

Изв. АН Эстонии. Физ. Матем., 1990, 39, № 2, 93-100

https://doi.org/10.3176/phys.math.1990.2.01

УДК 62-501.12

Юло НУРГЕС

УПРАВЛЕНИЕ С ПРОГНОЗИРОВАНИЕМ НА ЛАГЕРРОВЫХ СПЕКТРАХ

(Представил Ю. Яаксоо)

1. Введение

Управление с долговременным прогнозированием представляет собой метод (адаптивного) управления, в котором модель процесса, используемая для прогнозирования влияния возможных управляющих воздействий, включена в процедуру выбора управления на ЭВМ. Долговременность прогноза означает, что время прогноза сравнимо с временем установления реакции. Для прогнозирования подходят непараметрические модели (весовая или переходная функция), но их недостатком является большое количество параметров [1, 2].

Разложение Лагерра позволяет сжать информацию, т. е. непараметрическая лагеррова модель включает при умело выбранной постоянной разложения значительно меньше параметров, чем обыкновенная весовая функция [3]. Используя рекурсивный алгоритм цифрового фильтра Лагерра [4] для обработки текущих измерительных данных в реальном масштабе времени, осуществляется переход от длинных временных последовательностей к сравнительно коротким лагерровым спектрам. Все последующие расчеты (прогнозирование, оптимизация управления) проводят на лагерровых спектрах посредством лагерровой модели про-

цесса.

2. Управление с прогнозированием

Рассмотрим дискретный динамический процесс с одним входом u(t)и одним выходом y(t). Пусть модель процесса представлена в виде импульсной характеристики h(i), i=0,...,N (h(i)=0,i>N)

$$y(t) = \sum_{i=0}^{N} h(i) u(t-i),$$
 (1)

а уставка r(t) = const = r. Требуется найти стабилизирующий закон управления.

Стратегия управления с долговременным прогнозированием следую-

щая [1]:

1. Генерируем эталонный процесс w(t) перехода выхода y(t) к уставке г. Обыкновенно эталонный процесс это простая модель первого порядка

$$w(t+i) = \alpha w(t+i-1) + (1-\alpha)r,$$

 $i=1, ..., Np,$ (2)

$$w(t) = y(t),$$

где $\alpha \in (0, 1)$, Np — горизонт прогнозирования.

2. Прогнозируем выход $\widetilde{y}(t+i)$ по уравнению (1) при каком-то предположении о будущих входных воздействиях u(t+i-1) и определим ошибку прогноза

$$e(t+i) = w(t+i) - \widetilde{y}(t+i), \quad i=1, \ldots, Np.$$

3. Так как ошибка прогноза e(t+i) зависит от будущих входных воздействий u(t+i-1), то минимизация ошибки определит желаемый закон управления.

4. Процедура повторяется на каждом такте и поэтому только первый элемент из последовательности будущих входных воздействий вво-

дится в исполнение.

Пусть $u(t+i) = u(t) + \delta(i)$, i=1, ..., Np, причем $\delta(i) = 0$, i > Nu, где Nu — горизонт управления, $Nu \leq Np$. Тогла

$$\begin{bmatrix} e(t+1) \\ e(t+2) \\ \vdots \\ e(t+Np) \end{bmatrix} = \begin{bmatrix} w(t+1) \\ w(t+2) \\ \vdots \\ w(t+Np) \end{bmatrix} - \begin{bmatrix} \widetilde{y}(t+1) \\ \widetilde{y}(t+2) \\ \vdots \\ \widetilde{y}(t+Np) \end{bmatrix} - \begin{bmatrix} \widetilde{h}(1) \\ k(2) \\ \vdots \\ k(Nu) \\ h(Np) \end{bmatrix} - \begin{bmatrix} h(1) \\ h(2) \\ \vdots \\ h(Nu) \\ h(Np-Nu) \end{bmatrix} \begin{bmatrix} \delta(1) \\ \delta(2) \\ \vdots \\ \delta(Nu) \end{bmatrix}$$

$$e = w - \tilde{y} - H\delta, \tag{3}$$

где

$$\begin{bmatrix} \widetilde{y} \ (t+1) \\ \widetilde{y} \ (t+2) \\ \vdots \\ \widetilde{y} \ (t+Np) \end{bmatrix} = \begin{bmatrix} u \ (t) & u \ (t-1) & \dots & u \ (t-N+1) \\ u \ (t) & u \ (t) & \dots & u \ (t-N) \\ \vdots & \ddots & & & \\ u \ (t) & \dots & u \ (t) & \dots & u \ (t-N+Np) \end{bmatrix} \begin{bmatrix} h \ (1) \\ h \ (2) \\ \vdots \\ h \ (N) \end{bmatrix}$$

Минимизируя критерий

$$J = e^{\mathsf{T}}e + \beta^2 \delta^{\mathsf{T}}\delta$$
,

где в — вещественное число, получим с учетом (3)

$$\delta = (H^{\mathsf{T}}H - \beta^2 I)^{-1}H^{\mathsf{T}}(w - \widetilde{y}). \tag{4}$$

Управление u(t+1) в каждый момент t определяется суммой

$$u(t+1) = u(t) + \delta(1),$$
 (5)

где $\delta(1)$ — первый элемент вектора δ .

3. Лагеррова модель

Разложим последовательности входных воздействий u(t) и выходов $y(t), t=0,1,2,\ldots$ по разностным ортонормированным многочленам Лагерра $\Psi_k(t)$, k = 0, 1, 2, ...

$$\psi_k(t) = \sqrt{1 - \xi^2} \sum_{j=0}^k (-1)^{k+j} \binom{k}{j} \binom{t+k-j}{k} \xi^{t+k-2j},$$

где ξ — постоянное разложение Лагерра $\xi \in (0,1), {k \choose i}$ — бино-

миальный коэффициент. Удобно использовать рекурсивный алгоритм разложения [4]

$$\overline{u}_{M}(t+1) = \Psi_{M}(0) u(t+1) + Q(\xi) \overline{u}_{M}(t),$$
 (6)

где

$$\Psi_{M}(0) = \sqrt{1 - \xi^{2}} [1, -\xi, ..., (-\xi)^{M}]^{T},$$

$$Q(\xi) = \begin{bmatrix} \xi & & & & \\ \eta & \xi & 0 \\ -\xi \eta & \eta & \xi \\ \vdots & & \ddots & \vdots \\ (-\xi)^{M-1} \xi & ... & \eta & \xi \end{bmatrix}, \quad \eta = 1 - \xi^{2}$$

$$\bar{u}_{M}(t) = \begin{bmatrix} u_{0}(t) & & & & \\ \vdots & & & & \\ u_{M}(t) & & & & \\ u_{M}(t) & & & & \\ \end{bmatrix} = \begin{bmatrix} \psi_{0}(0) & ... & \psi_{0}(t) \\ \vdots & & & \\ \psi_{M}(0) & ... & \psi_{M}(t) \end{bmatrix} \begin{bmatrix} u(t) \\ \vdots \\ u(0) \end{bmatrix}.$$

Соотношение между лагерровыми спектрами входа $\bar{u}_M(t)$ и выхода $\bar{y}_M(t)$ определяется при помощи лагерровой модели [4]

$$y_k(t) = \sum_{j=0}^{M-k} g_j u_{k+j}(t), \quad k = 0, ..., M,$$
 (7)

где g_j — марковские параметры лагерровой модели

$$g_{j} = \frac{1}{\psi_{0}(0)} (h_{j} + \xi h_{j-1}), \tag{8}$$

а $h_j, j = 0, \ldots, M$ разложение Лагерра импульсной функции процесса $h(i), i = 0, \ldots, N$

$$h_{j} = \sum_{i=0}^{N} \psi_{j}(i) h(i).$$

Свойства лагерровой модели (7) зависят от выбора постоянной разложения ξ . Для быстрого убывания последовательности марковских параметров g_j постоянную ξ следует выбирать в центре тяжести полюсов процесса (1) [3]. Чем медленнее процесс, тем большим надо выбирать ξ . При достаточно быстрых колебательных процессах эффект преобразования Лагерра несущественный.

4. Прогнозирование на лагерровых спектрах

Основным недостатком модели (1) является большое количество параметров h(i) для медленных переходных процессов. В этом случае лагеррова модель (7) имеет гораздо меньше параметров, $M \ll N$, и поэтому целесообразнее использовать ее в задаче управления с долговременным прогнозированием.

Можно различить два подхода:

1) лагеррову модель используют только для прогнозирования, т. е. для определения последовательности $\tilde{y}(t+1),\ldots,\,\tilde{y}(t+Np),$

2) на лагерровых спектрах проводят как прогнозирование, так и оп-

тимизацию управления б.

I. Для прогнозирования $\widetilde{y}(t+i)$ удобно использовать рекурсивный фильтр Лагерра [4]

$$\widetilde{y}(t+i) = a(i,\xi)u(t) + b^{\mathsf{T}}(i,\xi)\overline{u}_{M}(t), \tag{9}$$

где $\overline{u}_{M}(t)$ — входной спектр Лагерра в момент времени t вычисляется

рекурсивно по формуле (6). Учитывая предположение u(t+i-1)=u(t), $i=1,\ldots,Np$, получим следующие выражения для скаляра $a(i,\xi)$ и вектора $b(i, \xi)$

$$a(i,\xi) = \Psi_M^T(0) G[I + Q(\xi) + \dots + Q^{i-1}(\xi)] \Psi_M(0), \tag{10}$$

$$b^{\mathrm{T}}(i,\xi) = \Psi_{M}^{\mathrm{T}}(0) GQ^{i}(\xi),$$
 (11)

где G — треугольная матрица размерности $(M+1) \times (M+1)$, состоящая из марковских параметров лагерровой модели

$$G = \begin{bmatrix} g_0 & \dots & g_M \\ \vdots & \ddots & \vdots \\ 0 & \vdots & g_0 \end{bmatrix}.$$

Процедуру управления с прогнозированием при помощи лагерровой

модели проводим следующим образом:

1. Выбираем горизонты прогнозирования Np и управления Nu, постоянную времени α эталонного процесса $\alpha \in (0, 1)$, коэффициент затрат на управление в и постоянную разложения Лагерра ६ ∈ (0, 1).

2. Вычисляем марковские параметры лагерровой модели g_i , j= $=0, \ldots, M$ по (8), коэффициенты $a(i, \xi)$ и векторы $b(i, \xi)$, i==1, ..., Np по (10) и (11).

3. На каждом такте t

а) генерируем эталонный процесс w(t+i), $i=1,\ldots,Np$ по (2); б) прогнозируем выход $\widetilde{y}(t+i)$, $i=1,\ldots,Np$ по (9);

в) оптимизируем управление δ по (4) и найдем управление u(t)по (5),

г) вычислим лагерровый спектр входа $\bar{u}_{M}(t)$ по соотношению (6). II. Если мы имеем лагерровы фильтры как на входе, так и на вы-

ходе системы, то шаг оптимизации управления целесообразно проводить непосредственно на лагерровых спектрах.

Тогда придется генерировать лагерровый спектр эталонного процесса $\overline{w}_M(t+Np)$ на горизонте прогнозирования. Учитывая равенство $\overline{w}_M(t)=\widetilde{y}_M(t)$ и предполагая $\alpha=0$, получим из (2) и (6)

$$\overline{w}_{M}(t+Np) = S_{Np}(\xi)\Psi_{M}(0)r(t) + Q^{Np}(\xi)\overline{y}_{M}(t),$$
 (12)

 $S_{Np}(\xi) = I + Q(\xi) + ... + Q^{Np-1}(\xi).$ где

При предположении $u(t+i)=u(t), i=1,\ldots,Np$, лагерровый спектр входного сигнала на горизонте прогнозирования имеет вид

$$\overline{u}_M(t+Np) = S_{Np}(\xi)\Psi_M(0)u(t) + Q^{Np}(\xi)\overline{u}_M(t),$$

а лагерровый спектр выхода на горизонте прогнозирования

$$\bar{y}_M(t+Np) = \bar{y}_M(t) + GS_{Np}(\xi)\Psi_M(0)u(t) + G[Q^{Np}(\xi) - I]\bar{u}_M(t).$$
 (13)

Ошибка прогноза лагерровых спектров определяется из уравнения

$$\overline{e}_M(t+Np) = \overline{w}_M(t+Np) - \overline{y}_M(t+Np) - R(\xi)\delta, \tag{14}$$

где

$$R(\xi) = G\Psi_{M,Np} \begin{bmatrix} -\frac{0}{I_{Nu}} \end{bmatrix},$$

$$\Psi_{M,Np} = \begin{bmatrix} \psi_0(0) & \dots & \psi_0(Np-1) \\ \vdots & \vdots & \vdots \\ \psi_M(0) & \dots & \psi_M(Np-1) \end{bmatrix}.$$

Минимизируя критерий

$$J_M = \bar{e}_M^T \bar{e}_M + \beta^2 \delta^T \delta$$
,

$$\delta = [R^{T}(\xi)R(\xi) - \beta^{2}I]^{-1}R^{T}(\xi)[\overline{w}_{M}(t+Np) - \overline{y}_{M}(t+Np)].$$
 (15)

Процедура управления с прогнозированием и оптимизацией на лагерровых спектрах входа и выхода включает следующие этапы.

1. Выбор постоянных Np, Nu, α, β и ξ.

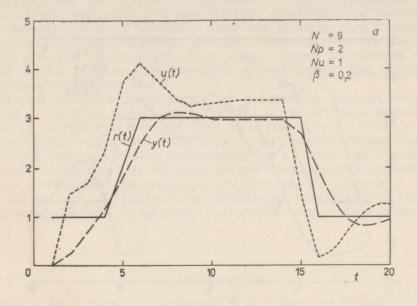
2. Вычисление марковских параметров лагерровой модели g_j , j = 0, ..., M, и матриц $S_{Np}(\xi)$ и $R(\xi)$.

3. На каждом такте t

а) вычисление лагеррового спектра выхода $\tilde{y}_{M}(t)$ по (6);

б) генерирование лагеррового спектра эталонного процесса $\overline{w}_m(t+Np)$ по (12);

в) прогнозирование лагеррового спектра выхода $\tilde{y}_m(t+Np)$ по (13);



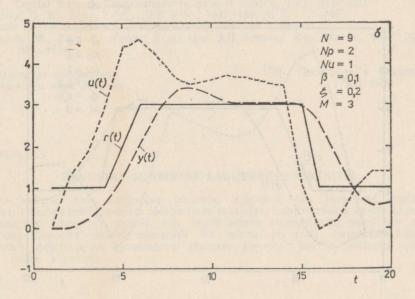


Рис. 1. Минимальнофазовый объект. a — управление с прогнозированем; δ — управление с прогнозированием на лагерровых спектрах.

г) оптимирование управления δ по (15) и определение u(t) по (5);

д) вычисление лагеррового спектра входа $\overline{u}_m(t)$ по (6). Машинные эксперименты показали, что оба варианта управления с прогнозированием на лагерровых спектрах работоспособны. На рис. 1 приведены графики переходных процессов (установка, выход и вход) управления с обыкновенным инертным объектом

$$h_1^{\mathsf{T}} = [0; 0,15; 0,3; 0,2; 0,12; 0,06; 0,03; 0,02; 0,01].$$

Управление с прогнозированием дает хорошие результаты при N=9, Np=2, Nu=1 и $\beta=0,2$ (рис. 1, a).

Управление с прогнозированием на лагерровых спектрах входа и выхода (второй вариант) при M=3, $\xi=0,2$, Np=2, Nu=1, $\beta=0,1$ представлено на рис. 1, δ .

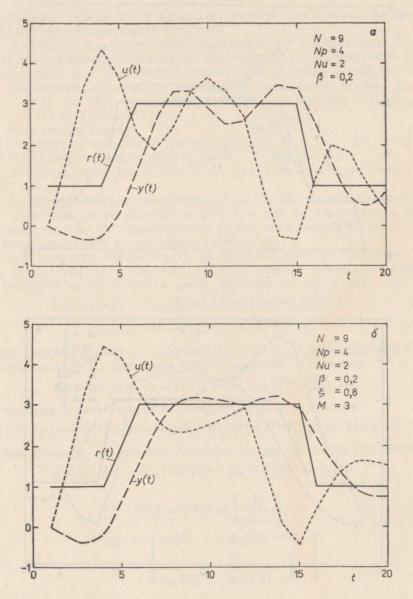


Рис. 2. Неминимальнофазовый объект. a — управление с прогнозированием; δ — управление с прогнозированием на лагерровых спектрах.

Для успешного управления неминимально-фазовым объектом требуются более длинные горизонты прогнозирования и управления. На рис. 2 представлены результаты управления с объектом $h_2^{\mathrm{T}} = [0; -0,1; 0;$ 0,1;0,2;0,3;0,3;0,15;0,05]. Обыкновенный алгоритм управления с прогнозированием при $N=9,Np=4,Nu=2,\beta=0,2$ (рис. 2,a) дает не совсем удовлетворяющее качество регулирования. Управление с прогнозированием на лагерровом спектре выхода (первый вариант) при M=3, $\xi = 0.8$, Np = 4, Nu = 2, $\beta = 0.2$ дает более хорошие результаты (рис. 2, б).

5. Заключение

Предложены два алгоритма управления с прогнозированием с использованием цифровых фильтров Лагерра для обработки текущих измерительных данных в реальном масштабе времени. Для прогнозирования на лагерровых спектрах введена непараметрическая лагеррова модель объекта. Подходящий выбор коэффициента разложения лагерровой модели обеспечивает хорошую аппроксимацию при небольшом количестве параметров M < N.

Первый алгоритм предусматривает разложение входных воздействий по разностным многочленам Лагерра и последующее прогнозирование на лагерровых спектрах. При этом добиваются сжатия и сглаживания информации (M < N), а также качественного прогноза выхода.

Второй алгоритм требует разложения как входных, так и выходных сигналов. На лагерровых спектрах осуществляется прогнозирование, а также оптимизация управляющего воздействия. По сравнению с первым алгоритмом, вычислительные затраты не уменьшаются, так как обыкновенно $M \geqslant Nu$, а качество управления может ухудшаться.

ЛИТЕРАТУРА

- 1. Bruijn, P. M., Bootsma, L. J., Verbruggen, H. B. // Prepr. 6th IFAC/IFIP Conf. on
- Digital computer applications to process control, 1980, 315—320.
 2. Clarke, D. W., Zang, L. // IEEE Proc., 1987, 134, № 3, 187—195.
 3. Нургес Ю. // Автоматика и телемеханика, 1987, № 3, 88—96.
 4. Нургес Ю., Каск К., Яаксоо К. // Изв. АН Эстонии. Физ. Матем., 1989, 38, № 2, 165—171.

Институт кибернетики Академии наук Эстонии Поступила в редакцию 1/XII 1989

Ulo NURGES

ENNUSTAV JUHTIMINE LAGUERRE'I SPEKTRITEL

On esitatud kaks ennustava juhtimise algoritmi, mis kasutavad digitaalseid Laguerre'i filtreid mõõteandmete töötlemiseks reaalajas. Ennustamiseks kasutatakse mitteparameetrilist Laguerre'i mudelit, mis tagab sobiva arendusteguri puhul hea aproksi-matsiooni. Laguerre'i mudel võimaldab üle minna pikkadelt ajajadadelt lühikestele Laguerre'i spektritele nii ennustamisel (esimene algoritm) kui ka juhttoime optimeerimisel (teine algoritm).

PREDICTIVE CONTROL ON LAGUERRE SERIES

Two new long-range predictive control algorithms are presented as based on the system description in the Laguerre domain. Due to the shift property of the orthonormal discrete Laguerre polynomials $\psi_k(t)$, the recursive formula holds

$$\bar{u}_{M}(t+1) = \Psi_{M}(0)u(t+1) + Q(\xi)\bar{u}_{M}(t),$$

where

$$\bar{u}_M = [u_0 \dots u_M]^T$$
, $u_k = \sum_{\tau=0}^{\infty} u(t-\tau)\psi_k(t)$.

The relation between input and output expansion coefficients u_k and y_k is as follows -

$$y_k = \sum_{j=0}^k g_{k-j} u_j,$$

where the Markov parameters of the Laguerre model can be expressed in terms of expansion coefficients of the impulse response, h(i), i=0, 1, 2, ...

$$g_j = \psi_1^{-1}(0) (h_j + \xi h_{j-1}).$$

The process output $\tilde{y}(t+i)$ is predicted for a prediction horizon $i=1,\ldots,Np$ on the assumtion of future inputs u(t+i-1) = u(t) as follows —

$$\widetilde{y}(t+i) = a(i,\xi)u(t) + b^{\mathsf{T}}(i,\xi)\overline{\mathbf{u}}_{M'}(t),$$

where

$$a(i, \xi) = \Psi_{M}^{T}(0) GS_{i}(\xi) \Psi_{M}(0),$$

 $b^{T}(i, \xi) = \Psi_{M}^{T}(0) GQ^{i}(\xi).$

The first algorithm determines the optimal sequence of input changes δ from the last control u(t), minimizing the cost function

$$J = e^{T}e + \beta^{2}\delta^{T}\delta$$
,

where e is the difference vector between predicted and desired trajectories.

The second algorithm is carried out entirely on Laguerre series. This means that the optimal vector δ is obtained, minimizing the cost function

$$J_{M} = \bar{e}_{M}^{T} \bar{e}_{M} + \beta^{2} \delta^{T} \delta,$$

where \bar{e}_M is the vector of expansion coefficients of the difference vector e on the prediction horizon.