УДК 517.983.22

Арне КОКК

О ТЕОРЕМАХ ТИПА БАНАХА-СТОУНА

Arne KOKK. BANACHI-STONE'I TÜÜPI TEOREEMIDEST Arne KOKK. ON BANACH-STONE TYPE THEOREMS

(Представил Г. Вайникко)

Известная теорема Банаха—Стоуна о представлении линейных изометрий пространств непрерывных функций на компакте обобщена многими авторами в нескольких направлениях (см., напр., [¹⁻⁷], [⁸] часть II и имеющуюся там библиографию). В настоящей работе дается аналогичное представление для «хороших операторов» [⁹]. Показана также связь с некоторыми результатами из [⁸].

Пусть К — поле С или Ř, А и В — нормированные пространства над К и L(A, B) — совокупность всех непрерывных линейных операторов из А в В, наделенная топологией поточечной сходимости. Кроме того, пусть $A^* = L(A, K)$, $S(A^*) = \{\Lambda \in A^* : \|\Lambda\| \le 1\}$, $\mathcal{E}(A^*)$ — совокупность крайних точек множества $S(A^*)$, T^* — сопряженный оператор оператора $T \in L(A, B)$ и $N(A, B) = \{T \in L(A, B) : T^*(\mathcal{E}(B^*)) \subset \mathcal{E}(A^*)\}$ — множество хороших операторов из A в B (см. [9, 10]). Далее, пусть m(X, A) — совокупность всех ограниченных A-значных функций на множестве X, наделенная равномерной топологией, m(X) = m(X, K) и $(a\bar{a})(x) = a(x)a$ для всех $a \in A$, $a \in m(X)$ и $x \in X$. Если $Z \subset m(X)$ — некоторое подмножество, то через AZ будем обозначать замкнутое подпространство пространства m(X, A), порожденное множеством $\{a\bar{a} : a \in Z, a \in A\}$, а для каждой пары $(x, \varphi) \in X \times A^*$, через $[x, \varphi]$ линейный функционал на m(X, A) такой, что $[x, \varphi](f) = \varphi(f(x))$ для всех $f \in m(X, A)$.

Теорема 1. Пусть А и В — нормированные пространства над К: Х, Ү и Y₀ — непустые множества такие, что $Y \subset Y_0$ и card $X \leq 2$ и пусть $Z \subset m(X)$. Кроме того, пусть $T \in L(AZ, m(Y_0, B))$ и отображения $\Delta_1: I \times \mathcal{E}(B^*) \rightarrow X, \ \Delta_2: I \times \mathcal{E}(B^*) \rightarrow \mathcal{E}(A^*)$ суть такие, что

$$T^{*}([y, \varphi])(f) = [\Delta_{1}(y, \varphi), \Delta_{2}(y, \varphi)](f)$$
(1)

для всех $(y, \varphi) \in J \times \mathcal{E}(B^*)$ и $f \in AZ$. Если для всех различных точек $x_1, x_2 \in X$ существует функция $a \in Z$ такая, что $a(x_1) = 0$ и $a(x_2) = 1$, то равносильны следующие утверждения:

1.1) $\Delta_1(y, \varphi_1) = \Delta_1(y, \varphi_2)$ *das been y \in Y и* $\varphi_1, \varphi_2 \in \mathcal{E}(B^*)$;

1.2) существует отображение $\omega: Y \to N(A, B)$ такое, что

 $(Tf)(y) = \omega(y)(f(\Delta_1(y, \varphi)))$ (2)

для всех $f \in AZ$ и $(y, \varphi) \in Y \times \mathcal{E}(B^*)$.

Доказательство. 1.1) \Rightarrow 1.2). Пусть $y \in Y$ и $a \in A$. Покажем, что существует элемент $\omega(y)(a) \in B$ такой, что

$$\varphi(\omega(y)(a)) = \Delta_2(y, \varphi)(a) \quad (\forall \varphi \in \mathscr{E}(B^*)).$$
(3)

Для этого пусть $\varphi_0 \in \mathscr{E}(B^*)$ — некоторый функционал и $a_0 \in \mathbb{Z}$ — такая функция, что $a_0(\Delta_1(y,\varphi_0)) = 1$. Положив $\omega(y)(a) = T(a_0\bar{a})(y)$, заметим, что

$$\varphi(\omega(y)(a)) = \Delta_2(y, \varphi) ((\alpha_0 \overline{a}) (\Delta_1(y, \varphi))) = \Delta_2(y, \varphi) (a) (\alpha_0 (\Delta_1(y, \varphi_0))) = \Delta_2(y, \varphi) (a)$$

для всех $\phi \in \mathcal{E}(B^*)$. В силу равенства

11

$$b \parallel = \sup_{\varphi \in \delta(B^*)} |\varphi(b)| \quad (b \in B)$$
(4)

(см., напр., [¹¹], с. 59) ясно, что элемент $\omega(y)(a)$, удовлетворяющий условию (3), определен однозначно.

Далее, как легко проверить, отображение $a \rightarrow \omega(y)(a)$ принадлежит N(A, B). В самом деле, если $c_1, c_2 \in \mathbf{K}$ и $a_1, a_2 \in A$, то

$$\varphi(\omega(y)(c_1a_1+c_2a_2)) = \Delta_2(y,\varphi)(c_1a_1+c_2a_2) = = \varphi(c_1\omega(y)(a_1)+c_2\omega(y)(a_2))$$

для всех $\phi \in \mathcal{E}(B^*)$. Значит, отображение $\omega(y)$ линейно на A. Кроме того, в силу равенств (3) и (4), имеем

$$\|\omega(y)(a)\| = \sup_{\varphi \in \mathcal{E}^{(B^*)}} |\Delta_2(y,\varphi)(a)| \leq \|a\|$$

и $\omega(y)^*(\varphi) = \Delta_2(y, \varphi) \in \mathcal{E}(A^*)$ для всех $a \in A$ и $\varphi \in \mathcal{E}(B^*)$. Итак, на *Y* существует N(A, B)-значное отображение $y \rightarrow \omega(y)$ такое, что для всех $a \in A$ и $y \in Y$ справедливо равенство (3). Теперь

$$\varphi((Tf)(y)) = [\Delta_1(y,\varphi), \Delta_2(y,\varphi)](f) = = \Delta_2(y,\varphi)(f(\Delta_1(y,\varphi))) = \varphi(\omega(y)(f(\Delta_1(y,\varphi))))$$

для всех $\phi \in \mathcal{E}(B^*)$, $y \in Y$ и $f \in AZ$. Отсюда, ввиду утверждения 1.1), для всех $f \in AZ$ и $(y, \phi) \in Y \times \mathcal{E}(B^*)$ следует равенство (2).

1.2) \Rightarrow 1.1). Допустим, что $\Delta_1(y_0, \varphi_1) \neq \Delta_1(y_0, \varphi_2)$ для некоторых $y_0 \in Y$ и $\varphi_1, \varphi_2 \in \mathcal{E}(B^*)$. Тогда $\alpha_1(\Delta_1(y_0, \varphi_1)) = 0$ и $\alpha_1(\Delta_1(y_0, \varphi_2)) = 1$ для некоторой функции $\alpha_1 \in Z$. Кроме того, $\gamma = \Delta_2(y_0, \varphi_2)(a_0) \neq 0$ для некоторого элемента $a_0 \in A$, так как $\Delta_2(y_0, \varphi_2) \in \mathcal{E}(A^*)$. Следовательно,

$$\begin{array}{l} \gamma = \Delta_2(y_0, \varphi_2)(a_0) \alpha_1(\Delta_1(y_0, \varphi_2)) = \\ = \varphi_2(T(\alpha_1 \bar{a}_0)(y_0)) = \varphi_2(\omega(y_0)((\alpha_1 \bar{a}_0)(\Delta_1(y_0, \varphi_1)))) = \\ = \varphi_2(\omega(y_0)(a_0) \alpha_1(\Delta_1(y_0, \varphi_1))) = 0, \end{array}$$

что невозможно. Таким образом, справедливо утверждение 1.1). Теорема доказана.

Замечание 1. Как легко проверить, в случае, когда Y_0 . является топологическим пространством и для каждых $y \in Y$ и $a \in A$ существуют окрестность $O(y) \subset Y_0$ точки y и функция $f \in AZ$ такие, что функция Tf непрерывна на Y_0 и $f(\Delta_1(y', \varphi)) = a$ для всех $(y', \varphi) \in O(y) \times \mathcal{E}(B^*)$, то отображение ω непрерывно на Y.

Пусть теперь X — локально компактное отделимое пространство и A — нормированное пространство над К. Через $C_0(X, A)$ обозначим пространство всех A-значных исчезающих на бесконечности непрерывных функций на X.

Теорема 2. Пусть X и Y — отделимые локально компактные пространства, A и B — нормированные пространства над K и $T \in \mathbb{N}(C_0(X, A), C_0(Y, B))$. Тогда

2.1) существуют непрерывные отображения $\Delta_1: Y \times \mathscr{E}(B^*) \to X$ и $\Delta_2: Y \times \mathscr{E}(B^*) \to \mathscr{E}(A^*)$ такие, что для всех $f \in C_0(X, A)$ и $(y, \varphi) \in \mathfrak{E} Y \times \mathscr{E}(B^*)$ справедливо равенство (1);

2.2) утверждение 1.1) справедливо тогда и только тогда, когда найдутся непрерывные отображения $\varrho: Y \rightarrow X$ и $\omega: Y \rightarrow N(A, B)$ такие, что

$$(Tf)(y) = \omega(y)(f(\varrho(y))) \quad (f \in C_0(X, A), y \in Y).$$
(5)

Доказательство. Пусть μ_1 и μ_2 — гомеоморфизмы $X \times \mathscr{E}(A^*)$ на $\mathscr{E}(C_0(X, A)^*)$ и $Y \times \mathscr{E}(B^*)$ на $\mathscr{E}(C_0(Y, B)^*)$ соответственно такие, что $\mu_1(x, \psi) = [x, \psi]$ и $\mu_2(y, \varphi) = [y, \varphi]$ для всех $(x, \psi) \in \mathfrak{E} X \times \mathscr{E}(A^*)$ и $(y, \varphi) \in Y \times \mathscr{E}(B^*)$ (см. [¹²], [¹³], с. 258). Положим $Z = C_0(X, \mathbb{K}), \ \Delta = \mu_1^{-1} \circ T^* \circ \mu_2, \ \Delta_1 = \pi_X \circ \Delta$ и $\Delta_2 = \pi_{\mathscr{E}(A^*)} \circ \Delta$, где π_X и $\pi_{\mathscr{E}(A^*)}$ — проекции пространства $X \times \mathscr{E}(A^*)$ на X и на $\mathscr{E}(A^*)$ соответственно. Тогда $AZ = C_0(X, A)$ (см. [¹⁴]), отображения Δ_1 и Δ_2 непрерывны на $Y \times \mathscr{E}(B^*)$ и для всех $(y, \varphi) \in Y \times \mathscr{E}(B^*)$ и $f \in C_0(X, A)$ справедливо равенство (1).

Положив теперь $\varrho(y) = \Delta_1(y, \varphi_0)$ для всех $y \in Y$ и некоторого $\varphi_0 \in \mathcal{E}(B^*)$, заметим, что справедливо 2.2) (см. теорему 1 и замечание 1). Теорема доказана.

В заключение покажем, как из теоремы 2 вытекают теоремы 8.10 и 8.11 из работы [⁸].

Пусть $\hat{B} = \{\hat{b} : b \in B\} \subset m(\mathcal{E}(B^*))$, где $\hat{b}(\varphi) = \varphi(b)$ для всех $b \in B$ и $\varphi \in \mathcal{E}(B^*)$. Централизатором Z(B) пространства B называется подалгебра

$$Z(B) = \{ f \in m(\mathcal{E}(B^*)) : f \cdot \hat{B} \subset \hat{B}, \ \overline{f} \cdot \hat{B} \subset \hat{B} \}$$

(см. [15], [8], с. 62) (здесь $f(\varphi) = \overline{f(\varphi)}$ для всех $\varphi \in \mathcal{E}(B^*)$).

Оказывается, что в случае сюръективности оператора $T \in \mathbb{E}N(C_0(X, A), C_0(Y, B))$, из одномерности Z(B) вытекает 1.1). В самом деле, пусть $y \in Y$, $b \in B$ и $a \in C_0(X, K)$ — любые элементы и пусть $\delta_y(\varphi) = \Delta_1(y, \varphi)$ для каждого $\varphi \in \mathcal{E}(B^*)$. Кроме того, пусть $\beta \in C_0(Y, K)$ и $f \in C_0(X, A)$ — такие, что $\beta(y) = 1$ и $Tf = \beta \overline{b}$. Положим c = T(af)(y), где (af)(x) = a(x)f(x) для всех $x \in X$. Тогда

$$c(\varphi) = \varphi(T(\alpha f)(y)) = \Delta_2(y, \varphi)((\alpha f)(\delta_y(\varphi))) = ((\alpha \circ \delta_y)b)(\varphi)$$

для всех $\varphi \in \mathcal{E}(B^*)$. Следовательно, $(\alpha \circ \delta_y)\hat{b} = \hat{c} \in \hat{B}$. Поэтому $\alpha \circ \delta_y \in Z(B)$ и, ввиду одномерности Z(B), функция $\alpha \circ \delta_y$ постоянна на $\mathcal{E}(B^*)$. Отсюда, в силу произвольности элементов $\alpha \in C_0(X, \mathbb{K})$ и $y \in Y$, и следует утверждение 1.1).

Итак, если T — линейная изометрия $C_0(X, A)$ на $C_0(Y, B)$ и централизаторы Z(A) и Z(B) пространств A и B одномерны, то (согласно теореме 2) существуют непрерывные отображения $\varrho: Y \rightarrow X$, $\omega: Y \rightarrow N(A, B)$ и $\delta: X \rightarrow Y$, $v: X \rightarrow N(B, A)$ такие, что

а) справедливо равенство (5),

6) $(T^{-1}g(x)) = v(x) (g(\delta(x))) (g \in C_0(Y, B), x \in X).$

Отсюда $\varrho^{-1} = \delta$ и $(\omega(y))^{-1} = \nu(\varrho(y))$ для всех $y \in Y$. Поэтому, в этом случае, ϱ — гомеоморфизм Y на X, а для всех $y \in Y$, отображение $\omega(y)$ — изометрия A на B.

ЛИТЕРАТУРА

1

- 2.
- 3.
- deLeeuw, K., Rudin, W. // Proc. Amer. Math. Soc., 1960, 11, 694—698.
 Cambern, M. // Stud. math., 1978, 63, 213—217.
 Behrends, E. // Math. scand., 1983, 52, 117—144.
 Устинов Г. М., Шашкин Ю. А. Исследования по функциональному анализу и его приложениям. Свердловск, 1985, 103—109.
 Cambern, M., Greim, P. // Acta Univ. Carolinae. Math. Phys., 1987, 28, 31—40.
 Ellis, A. J., So, W. S. // Math. Z., 1987, 195, 119—125.
 Jarosz, K., Pathak, V. D. // Trans. Amer. Math. Soc., 1988, 305, 193—206.
 Behrends, E. // Lect. Notes in Math., 1979, 736.
 Morris, P. D., Phelps, R. R. // Trans. Amer. Math. Soc., 1970, 150, 183—200.
 Werner, D. // Rend. Circ. mat. Palermo, 1984, 33, 135—143.
 Singer, I. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. New York, Heidelberg, Berlin, Springer-Verlag, 1970.
 Cunningham, F., Roy, N. M. // Proc. Amer. Math. Soc., 1974, 42, 461—465.
 Brosowski, B., Deutsch, F. // J. Approx. Theory, 1974, 10, 245—267.
 Aбель М. // Уч. зап. Тартуск. ун-та, 1977, вып. 430, 6—13.
 Alfsen, E. M., Effros, E. G. // Ann. Math., 1972, 96, 129—173. 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.

Тартиский иниверситет

Поступила в редакцию 20/X 1989