Изв. АН Эстонии. Физ. Матем., 1990, 39, № 2, 127—133 https://doi.org/10.3176/phys.math.1990.2.06

УДК 535.37; 548.736

Светлана ЗАЗУБОВИЧ, Виталий НАГИРНЫЙ, Нелли ЯАНСОН

ПОЛЯРИЗОВАННАЯ ЛЮМИНЕСЦЕНЦИЯ Ge²⁺v_c⁻-ЦЕНТРОВ В ЩЕЛОЧНО-ГАЛОИДНЫХ КРИСТАЛЛАХ. III. KI—Ge

(Представил Ч. Лущик)

1. Введение

Ранее в диапазоне температур 1,7—400 К нами были изучены характеристики триплетного и синглетного излучения Ge²⁺v⁻_c-центров в KCl—Ge [¹] и в KBr—Ge [²], а также процессы релаксации и термостимулированные процессы в их возбужденных состояниях. В настоящей работе аналогичное исследование впервые проведено для кристалла KI—Ge.

Монокристалл КІ—Ge был выращен по методу Стокбаргера в вакууме в Институте физики Академии наук Эстонии. Соль GeI₂ была синтезирована с использованием йода марки «ос. ч.» и высокочистого металлического германия, причем количество Ge в 5 раз превышало рассчитанное по реакциям синтеза GeI₂:

$Ge+2I_2 \rightarrow GeI_4$,

$$GeI_4 + Ge \rightarrow 2GeI_2$$
.

Синтез GeI₂ проводили при 400 °С в течение 5 ч. Затем GeI₂ перекладывали в сухом боксе в специальный отросток ампулы для выращивания кристалла и ампулу заполняли кусками зонноочищенного кристалла KI. После высушивания KI путем прогрева его при 100, 200 и 500 °С при постоянной откачке ампулы адсорбционным насосом соль GeI₂ сбрасывали из отростка в ампулу и ампулу запаивали.

Методика измерения спектральных и поляризационных характеристик излучения была аналогична описанной в [^{1, 3}].

2. Спектральные и поляризационные характеристики излучения

Спектры поглощения и люминесценции $Ge^{2+}v_c^{-}$ -центров в K1—Ge качественно подобны детально описанным в [^{1, 2}] спектрам $Ge^{2+}v_c^{-}$ центров в KC1—Ge и KBr—Ge. Положения максимумов полос поглощения (возбуждения) $Ge^{2+}v_c^{-}$ -центров в K1—Ge при 4,2 K приведены в табл. 1. В излучении KI—Ge при 4,2 K нами обнаружены четыре группы полос с максимумами при 2,60 и 2,36 эВ; 2,20 эВ; 2,05 и 1,74 эВ; 1,27 и 1,15 эВ и полуширинами 0,20—0,25 эВ (рис. 1, кривые 1, 1', 1"). Положения максимумов и полуширины полос в спектрах их возбуждения (кривые 2, 2', 2") практически совпадают между собой, что может указывать на принадлежность всех этих полос излучения центрам $Ge^{2+}v_c^{-}$ одного типа. Исследуемые полосы излучения поляризованы (см. кривые 3, 3', 3") в основном в направлениях $\langle 100 \rangle$ кристалла: при наблюдении в направлении возбуждающего луча (напросвет) $P(\alpha=0^\circ) \gg P(\alpha=45^\circ)$ (ср. с [^{1, 2}]).

Положения полос поглощения и излучения Ge²⁺v⁻-центров в КІ—Ge при 4,2 К

Термостимулированные переходы между разными возбужденными состояниями Ge²⁺v⁻-центров в KI—Ge

Поглощение (возбуждение)		Излучение				
				Переход	Темпера-	Ea, 9B
Полосы	Макси- мум, эВ	Полосы	Макси- мум, эВ	$C_{T_1} \rightarrow A_{T_1}$	40	0,034
$\begin{array}{c} C_3\\ C_2\\ C_1 \end{array}$	$\sim 4,35$ 4,20 4,09	С _{т2} С _{т1}	2,60 2,36	$C_{T2} \rightarrow A_{T2}$ $B \rightarrow A_{X2}$ $A_{T1} \rightarrow A_{X2}$ $A_{T2} \rightarrow A_{X1}$ $A_{T2} \rightarrow A_{T1}$	50 22 115 160—180 200	0,05 0,014 0,15 0,17
В	3,75	В	2,20	TAZ TIT	200	
A	3,61	$\begin{array}{c} A_{T2} \\ A_{T1} \\ A_{X2} \\ A_{X1} \end{array}$	2,05 1,74 1,15 1,27			

На основе анализа спектральных и поляризационных характеристик излучения KI—Ge и сопоставления их с соответствующими характеристиками Ge²⁺ v_c^- -центров в KCl—Ge и KBr—Ge в табл. 1 дана предположительная интерпретация исследуемых полос излучения. Дополнительную информацию об их природе мы надеемся получить в результате запланированного нами детального исследования люминесценции Ge²⁺ v_c^- -центров в KI—Ge методами поляризационной спектроскопии временного разрешения.

Остановимся несколько подробнее на некоторых особенностях Ge²⁺v⁻-центров в KI—Ge.

1. При возбуждении в *C*-полосе поглощения доминирующими в спектре излучения при 4,2 К являются две *C*-полосы (рис. 1, *a*, кривые *I*, *1'*). Наличие интенсивного синглетного излучения существенно для возможных практических применений исследуемых систем в качестве активных элементов лазеров (см. [⁴]). В *C*₁-компоненте *C*-полосы поглощения относительно эффективнее возбуждается поляризованное на 70—75% *C*_{T1}-излучение (см. кривые 2', 3'), а в *C*₃, *C*₂-компонентах — поляризованное на 55% *C*_{T2}-излучение (см. кривые 2, 3). К 60—80 К это излучение затухает, однако степень поляризации его не изменяется (рис. 2, кривые 1 и 2).

2. Излучение 2,2 эВ (рис. 1, *a*, кривая 1"), обозначенное в табл. 1 как *B*-излучение, возбуждается при 4,2 К в C_3 -, C_1 - и *B*-полосах поглощения (кривая 2"), причем при *B*-возбуждении его интенсивность сравнима с интенсивностью A_{T1} -излучения *. При возбуждении в C_3 -полосе его поляризация отрицательная (—40%), а в C_1 - и *B*-полосах — положительная (кривая 3"). При *B*-возбуждении она составляет 45%. Точное значение степени поляризации при возбуждении в области C_1 -полосы поглощения невозможно определить из-за перекрытия *B*- и C_{T1} -полос излучения.

^{*} На длинноволновом спаде A-полосы поглощения возбуждается излучение 2,25 эВ. Это же излучение появляется при возбуждении в A-полосе поглощения при T > 80 К. Его интенсивность достигает максимума к 160 К, а начиная с 250 К — уменьшается. Спектр возбуждения его в области A-полосы поглощения совпадает со спектром возбуждения A_{T1} -излучения. При 80—160 К это излучение поляризовано на 15—18%, а к 200 К степень поляризации его уменьшается до нуля. Возможно, излучение 2,25 эВ — это второй компонент расщепленной B-полосы излучения. Интенсивность его при 120—130 К сравнима с интенсивностями A_{T1} - и A_{X2} -полос излучения; тем не менее, не исключено, что оно не принадлежит исследуемым $Ge^{2+}v^{-}$ -центрам.

Рис. 1. Спектры излучения (1, 1', 1''), возбуждения (2, 2', 2'') и поляризации (3, 3', 3''), измеренные для следующих полос излучения: $a - C_{T2}$ (1-3), C_{T1} (1'-3') и B (1''-3'') при 4,2 K; $\delta - A_{T1}$ (1'-3') при 4,2 K и A_{T2} (1-3) при 160 K; $b - A_{X2}$ (1-3) при 4,2 K, A_{X1} (1'-3') при 230 K и суммарного A_X (3', 3'') при 80—250 K. Стрелками указаны энергии возбуждения и излучения, использованные при измерении соответствующих спектров.

Хотя спектры возбуждения и поляризации излучения 2,2 эВ подобны наблюдавшимся ранее для A_{T2} -излучения анизотропных центров (см., напр., [⁵]), по-видимому, это все же не A_{T2} -излучение по следующим причинам: его максимум слишком сильно (на $\approx 0,45$ эВ) смещен относительно максимума A_{T1} -излучения; в отличие от A_{T1} -излучения, которое поляризовано даже при комнатной температуре, излучение 2,2 эВ полностью деполяризуется уже к 25 К (рис. 2, 6, кривые 3, 3'), хотя интенсивность его, а также и всех других полос излучения до 15 К практически не изменяется (рис. 2, a).

3. Вид поляризационных спектров излучения Ge²⁺v_c⁻-центров в KI—Ge свидетельствует о том, что A_{T1}-излучение связано с переходами из нижайших Z-минимумов триплетного релаксированного возбужденного состояния (PBC), а при возбуждении во всей области A-полосы поглощения первоначально оптически заселяются нерелаксированные

Рис. 2. Температурные зависимости интенсивностей (a) и степеней поляризации (б), измеренные для следующих полос излучения: C_{T1} (1), C_{T2} (2), B (3, 3'), A_{T1} (4, 4'), A_{T2} (5), A_{X2} (6, 6'), A_{X1} (7, 7') и для суммарного ($A_{T1}+A_{T2}$) A_{T} -излучения (8—8") при возбуждении в области полос поглощения $Ge^{2+}v_{c}^{-}$ -центров C_{1} (1, 4, 5, 6'—8'), C_{2} (2, 4—8), C_{3} (3), B (3', 4', 6') и A (4', 8").

триплетные состояния
$$\frac{i}{\sqrt{2}}$$
 ($|X_z\rangle - |Z_x\rangle$) и $\frac{i}{\sqrt{2}}$ ($|Z_y\rangle - |Y_z\rangle$) (по-

дробнее см. [⁶]). *А*_{T1}-полоса является доминирующей в спектре излучения только при *А*-возбуждении.

4. Полоса излучения 2,05 эВ (рис. 1, δ , кривая 1) обозначена в табл. 1 как A_{T2} -излучение. Наиболее хорошо оно возбуждается в области C_2 -полосы поглощения (при этом его интенсивность при 4,2 К в 2—4 раза меньше, чем у A_{T1} -излучения), слабее — в области C_1 -полосы и гораздо слабее — в области B- и A-полос (кривая 2). Поляризация этого излучения во всей области C-полосы поглощения отрицательная (кривая 3), что отчасти связано с его перекрытием с A_{T1} -излучение. Наиболее чисто излучение 2,05 эВ можно выделить при 160 К, когда перекрывающиеся с ним полосы потушены (рис. 2, a, кривая 5), поэтому приведенные на рис. 1, δ спектры 1-3 измерены именно при этой температуре. Природа этого излучения требует дальнейших исследований,

5. Полосы излучения 1,27 и 1,15 эВ обозначены в табл. 1 как A_{x1} и A_{x2} -полосы, хотя они поляризованы в основном вдоль осей C_4 кристалла (рис. 1, θ , кривые 3,3') (см. также [¹]). При α =45° поляризация этих полос наблюдалась только при возбуждении в области C_3 -полосы поглощения при температурах выше 80 К (кривая 3"). Как и в случае КС1—Ge и КВг—Ge, более длинноволновое A_{x2} -излучение (кривая 1) при 4,2 К возбуждается преимущественно в C- и B-полосах поглощения Ge²⁺ v_c^- -центров (кривая 2), причем при C_1 -возбуждении его интенсивность втрое больше интенсивности A_{T1} -излучения. Поляризационный спектр его при α =0° знакопеременный. Поляризация отрицательна в области C_2 - и C_1 -полос поглощения (8—10%) (кривая 3). При C_2 -возбуждении поляризация этого излучения резко уменьшается к 65 К (рис. 2, δ , кривая 6). Его интенсивность максимальная при 140 К (рис. 2, a, кривые δ, δ').

Излучение A_{x1} (рис. 1, *в*, кривая 1') при T < 80 К практически отсутствует даже при A-возбуждении. При 230 К его интенсивность максимальна (рис. 2, *a*, кривые 7, 7'). Это излучение возбуждается наиболее эффективно в C-полосе поглощения, и слабее — в B- и A-полосах. Максимальная поляризация его (—10%) при 230 К наблюдается при возбуждении в C_1 -полосе, однако следует отметить, что несмотря на то, что при 140 К в спектре излучения КІ—Ge доминирует A_{x2} -полоса, а при 230 К — A_{x1} -полоса излучения, спектр поляризации суммарного A_x -излучения остается практически неизменным в интервале температур 80—250 К как при $\alpha = 0^{\circ}$ (рис. 1, *в*, кривая 3'), так и при $\alpha = 45^{\circ}$ (кривая 3''). К 300 К A_x -излучение деполяризуется.

3. Температурные зависимости интенсивностей и степеней поляризации излучения

Соотношения интенсивностей разных полос излучения KI—Ge и перераспределения их с изменением температуры свидетельствуют о том, что в PBC Ge²⁺ v_c^- -центров в этой системе, как и в KCI—Ge [¹] и KBr—Ge [²], осуществляются весьма сложные и интересные релаксационные и термостимулированные процессы (см. рис. 2, *a* и табл. 2). В частности, при возбуждении в *C*-полосе поглощения спад интенсивности C_{T1} -излучения около 40 K (кривая 1) сопровождается ростом интенсивности A_{T1} -полосы (кривая 4), а спад интенсивности C_{T2} -излучения около 50 K (кривая 2) — ростом интенсивности A_{T2} -полосы (кривая 5). О том, что эти эффекты связаны с переходами $C_{T1} \rightarrow A_{T1}$ и $C_{T2} \rightarrow A_{T2}$, говорит тот факт, что при *B*- и *A*-возбуждениях, когда *C*-состояние не заселяется, они не наблюдаются, и в этой области температур интенсивность A_{T1} -излучения даже несколько уменьшается (кривая 4'). Спектр A_T -излучения смещается при этом приблизительно на 0,05 эВ в сторону больших энергий.

Затухание *В*-излучения около 22 К (рис. 2, *a*, кривые 3, 3') сопровождается нарастанием интенсивности A_{x2} -излучения (кривая 6'). Это связано с переходами $B \rightarrow A_{x2}$, поскольку при возбуждении в C_2 -полосе поглощения, когда *В*-излучение отсутствует, интенсивность A_{x2} -излучения в этой области температур постоянна (кривая 6).

При возбуждении в C_{3^-} , C_{2^-} полосах поглощения интенсивность A_{x_2} -излучения около 47 К уменьшается (кривая 6). Как уже отмечалось, интенсивности A_{T2^-} и A_{T1^-} полос излучения растут в этой же области температур. Это, однако, не связано с термическими переходами $A_{x2} \rightarrow A_{T2}$, A_{T1} , поскольку интенсивности A_{T2^-} и A_{T1^-} полос увеличива-

ются и при C_1 -возбуждении, когда интенсивность A_{x2} -излучения в этой области температур практически постоянна (кривая 6'). Возможно, при C_3 - и C_2 -возбуждении осуществляются безызлучательные переходы из нерелаксированного A_{x2} -состояния в основное состояние, или релаксация из C_3 - C_2 -состояний при этих температурах происходит преимущественно не в A_{x2} -, а в A_{T1} - или A_{T2} -минимумы триплетного PBC.

При T > 80 К поведение оставшихся к этой температуре полос излучения при всех возбуждениях одинаковое. Спад интенсивности A_{T1} -излучения около 115 К (рис. 2, *a*, кривые 4, 4') сопровождается нарастанием интенсивности в основном A_{X2} -излучения, которая достигает максимума к 140—160 К (кривые 6, 6'). Спектр красного излучения с повышением температуры постепенно смещается в сторону бо́льших энергий из-за возникновения A_{X1} -излучения. Интенсивность его растет, вероятнее всего, из-за переходов $A_{T2} \rightarrow A_{X1}$ **, достигает максимума к 230 К, а затем уменьшается (кривые 7, 7'). Следует отметить, что «перекрестные» переходы ($A_{T1} \rightarrow A_{X2}, A_{T2} \rightarrow A_{X1}$) наблюдались и для КСІ—Ge [¹] и КВг—Ge [²]. Однако в отличие от этих систем в КІ—Ge отсутствуют проявления «прямых» термических переходов $A_{T1} \rightarrow A_{X1}$ и $A_{T2} \rightarrow A_{X2}$.

Увеличение интенсивности A_T -излучения (в основном его A_{T1} -компонента) (кривые 4, 4') при T > 160 К, возможно, вызвано обратными переходами $A_{X2} \rightarrow A_T$. К 350 К излучение КІ—Ge практически потушено.

Судя по поляризации суммарного A_T -излучения (рис. 2, б, кривые 8, 8', 8"), доминирующим в нем является A_{T1} -компонент. Изменение поляризации A_T -излучения в области около 22 К (кривая 8) связано с затуханием перекрывающегося с ним B-излучения, а в области около 40 К (кривая 8') — C_{T1} -излучения. По мере увеличения относительной интенсивности A_{T2} -компонента в суммарном A_T -излучении в результате более резкого затухания A_{T1} -компонента к 140—160 К абсолютное значение отрицательной степени поляризации при C_3 , C_2 -возбуждении увеличивается (кривая 8), а при C_1 -возбуждении — уменьшается (кривая 8'), поскольку поляризация A_{T2} -излучения при C_3 , C_2 -возбуждении отрицательная, а при C_1 -возбуждении — положительная (см. [⁵]). При T > 160 К ход P(T) существенно искажен из-за перекрытия спектров A_T - и A_X -излучений. Кривая 8" искажена, кроме того, из-за перекрытия A_T -излучения и излучения 2,25 эВ, поляризация которого к 200 К пропадает.

Таким образом, проведенное в [^{1, 2}] и в настоящей работе исследование характеристик люминесценции $\text{Ge}^{2+}v_c^{-}$ -центров в ЩГК продемонстрировало исключительную сложность и разнообразие излучательных и безызлучательных процессов, происходящих в этих системах. В дальнейшем мы планируем провести детальное изучение кинетических характеристик для всех полос излучения $\text{Ge}^{2+}v_c^{-}$ -центров в ЩГК, а также поляризационных характеристик отдельных компонентов затухания люминесценции в широком интервале температур (от 10⁻¹ K) и с использованием магнитных и электрических полей. Большой интерес представляет также более детальное исследование триплетного PBC $\text{Ge}^{2+}v_c^{-}$ -центров в ЩГК методом ОДМР.

^{**} Более пологая стадия на кривой 5 (при T > 140 K), вероятно, соответствует истинному затуханию A_{T2} -излучения, а резкий спад его интенсивности от 90 до 140 К связан с перекрытием A_{T2} -излучения с A_{T1} -излучением. По мере затухания A_{T2} -излучения нарастает и интенсивность полосы 2,25 эВ.

ЛИТЕРАТУРА

- 1. Зазубович С., Нагирный В., Соовик. Т., Усаров А. // Изв. АН Эстонии. Физ. Зазубович С., Нигирный В., Соовик Г., Усаров А. // Изв. АН Эстонии. Физ. Матем., 1990, 39, № 1,
 Зазубович С., Нагирный В., Соовик Т., Усаров А., Яансон Н. // Изв. АН Эстонии. Физ. Матем., 1990, 39, № 2, 118—126.
 Нагирный В. П. // Тр. ИФ АН ЭССР, 1984, 55, 198—216.
 Schmitt, K. // Appl. Phis., 1985, A38, 61—65.
 Lushchik, N., Zazubovich, S. // Physics of Impurity Centres in Crystals (Ed. G. Zavt). Tallinn 1972 483—504

- Tallinn, 1972, 483—504. 6. Hizhnyakov, V., Zazubovich, S. // Phys. status solidi (b), 1978, 86, 733—739.

Инститит физики Академии наук Эстонии Поступила в редакцию 4/VII 1989

Svetlana ZAZUBOVITŠ Vitali NAGIRNÕI, Nelli JAANSON

Ge²⁺v⁻⁻TSENTRITE POLARISEERITUD LUMINESTSENTS LEELISHALOGENIIDKRISTALLIDES III. KI-Ge

On uuritud KI-Ge luminestsentsi spektraalseid ja polarisatsioonilisi karakteristikuid temperatuurivahemikus 4,2–350 K ning leitud kuus kiirgusriba, mis on tingitud üleminekutest katioonvakantsi poolt lõhestatud $Ge^{2+}v^{-}$ -tsentrite singletse ja tripletse

relakseerunud ergastatud seisundi Jahni-Telleri miinimumidest. Samuti on leitud kiirgusriba, mis on seotud üleminekutega B-seisundist. On uuritud kiirgusribade intensiivsuste ja polarisatsiooniastmete sõltuvust temperatuurist. On toonitatud Ge2+v--tsentrite ergas-

tatud seisundis toimuvate komplitseeritud relaksatsiooni- ja termostimuleeritud protsesside sarnasust KI-Ge kristallides ja autorite poolt varem uuritud KCI-Ge ja KBr-Ge kristallides.

Svetlana ZAZUBOVICH, Vitali NAGIRNYI and Nelli JAANSON

POLARIZED LUMINESCENCE OF Ge²⁺v⁻ CENTRES IN ALKALI HALIDES.

III. KI: Ge

Spectral and polarization characteristics of KI: Ge luminescence have been investigated in the temperature region of 4.2 to 350 K. Six emission bands have been found that originate from the Jahn-Teller minima of singlet (C_T) and triplet (A_T, A_X) relaxed excited states of $\operatorname{Ge}^{2+}v_{c}^{-}$ centres, split by the interaction with the cation vacancy near

 Ge^{2+} ion. An emission caused by the transitions from B state has also been found. The intensities and polarization degrees of these bands as dependent on temperature have been studied. It has been found that the relaxation and thermo-stimulated processes in the excited states of $Ge^{2+}v^{-}$ centres in KI: Ge are similar to those in KCI; Ge and

KBr: Ge crystals recently investigated by the authors.