Изв. АН Эстонии. Физ. Матем., 1990, 39, № 2, 113—117 https://doi.org/10.3176/phys.math.1990.2.04

УДК 535.37; 548.736

Владимир ХИЖНЯКОВ

О ПРИЧИНАХ НЕЦЕНТРАЛЬНОСТИ ВОЗБУЖДЕННЫХ РТУТЕПОДОБНЫХ ЦЕНТРОВ ЛЮМИНЕСЦЕНЦИИ

Ртутеподобные центры люминесценции щелочно-галоидных кристаллов, образуемые примесными ионами с двумя оптическими *пs*-электронами, проявляют разнообразные спектральные, кинетические и поляризационные свойства [^{1, 2}]. Отмеченное разнообразие свойств этих центров обусловлено сложностью потенциальных (адиабатический) поверхностей (АП) их возбужденных состояний [^{3, 4}]. Причиной этого является значительное взаимодействие колебательных, орбитальных и спиновых степеней свободы центра. Наиболее сильным является взаимодействие *пp*-электрона с колебаниями решетки (т. н. эффект Яна— Теллера), приводящее к значительному тетрагональному (а в ряде случаев тригональному или ромбическому) искажению симметрии воз бужденного центра. Орбитальный момент оптического электрона в прорелаксированных возбужденных состояниях сильно подавлен, вследствие чего спин-орбитальное взаимодействие лишь незначительно влияет на эти состояния.

Рассмотрение показывает [^{3, 4}], что нижайшими по энергии являются невырожденные метастабильные минимумы триплетного состояния. Поэтому согласно модели [⁴] в низкотемпературном пределе следует ожидать медленную моноэкспоненциальную кинетику затухания люминесценции. Однако, как показано в [⁵], в некоторых центрах (например, в In⁺- и Ga⁺-центрах) в пределе очень низких температур ($T \ll 1$ K) наблюдаются отклонения от простой моноэкспоненциальной кинетики. Проведенное исследование показало, что причиной этого является нецентральное искажение тетрагональной конфигурации центров в прорелаксированном возбужденном состоянии: примесный ион сдвинут из узла решетки в одном из направлений [100], перпендикулярном оси ян-теллеровского искажения (напр., [001]). Этот результат согласуется с полученными ранее методом ОД ЭПР данными [^{6, 7}] об орторомбической симметрии этих центров в релаксированном возбужденном состоянии.

Для объяснения наблюдавшегося искажения возбужденных центров предлагалось рассматривать соседний точечный дефект [⁷], квадратичный эффект Яна—Теллера в возбужденном электронном состоянии по колебаниям T_{1u} -представления [⁸], а также вибронное смешивание T_{1u} -колебаниями электронных состояний примеси и ближайшего их окружения (т. н. псевдо-эффект Яна—Теллера) на электронных состояниях примеси и ее соседей) [⁵].

Подробное экспериментальное исследование [5] показало отсутствие соседних точечных дефектов.

Квадратичный эффект Яна—Теллера может давать нецентральное смещение положения равновесия центра как вдоль, так и перпендикулярно оси тетрагонального искажения, причем направление смещения зависит от знака этого искажения * [8]. Расчеты [9, 10] и экспери-

^{*} Перпендикулярные искажения возможны как в направлениях [±1±10], так и в направлениях [±100]. Вывод работы [⁸] о невозможности последнего искажения связан с тем, что автор не учел ангармонические члены ~ X²Y², могущие стабилизировать минимумы АП в направлениях [±100] и [0±10] (см. ниже).

мент ** [¹¹] свидетельствуют, что в данных центрах имеет место растяжение центра вдоль указанной оси. В этом случае квадратичный эффект Яна—Теллера может вызвать нецентральное смещение иона лишь вдоль оси [001]. Таким образом, квадратичный эффект Яна—Теллера, по-видимому, не является причиной наблюдаемого в эксперименте нецентрального искажения центра перпендикулярно оси [001].

Рассмотрим теперь вибронные смешивания ${}^{3}nsnp$ -состояния примеси с другими триплетными состояниями (псевдоэффект Яна—Теллера). Вибронное смешивание указанного состояния примеси с триплетными возбужденными состояниями соседних галоидных ионов (т. е. с т. н. локализованными триплетными экситонами) является относительно слабым вследствие малости перекрывания соответствующих волновых функций. Энергетическое расстояние соответствующих уровней достаточно велико ($\sim 2-3$ эВ). Поэтому представляется, что указанное смешивание также не может вызвать наблюдаемое нецентральное искажение.

Вибронное смешивание электронных состояний самой примеси может быть весьма сильным. Как отмечалось выше, триплетное ³nsnp-состояние вибронно не смешивается с синглетными состояниями. По этой причине следует исключить из рассмотрения основное состояние ns^2 , являющееся синглетным. Основной вклад в рассматриваемое вибронное смешивание должны давать нижайшие четные триплетные возбужденные состояния примеси. В качестве таковых обычно рассматривают «одноэлектронные» возбужденные состояния ${}^3ns(n+1)s$ и 3nsnd . Считается [11], что именно эти состояния ответственны за большинство наблюдающихся полос в спектрах возбужденного поглощения (ВП).

Рассмотрим прежде всего вибронное смешивание T_{1u} -колебаниями ³nsnp- и ³ns (n+1) s-состояний. Энергия первых на 3—4 эВ выше [¹²]. Из соображений симметрии очевидно, что ³ns (n+1) s-состояние может смешиваться с ³nsnp_z-состоянием (соответствующим тетрагональному минимуму с z-осью симметрии четвертого порядка) только Z-нечетным колебанием T_{1u} . Поэтому такое смешивание может вызвать нецентральное смещение только вдоль оси Z, что противоречит эксперименту.

Рассмотрим теперь смешивание ${}^{3}nsnp$ - и ${}^{3}nsnd$ -состояний. Уровень ${}^{3}nsnd$ в тетрагональном поле статического эффекта Яна—Теллера расщепляется на три: 1) ${}^{3}nsnd_{z^2}$, 2) ${}^{3}nsnd_{xz}$ и ${}^{3}nsnd_{yz}$ и 3) ${}^{3}nsnp_{xy}$ (спиновое расщепление не учитывается). Ближайшим (и нижайшим) по энергии к ${}^{3}nsnp_z$ -минимуму должен быть ${}^{3}nsnd_{z^2}$ -уровень, имеющий одинаковую с p_z ориентацию d-функции (следующими по энергии должны быть уровни ${}^{3}nsnd_{xz}$ и ${}^{3}nsnd_{yz}$). T_{1u} -колебания смешивают ${}^{3}nsnp_z$ -состояние с ${}^{3}nsnd_{z^2-}$, ${}^{3}nsnd_{xz}$ и ${}^{3}nsnd_{yz}$ -состояниями. Поскольку самую низкую энергию из рассматриваемых d-состояний имеет ${}^{3}nsnd_{z^2}$ -состояние, то вибронное смешивание именно с этим состоянием наиболее сильное. Отмеченное смешивание также осуществляется Z-нечетным T_{1u} -колебанием. Следовательно, и вибронное смешивание с d-состоянием также не может привести к нецентральному искажению триплетного возбужденного состояния перпендикулярно оси ян—теллеровского искажения.

Рассмотрим, в заключение, вибронное смешивание ³nsnp-состояний с триплетными «двухэлектронными» возбужденными состояниями ³np². Насколько нам известно, эти состояния рассматриваемых центров еще не обсуждались. Указанные состояния получаются при возбуждении в ³nsnp-состоянии ns-электрона с сохранением спиновой ориентации. Имеется всего три таких состояния: ³np_xnp_y, ³np_xnp_z и ³np_ynp_z (триплетные состояния ³np_x², ³np_y² и ³np_z² запрещены по принципу Паули).

^{**} В [¹¹] показано, что при сжатии кристалла вдоль оси *z* энергия состояний *nsnp_z* возрастает. Это свидетельствует о преимущественно электростатическом характере взаимодействия примесного иона с соседними галоидами. Такое взаимодействие приводит к растяжению центра вдоль *p_z*-функции.

 T_{1u} -колебания смешивают состояние ${}^{3}nsnp_{z}$ с состояними ${}^{3}np_{x}np_{z}$ и ${}^{3}np_{y}np_{z}$; смешивание осуществляется X- и Y-нечетными T_{1u} -колебаниями. Поэтому рассматриваемое вибронное смешивание может приводить только к нецентральному искажению перпендикулярно оси z в согласии с экспериментом.

Найдем условие возникновения этого искажения. Потенциальные поверхности ³nsnp_z-, ³np_xnp_z- и ³np_ynp_z-состояний в пространстве X и Y конфигурационных координат определяются собственными значениями матрицы

$$U = U_0 \cdot I + V, \tag{1}$$

где

$$U_0 = \frac{k}{2} \left(X^2 + Y^2 \right) \tag{2}$$

— гармонический потенциал X-, Y-колебаний, k — константа упругого взаимодействия, I — единичная матрица,

$$V = \begin{pmatrix} 0 & pX & pY \\ pX & \Delta & 0 \\ pY & 0 & \Delta \end{pmatrix}$$
(3)

— матрица вибронного смешивания в линейном по смещениям X и Y приближении, p — константа вибронного смешивания, Δ — энергетическое расстояние минимума АП ${}^{3}nsnp_{z}$ -состояния и АП ${}^{3}np_{x,y}np_{z}$ -состояния и АП ${}^{3}np_{x,y}np_{z}$ -состояний. Диагонализация матрицы V дает

$$V_{1,3} = \frac{1}{2} \left(\Delta \mp \sqrt{\Delta^2 + p^2 Q^2} \right),$$

$$V_2 = \Delta,$$
(4)

где $Q^2 = X^2 + Y^2$. Нас интересует V_1 , описывающее влияние вибронного смешивания на состояние ³nsnp_z. Потенциал этого состояния в пространстве X, Y имеет вид

$$U_1 = \frac{k}{2} Q^2 + \frac{1}{2} \left(\Delta - \sqrt{\Delta^2 + p^2 Q^2} \right).$$

Если $p^2 > 2|\Delta k|$, то минимуму АП соответствует $Q = Q_0 \neq 0$, где

$$Q_0 = (p^2/4k^2 - \Delta^2/p^2)^{1/2}.$$
(5)

В рассматриваемом приближении АП симметрична по отношению к повороту вокруг оси z на произвольный угол $\varphi = \arctan Q_x/Q$. Однако, если к U_0 добавить ангармонические члены $A(X^4+Y^4)+B(X^2Y^2) =$ $=Q^4(A+\overline{B}\sin^2 2\varphi)$, то отмеченная симметрия АП пропадает: z становится осью симметрии четвертого порядка ($\overline{B}=B/2-A$). При этом, если $\overline{B}>0$, то рассматриваемая АП имеет четыре минимума, расположенные в направлениях [± 100] и [0 ± 10] в согласии с экспериментом (если $\overline{B}<0$, то они расположены в направлениях [$\pm 1\pm 10$]).

Важным параметром рассмотренного вибронного смешивания является энергетическое расстояние Δ соответствующих состояний. Для оценки этого параметра рассмотрим АП указанных состояний в пространстве $Q_1(A_{1q})$ - и Q_2 , $Q_3(E_g)$ -колебаний. АП ³nsnp_z-состояния имеет вид [^{3, 4}]

$$U_{1} = \varepsilon_{1} + \frac{k_{1}}{2} Q_{1}^{2} + \frac{k_{2}}{2} (Q_{2}^{2} + Q_{3}^{2}) + aQ_{1} - \frac{2b}{\sqrt{3}} Q_{3}, \qquad (6)$$

где є₁ — энергия одноэлектронного возбуждения, k_{1,2} — константы уп-

115

ругого взаимодействия sp-состояния, а и b — параметры вибронного взаимодействия с A1g- и Eq-колебаниями соответственно. Рассматривая электронно-колебательное взаимодействие в ³ np_x np_z-состояниях в одноэлектронном приближении, получим АП ³ пр_х пр_z-состояния в виде

$$U_{2} = U_{1} + \varepsilon_{2} + 2aQ_{1} + b(Q_{2} + Q_{3}/\sqrt{3}) - \frac{\delta_{1}}{2}Q_{1}^{2} - \frac{\delta_{2}}{2}(Q_{2}^{2} + Q_{3}^{2}), \quad (7)$$

где ε_2 — энергия электронного перехода, $\delta_{1,2}$ — изменение упругих постоянных при одноэлектронном переходе. Минимум потенциала U₁ расположен в точке $Q_1 \approx -a_1/k_1$, $Q_2 \approx 0$, $Q_3 \approx 2b/k_2\sqrt{3}$. Разница U_2 и U_1 в этой точке равна

$$\Delta \approx \varepsilon_2 - \frac{a^2}{k_1} \left(1 + \delta_1/2 \right) + \frac{2}{3} \frac{b^2}{k_2} \left(1 - \delta_2 \right) = \varepsilon_2 - S \left(1 + \delta_2/2 \right) + S_E, \quad (8)$$

где S — стоксовы потери (разница энергий максимумов полос поглощения и люминесценции), S_E — вклад E_q -колебаний в S. Принимая $\epsilon_2 \sim \epsilon_1 \approx 4$ эВ, $S \approx 1.5$ эВ [^{1, 5}], $S_E \approx 0.4$ S, $\delta \approx 0.3$ [¹³], получаем $\Delta pprox 2,9$ эВ. Следовательно, энергия перехода из минимума АП 3nsnp состояния в ³*прпр*-состояние близка (по-видимому, несколько ниже) энергии переходов в ${}^{3}ns(n+1)s$ - и ${}^{3}nsnd$ -состояния.

Волновые функции двухэлектронных возбужденных ³npnp-состояний более локализованы, чем одноэлектронных возбужденных ³ns(n+1)sи ³nsnd-состояний, т. к. первые вследствие конфигурационного запрета не смешиваются с функциями одноэлектронных зонных возбуждений (в том числе с возбужденными состояниями соседних галоидных ионов). Поэтому параметр $|p|^2$ вибронного смешивания $^{3}nsnp$ -состояний с ³ прпр-состояниями должен существенно превышать аналогичные параметры вибронных смешиваний с ³ns(n+1)s- и ³nsnd-состояниями. Это объясняет, почему именно вибронное смешивание прорелаксированных триплетных ³nsnp-состояний с триплетными ³npnp-состояниями оказывается наиболее сильным.

Таким образом, мы приходим к выводу, что вероятной причиной нецентральности ртутеподобных центров в возбужденном ³nsnp-состоянии является вибронное смешивание этого состояния с триплетным состоянием ³прпр.

В заключение отметим, что рассмотренное здесь двухэлектронное возбужденное состояние ³ прпр должно проявляться в спектре ВП в виде полосы ≈3 эВ с шириной, в ≈1,5-2 раза превышающей ширину полосы люминесценции (либо нескольких полос, если сосуществуют тетрагональные и тригональные минимумы АП nsnp-состояний). Такие полосы действительно наблюдаются экспериментально [12].

Автор искренне благодарен С. Г. Зазубович за обсуждения, стимулировавшие данное исследование.

ЛИТЕРАТУРА

- Lushcik, N. E., Zazubovich, S. G. Physics of Impurity Centres in Crystals. Tallinn, Valgus, 1972, 483—504.
 Зазубович С. Г., Хижняков В. В. // Изв. АН СССР, Сер. физ., 1985, 49, № 10,
- 1874—1876.
- Hizhnyakov, V. V., Kristoffel, N. N. The Dynamical Jahn-Teller Effect in Localized Systems. Amsterdam-New York-Oxford, North-Holland, 1984, 383—438.
 Хижняков В. В. Препринт FI-36, Тарту, 1975.
 Liidja, G., Nagirnyi, V., Soovik, T., and Zazubovich, S. // Phys. stat. sol. (b), 1989, 152, 563, 575.
- 152, 563-575.

- 6. Le Si, Dang, Romestain, R., Merle d'Aubigné, Y., and Fukuda, A. // Phys. Rev.

- Le Si, Dang, Romestain, R., Merle d'Aubigné, Y., and Fukuda, A. // Phys. Rev. Lett., 1977, 38, 1539—1543.
 Romanov, V. G., Veshchunov, Yu. P., Vetrov, V. A., and Baranov P. G. // Phys, stat. sol. (b), 1981, 107, K119—K124.
 Кристофель Н. // Изв. АН ЭССР. Физ. Матем., 1988, 37, № 1, 43—46.
 Bauer, R., Ditter, K., Schwan, L. // Semicond. and Insul., 1977, 2, 217—223.
 Романов Н. Г., Вещунов Ю. П., Ветров В. А., Баранов П. Г. // Физика твердого тела, 1981, 23, № 10, 2900—2908.
 Shimada, T., Ishiguro, M. // Phys. Rev., 1969, 187, № 3, 1089—1098.
 Haznu Л. Е., Станько Н. Г. // Опт. и спектр., 1986, 60, № 6, 1292—1294.
 Bendekk, G., Terzi, N. Physics of Impurity Centres in Crystals. Tallinn, Valgus, 1972, 321—342. 1972, 321-342.

Институт физики Академии наук Эстонии

Поступила в редакцию 23/XI 1989

Vladimir HIŽNJAKOV

ERGASTATUD ELAVHÖBEDASARNASTE LUMINESTSENTSITSENTRITE **MITTETSENTRAALSUSE PÕHJUSTEST**

On näidatud, et ergastatud elavhõbedasarnaste lisanditsentrite mittetsentraalsuse võimalikuks põhjuseks leelishalogeniidkristallides on relakseerunud tripletse üheelektronilise nsnp-konfiguratsiooniga ergastatud seisundi vibroonne segunemine kaheelektroniliste tripletsete npnp-konfiguratsiooniga ergastatud seisunditega.

Vladimir HIZHNYAKOV

ON THE REASONS OF THE OFF-CENTRE DISPLACEMENT OF EXCITED **MERCURY-LIKE LUMINESCENCE CENTRES**

It is shown that a possible reason for the off-centre displacement of the excited mercury-like ions in alkali halide crystals is the vibronic mixing of the relaxed triplet one-electron excited state of nsnp-configuration with two-electron triplet excited states of npnp-configuration.