup of endomorphisms in the class of all groups ([$\left.{ }^{7}\right]$, Theorem 3.1). Assume now that $n>2$ and the group $G(k)$ is determined for each $k<n$ by its semigroup of endomorphisms.

Let G be a suitable group such that

$$
\begin{equation*}
\text { End } G \cong \operatorname{End} G(n) \tag{6.1}
\end{equation*}
$$

We will show that the groups G and $G(n)$ are isomorphic.
As the semigroup End G is finite then so is the group $G\left(\left[{ }^{8}\right]\right.$, Theorem 2). In the semigroup End $G(n)$ there exist idempotents $x_{1}, x_{2}, y_{1}, \ldots$ $\ldots, y_{n}, z_{1}, \ldots, z_{n-1}$ for which Properties $4.1-4.15$ and Lemma 5.1 are true. In view of (6.1) and Lemma 3.2 there exist such idempotents also in the semigroup End G. Suppose further that $x_{1}, x_{2}, y_{1}, \ldots, y_{n}, z_{1}, \ldots$ \ldots, z_{n-1} are idempotents of End G such that Properties $4.1-4.15$ and Lemma 5.1 are true.

From Lemma 2.6, Property 4.2 and the assumption of the induction we conclude that $\operatorname{Im} x_{1} \cong G(n-1)$ and $\operatorname{Im} x_{2} \cong G(n-1)$. Therefore, $\operatorname{Im} x_{1}$ and $\operatorname{Im} x_{2}$ are p-groups. Since every finite Abelian group is determined by its semigroup of endomorphisms in the class of all groups ($\left[^{1}\right]$, Theorem 4.2), then, by Property 4.1 and Lemma 2.6, $\operatorname{Im} y_{j} \cong C_{p}$ for each $j=1, \ldots, n$. Suppose next that $\operatorname{Im} y_{j}=\left\langle a_{i}\right\rangle$.

Further proof is developed in the following lemmas.
Lemma 6.2. The group G is a p-group.
Proof. By Lemma 2.7 and Property 4.3, $\left(\operatorname{Ker} x_{2}\right) x_{1} \subset \operatorname{Ker} x_{2}$. Hence, $\operatorname{Ker} x_{2}=\left(\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}\right) \lambda\left(\operatorname{Im} x_{1} \cap \operatorname{Ker} x_{2}\right) \quad$ and $\quad G=\left(\left(\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}\right) \lambda\right.$ $\left.\lambda\left(\operatorname{Im} x_{1} \cap \operatorname{Ker} x_{2}\right)\right) \lambda \operatorname{Im} x_{2}$. Since $\operatorname{Im} x_{1}$ and $\operatorname{Im} x_{2}$ are p-groups, then all p^{\prime}-elements of G are contained in the subgroup $\operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$.

From Properties 4.4 and 4.5 it follows that

$$
\begin{equation*}
\text { Ker } x_{1} \cap \text { Ker } x_{2} \subset \operatorname{Ker} y_{i} \tag{6.2}
\end{equation*}
$$

for each $j=1, \ldots, n$. Assume that q is a prime different from p and h is a suitable q-element of G. Then $h \in \operatorname{Ker} x_{1} \cap \operatorname{Ker} x_{2}$. Fix $j \in\{1, \ldots, n\}$. If $z \in\left[y_{j}\right]$, then by $(6.2) z \hat{h} \in\left[y_{j}\right]$. Therefore, \hat{h} acts on the set $\left[y_{i}\right]$ so that the image is again contained in $\left[y_{j}\right]$. As by Property $4.14\left|\left[y_{i}\right]\right|$ is a power of p and h is a q-element, there exists $\tilde{y}_{j} \in\left[y_{j}\right]$ such that $\tilde{y}_{j} \hat{h}=\tilde{y}_{j}$. Since j is a suitable element of $\{1, \ldots, n\}$, then, by Property 4.10, $\hat{h}=1$. Hence, all p^{\prime}-elements of G are contained in its centre. Consequently, $G=G_{p} \times G_{p^{\prime}}$ where G_{p} and $G_{p^{\prime}}$ are Sylow p-subgroup and Hall p^{\prime}-subgroup of G, respectively.

Assume that π is a projection of G onto its subgroup $G_{p^{\prime}}$. Since $\operatorname{Im} y_{j} \subset G_{p}$, then $y_{j} \pi=0$ for each $j=1, \ldots, n$. By Property $4.11 \pi=0$. Therefore, $G=G_{p}$ and G is a p-group. The lemma is proved.

Lemma 6.3. Im $x_{2}=\left\langle a_{2}, \ldots, a_{n}\right\rangle$.
Proof. Denote $A_{0}=\left\langle a_{2}, \ldots, a_{n}\right\rangle$. By Property 4.5, $\operatorname{Im} y_{i} \subset \operatorname{Im} x_{2}$ for each $j=2, \ldots, n$. Hence, $A_{0} \subset \operatorname{Im} x_{2}$. If $\operatorname{Im} x_{2} \neq A_{0}$, then there exists an invariant subgroup N_{0} of $\operatorname{Im} x_{2}$ such that $A_{0} \subset N_{0}$ and $\operatorname{Im} x_{2} / N_{0} \cong C_{p}$. Define now an endomorphism z of G by setting $z=x_{2} u v$, where $u: \operatorname{Im} x_{2} \rightarrow \operatorname{Im} x_{2} / N_{0}$ is a natural homomorphism and v is some isomorphism $\operatorname{Im} x_{2} / N_{0} \cong\left\langle a_{n}\right\rangle$. Then $z \neq 0$ and $y_{j} z=0$ for each $j=2, \ldots, n$. By Property 4.12, $z=0$. This contradiction shows that $\operatorname{Im} x_{2}=A_{0}$. The lemma is proved.

Similarly, it follows from Property 4.11:
Lemma 6.4. $G=\left\langle a_{1}, \ldots, a_{n}\right\rangle$.
Lemma 6.5. The group Ker x_{2} is an elementary Abelian p-group.
Proof. Denote $P=\left\{g \in \operatorname{Ker} x_{2} \mid g^{p}=1\right\}$. We show first that P is an Abelian subgroup of Ker x_{2}. Choose $a, b \in P$. By Property 4.8 $y_{n}, y_{n-1} \in K_{\sigma}\left(z_{n-1}\right)$ and $\operatorname{Im} z_{n-1}=\operatorname{Im} y_{n-1}$ Wr $\operatorname{Im} y_{n}$. In view of Property 4.6 and Lemmas $2.3,2.7,3.1$

$$
\operatorname{Im} z_{n-1}=\left(N \lambda \operatorname{Im} y_{n-1}\right) \lambda \operatorname{Im} y_{n}=\left(N \lambda \operatorname{Im} y_{n}\right) \lambda \operatorname{Im} y_{n-1},
$$

where $N=\operatorname{Im} z_{n-1} \cap \operatorname{Ker} y_{n-1} \cap \operatorname{Ker} y_{n}$ and N is an elementary Abelian p-group. Hence, $\operatorname{Im} z_{n-1} / N=\left\langle a_{n-1} N\right\rangle \times\left\langle a_{n} N\right\rangle \cong C_{p} \times C_{p}$ and there exist endomorphisms $u=z_{n-1} y_{n} u_{0}$ and $v=z_{n-1} y_{n-1} v_{0}$ of G, where $a_{n} u_{0}=a$ and $a_{n-1} v_{0}=b$. By this definition $y_{n} u=u, y_{n-1} v=v$ and $u x_{2}=v x_{2}=0$. In view of Property 4.9 there exists $w \in \operatorname{End} G$ such that the conditions (a) - (d) of Property 4.9 are true. By condition (d) $\operatorname{Im} w=\left(\operatorname{Im} z_{n-1}\right) w$.

Suppose that c is a suitable element of subgroup N. Then there exists an endomorphism y of G such that $y=z_{n-1} y_{n} w_{0}=y_{n} w_{0}$ and $a_{n} w_{0}=c$. Then $y y_{n}=y y_{n-1}=0$ and, by Property 4.9 (c), $y w=0$. Therefore, $N \subset \operatorname{Ker} w$ and the group $\operatorname{Im} w=\left(\operatorname{Im} z_{n-1}\right) \mathrm{w}$ is Abelian as $\operatorname{Im} z_{n-1} / N$ is Abelian. Since $a, b \in \operatorname{Im} w$, then $a b=b a$. Consequently, P is an Abelian subgroup of $\operatorname{Ker} x_{2}$.

Next we show that $P=\operatorname{Ker} x_{2}$. Clearly, P is an invariant subgroup of G. Hence, $\left\langle P, \operatorname{Im} x_{2}\right\rangle=P \lambda \operatorname{Im} x_{2}$. By Property 4.3, $\operatorname{Im} y_{1} \subset \operatorname{Ker} x_{2}$. Therefore, $a_{1} \in P$. In view of Lemma 6.3, $a_{1}, \ldots, a_{n} \in P \lambda \operatorname{Im} x_{2}$. From Lemma 6.4 it now follows that $G=P \lambda \operatorname{Im} x_{2}$. As $P \subset \operatorname{Ker} x_{2}$, then $P=$ $=\operatorname{Ker} x_{2}$. Consequently, $\operatorname{Ker} x_{2}$ is an elementary Abelian p-group. The lemma is proved.

Denote $A=\left\langle\operatorname{Im} y_{1}, \ldots, \operatorname{Im} y_{n-1}\right\rangle=\left\langle a_{1}, \ldots, a_{n-1}\right\rangle$.
Lemma 6.6. $A \cong G(n-1)$.
Proof. By Property 4.13 there exists $z \in \operatorname{End} G$ for which the conditions (a) and (b) are true. Hence, $a_{j} z y_{i-1}=a_{j} z \neq 1$ for each $j=2, \ldots$ \ldots, n. In view of Lemma 2.3, $a_{j} z \in \operatorname{Im} y_{i-1}=\left\langle a_{j-1}\right\rangle$. Therefore, $\left(\operatorname{Im} x_{2}\right) z=\left\langle a_{2}, \ldots, a_{n}\right\rangle z \subset A$. Since $a_{j} z \neq 1$, then $\left(\operatorname{Im} x_{2}\right) z=A$.

It is sufficient to show that z is injective on the subgroup $\operatorname{Im} x_{2}$. By contradiction assume that there exists $a \in \operatorname{Im} x_{2}$ for which $a z=1$. Since $\operatorname{Im} y_{n}=\left\langle a_{n}\right\rangle \subset \operatorname{Im} x_{2}$ and by Property $4.5, y_{n} \in K_{G}\left(x_{2}\right)$, it follows from Lemmas 2.3 and 2.7 that $\operatorname{Im} x_{2}=\left(\operatorname{Im} x_{2} \cap \operatorname{Ker} y_{n}\right) \lambda \operatorname{Im} y_{n}$. Hence, there exists an endomorphism $u=x_{2} y_{n} u_{0}=y_{n} u_{0}$ of G such that $a_{n} u_{0}=a$. Then $\operatorname{Im} u=\langle a\rangle$ and $u z=0$. On the other hand, by definition $u \in K_{G}\left(x_{2}\right)$, $y_{n} u=u, u \neq 0$. In view of Property 4.13 (c), $u z \neq 0$. This contradiction shows that z is injective on $\operatorname{Im} x_{2}$. Consequently, $A=\left(\operatorname{Im} x_{2}\right) z \cong \operatorname{Im} x_{2} \cong$ $\cong G(n-1)$. The lemma is proved.

In view of Lemma 2.3, $G=\operatorname{Ker} y_{n} \lambda \operatorname{Im} y_{n}=\operatorname{Ker} y_{n} \lambda\left\langle a_{n}\right\rangle$. By Property 4.6, $\operatorname{Im} y_{j}=\left\langle a_{j}\right\rangle \subset \operatorname{Ker} y_{n}$ for each $j=1, \ldots, n-1$. Hence, $A \subset$ $\subset \operatorname{Ker} y_{n}$. Our aim is to show that $\operatorname{Ker} y_{n}=A^{B}$ and $G=A^{B} \lambda B$, where $B=\operatorname{Im} y_{n}=\left\langle a_{n}\right\rangle$. In this connection we use Lemma 5.1. Let $\alpha=\hat{a}_{n}$ be an inner automorphism of G generated by a_{n}. Since $\left\langle a_{n}\right\rangle \cong C_{p}$, then by Property 4.7 the order of α is p. Clearly, $\alpha y_{n}=y_{n} \alpha=y_{n}$.

Lemma 6.7. $a_{i} \cdot a_{j} \alpha=a_{j} \alpha \cdot a_{i}$ for each $i, j=1, \ldots, n-1$.
Proof. As in the proof of Lemma 6.5, it follows from Property 4.8 that
$\operatorname{Im} z_{j}=\operatorname{Im} y_{j} \mathrm{Wr} \operatorname{Im} y_{n}=\left(N_{j} \lambda \operatorname{Im} y_{j}\right) \lambda \operatorname{Im} y_{n}=\left(N_{j} \lambda \operatorname{Im} y_{n}\right) \cdot \lambda \operatorname{Im} y_{j}$,
where $N_{j}=\operatorname{Im} z_{j} \cap \operatorname{Ker} y_{j} \cap \operatorname{Ker} y_{n}, \quad j=1, \ldots, n-1$. Hence, $\operatorname{Im}\left(y_{j} \alpha\right)=$ $=\operatorname{Im}\left(y_{j} \hat{a}_{n}\right) \subset \operatorname{Im} z_{j}$ and by Lemma 2:3 $y_{j} \alpha z_{j}=y_{j} \alpha$. Therefore, α satisfies the assumptions of Lemma 5.1.

Fix $i, j=1, \ldots, n-1 ; i \neq j$. There exists, by Lemma 5.1 , an endomorphism u of G such that the conditions (a), (b) and (c) are true. By (a), $a_{j} u=a_{j} \alpha$. In view of Lemma 2.3 and (b), $a_{n} u \in\left\langle a_{i}\right\rangle=\operatorname{Im} y_{i}$, $a_{n} u \neq 1$. Since $\operatorname{Im} z_{j}=\left\langle a_{i}, a_{n}\right\rangle$, then $\left(\operatorname{Im} z_{j}\right) u=\left\langle a_{i} a, a_{i}\right\rangle$.

Let c be a suitable element of N_{j} and $v=z_{j} y_{n} v_{0}=y_{n} v_{0}, a_{n} v_{0}=c$. Then $v \in$ End $G, v y_{n}=v y_{j}=0$ and by Lemma 5.1 (c), $v u=0$, i. e. $c u=1$. Hence, $N_{i} \subset \operatorname{Ker} u$ and by (6.3) the group $\left(\operatorname{Im} z_{j}\right) u=\left\langle a_{j} \alpha, a_{i}\right\rangle$ is Abelian. Therefore, $a_{i} \cdot a_{j} \alpha=a_{j} \alpha \cdot a_{i}$ for each $i, j=1, \ldots, n-1 ; i \neq j$. If $i=j$, then the equation $a_{i} \cdot a_{i} \alpha=a_{i} \alpha \cdot a_{i}$ follows from the fact that $\operatorname{Im} z_{i}=\left\langle a_{i}\right\rangle \mathrm{Wr}\left\langle a_{n}\right\rangle$ and from the definition of wreath product. The lemma is proved.

As α^{t} is for each $t=1, \ldots, p-1$ also an automorphism of the order p of the group G for which the assumptions of Lemma 5.1 are true, then from Lemma 5.1 it follows that

$$
\left(a_{i} \alpha^{s}\right) \cdot\left(a_{j} \alpha^{t}\right)=\left(a_{j} \alpha^{t}\right) \cdot\left(a_{i} \alpha^{s}\right)
$$

for each $i, j=1, \ldots, n-1$ and $s, t=0,1, \ldots, p-1 ; s \neq t$. Hence, $a b=b a$ for each $a \in A \alpha^{s}=a_{n}{ }^{-s} A a_{n}{ }^{s}$ and $b \in A \alpha^{t}=a_{n}{ }^{-t} A a_{n}{ }^{t}, s \neq t$. Denote

$$
\begin{equation*}
C=A \cdot\left(a_{n}^{-1} A a_{n}\right) \cdot \ldots \cdot\left(a_{n}-(p-1) A a_{n}^{p-1}\right) . \tag{6.4}
\end{equation*}
$$

Then C is a subgroup of G and $C \subset \operatorname{Ker} y_{n}$. By Lemma 6.4, C is an invariant subgroup of G. Consequently, $C=\operatorname{Ker} y_{n}$ and

$$
\begin{equation*}
G=\operatorname{Ker} y_{n} \lambda \operatorname{Im} y_{n}=C \lambda\left\langle a_{n}\right\rangle . \tag{6.5}
\end{equation*}
$$

We shall find the number of elements of G. Note that $\mid\{u \in \operatorname{End} G \mid$ $\left.y_{n} u=u, u x_{2}=0\right\} \mid$ is equal to number of all homomorphisms from $\operatorname{Im} y_{n} \cong C_{p}$ into $\operatorname{Ker} x_{2}$. By Lemma 6.5, Ker x_{2} is an elementary Abelian p-group. Hence, the number of mentioned homomorphisms is equal to $\left|\operatorname{Ker} x_{2}\right|$. By Property 4.15, $\left|\operatorname{Ker} x_{2}\right|=(p)^{p^{n-1}}$. On the other hand, by (3.1) $\left|\operatorname{Im} x_{2}\right|=|G(n-1)|=p^{1+p+p^{2}+\ldots+p^{n-2}}$. As $G=\operatorname{Ker} x_{2} \lambda \operatorname{Im} x_{2}$, then $|G|=\left|\operatorname{Ker} x_{2}\right| \cdot\left|\operatorname{Im} x_{2}\right|=p^{1+p+\ldots+p^{n-1}} \quad$ Therefore, $\quad|C|=|G|: p=$ $=p^{p+\ldots+p^{n-1}}$. Since $|A|=\left|a_{n}^{-1} A a_{n}{ }^{I}\right|=|G(n-1)|=p^{1+p+\ldots+p^{n-2}}$, then $|C|=|A|^{p}$. Consequently, the decomposition (6.4) is a direct product decomposition, i.e.

$$
\begin{equation*}
C=\Pi_{j=0}^{p-1} a_{n}^{-j} A a_{n}{ }^{i}=A^{\left\langle a_{n}\right\rangle} . \tag{6.6}
\end{equation*}
$$

From (6.5) and (6.6) it follows that $G=A \mathrm{Wr}\left\langle a_{n}\right\rangle$. Since $A \cong G(n-1)$ and $\left\langle a_{n}\right\rangle \cong C_{p}$, then $G \cong G(n)$. The theorem is proved.

REFERENCES

1. Пуусемп П. Уч. зап. Тартуск. ун-та, 1975, 366, 76-104.
2. Пуусемп П. Тр. Таллинск. политех. ин-та, 1981, 511, 129-140.
3. Пуусемп П. Изв. АН ЭССР. Физ. Матем., 1989, 38, 2, 139-145.
4. Weir, A. J. Proc. Amer. Math. Soc., 1955, 6, 534-541.
5. Neumann, P. M. Math. Z., 1964, 84, 4, 343-373.
6. Пуусемп П. Тр. Таллинск. полит. ин-та, 1988, 671, 154-163.
7. Puusemp, P. Proc. Estonian Acad. Sci. Phys. Math., 1992, 41, 4, 241-247.
8. Alperin, J. L. Pacif. J. Math., 1962, 12, 1, 1-5.

Received
November 20, 1992

Peeter PUUSEMP

SEOS SUMMEETRILISE RUHMA SYLOW' ALAMRUHMADE JA NENDE ENDOMORFISMIPOOLRUHMADE VAHEL

Olgu $S_{m} m$-astme sümmeetriline rühm ja p suvaline algarv, mis on rühma S_{m} järgu teguriks. Siis rühma S_{m} iga Sylow' p-alamrühm on isomorfne p. järku tsüklilise rühma C_{p} korduvalt võetud (n korda) standardsete põimikute

$$
G(n, p)=\left(\ldots\left(\left(C_{p} \mathrm{Wr} C_{p}\right) \mathrm{Wr} C_{p}\right) \mathrm{Wr} \ldots\right) \mathrm{Wr} C_{p}
$$

otsekorrutisega.
Artiklis on tõestatud järgmised väited.
Teoreem. Rühm $G(n, p)$ on määratud oma endomorfismipoolrühmaga kõigi rühmade klassis iga naturaalarvu n ja algarvu p korral.

Järeldus 1. Lõpliku sümmeetrilise rühma iga Sylow' alamrühm on määratud oma endomorfismipoolrühmaga kõigi rühmade klassis.

Järeldus 2. Iga lõplik p-rühm G on sisestatav sellisesse lõplikku p-rühma \bar{G}, mis on määratud oma endomorfismipoolrühmaga kõigi rühmade klassis.

Пеэтер ПУУСЕМП

СВЯЗЬ МЕЖДУ СИЛОВСКИМИ ПОДГРУППАМИ СИММЕТРИЧЕСКОЙ ГРУППЫ И ИХ ПОЛУГРУППАМИ ЭНДОМОРФИЗМОВ

Пусть p - произвольное простое число и C_{p} — циклическая группа порядка p. Рассмотрим кратное стандартное сплетение

$$
G(n, p)=\left(\ldots\left(\left(C_{p} \mathrm{Wr} C_{p}\right) \mathrm{Wr} C_{p}\right) \mathrm{Wr} \ldots\right) \mathrm{Wr} C_{p}
$$

(n раз) группы C_{p}. Известно, что каждая силовская p-подгруппа конечной симметрической группы степени m изоморфна прямому произведению групп $G(n, p)$ для подходящих n. В статье доказываются следующие результаты.

теорема. Групnа $G(n, p)$ определяется своей полугруппой эндоморфизмов в классе всех групn.

Следствие 1. Каждая силовская подгруппа конечной симметрической группьь определяется ее полугруппой эндоморфизмов в классе всех групп.

Следствие 2. Каждая конечная р-группа вложима в такую конечную p-групny, которая определяется своей полугруппой эндоморфизмов в классе всех групп.

[^0]: * Tallinna Tehnikaülikool (Tallinn Technical University). Ehitajate tee 5, EE-0026 Tallinn. Estonia.

