EESTI NSV TEADUSTE AKADEEMIA TOIMETISĒD. FUUSIĶA * MATEMAATIĶA

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * MATEMATUKA PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1989, 38, 2

https://doi.org/10.3176/phys.math.1989.2.11

УДК 538.945

Г. БЛУМБЕРГ, Т. ФИМБЕРГ, Любовь РЕБАНЕ

КОЛЕБАНИЕ СВЕРХСТРУКТУР С УПОРЯДОЧЕННЫМИ КИСЛОРОДНЫМИ ВАКАНСИЯМИ В РЕШЕТКЕ УВа₂Си₃О_{7-х}

(Представил К. К. Ребане)

Для сверхпроводящих кристаллов со стехиометрией $Y_2Ba_4Cu_6O_{13}$ (*орто-II-фаза*) и $Y_8Ba_{16}Cu_24O_{55}$ вычислены симметризованные колебания в Γ -точке зоны Бриллюэна. Обсуждаются изменения в спектрах КРС, ожидаемые при упорядочении кислородных вакансий.

Строение решетки и сверхпроводящие свойства кристаллов УВа₂Си₃О_{7-х} изменяются с изменением содержания кислорода [1]. Семи атомам кислорода в элементарной ячейке (x=0) соответствует орторомбическая фаза (пространственная группа D_{2h}^{-1}) с температурой сверхпроводящего перехода вблизи 93 К. Тетрагональной фазе (x=1, пространственная группа D_{4h}^{17}) соответствует потеря атомов кислорода в позициях О(4), что уничтожает медно-кислородные цепочки ...О(4)—Си(1)—О(4)..., а вместе с ними и сверхпроводящие свойства. Частичное упорядочение кислородных вакансий в (ab) плоскостях предполагалось в связи с наблюдением еще одной сверхпроводящей фазы с температурой перехода вблизи 60 К [2]. Методом электронной диффракции найдено сложное частичное упорядочение вакансий [3]: удвоение элементарной ячейки вдоль оси a при $x \approx 0.5$ и суперячейка размерами $2\sqrt{2}a\times2\sqrt{2}b\times c$ при $x\approx0,125$. В [4] удалось получить высокую степень упорядочения вакансий с образованием новой фазы (орто-II), элементарная ячейка которой имеет размеры $2a \times b \times c$ (рис. 1), причем температура сверхпроводящего перехода 53 К.

В данной работе рассмотрены колебания обнаруженных сверхрешеток, вычислены симметризованные смещения ядер и обсуждены изменения в спектрах КРС, ожидаемые при упорядочении кислородных вакансий.

Рассмотрим элементарную ячейку фазы *орто*-II, изображенную на рис. 1. Она содержит 25 атомов, что соответствует стехиометрии $Y_2Ba_4Cu_6O_{13}$ (x=0,5). Расположение атомов в слоях Cu(2)—O(2)—O(3) осталось таким же, как в простой решетке; из атомов Cu(1) каждый второй лишился кислорода O(4), так что цепочки Cu(1)—O(4) чередуются с атомами Cu(1), соседствующими с вакансиями кислорода в позициях O(4) и O(5) и связанными только мостиковыми кислородами O(1). Симметрии позиций всех атомов расширенной элементарной ячейки приведены в таблице.

75 колебательных степеней свободы в Г-точке решетки *орто*-II преобразуются по неприводимым представлениям точечной группы D_{2h} следующим образом: $11A_g+4B_{1g}+11B_{2g}+8B_{3g}+2A_u+14B_{1u}+12B_{2u}+14B_{1u}+12B_{2u}$

 $+13B_{3u}$.

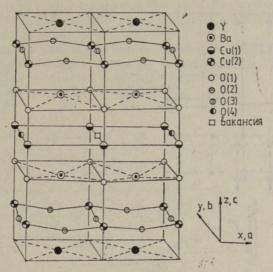


Рис. 1. Элементарная ячейка *орто-*II фазы кристалла Y₁Ba₂Cu₃O_{6.5} с упорядоченными вакансиями.

Симметрия позиций атомов элементарной ячейки орто-II фазы кристалла $Y_1Ba_2Cu_3O_{6,5}$

Атомы	Число атомов			Симметрия
	на ребре	на грани	внутри	позиции
Y Ba Cu(1) Cu(2) O(1)	1 2 2	2 1 2 2	4	C_{2v} C_1 D_{2h} C_{2v} C_2v C_s C_{2v}
O (2) O (3) O (4)		4 2 1	2	$egin{array}{c} C_s \ C_{2v} \ D_{2h} \end{array}$

Рассмотрим полносимметричные смещения. В простой решетке имеется $5A_g$ смещений, которые все направлены вдоль оси c (z-смещения) [5]. Атомы расширенной ячейки совершают 8 z-смещений и 3 x-смещения (рис. 2). Увеличение числа z-смещений обязано тому, что атомы, эквивалентные в простой ячейке, образуют две неэквивалентные группы в удвоенной ячейке. Например (см. рис. 1, 2), атомы O(1) в удвоенной ячейке образуют группу из 8 O(1), расположенных на ребрах ячейки и вполне аналогичных атомам O(1) простой ячейки (частота соответствующей моды 500 см $^{-1}$ [6]), а также группу 4 O(1) на гранях, которые окружают вакансию. Под воздействием вакансии частота колебаний O(1) второй группы может измениться.

Появление четных полносимметричных x-смещений также обязано новым внутренним атомам. Удвоение ячейки вдоль направления x привело к переходу точки X на границе зоны Бриллюэна простой решетки в центр новой зоны. Например, x-смещение атомов O(2) (рис. 2) в Γ -точке простой решетки могло быть только нечетным (это B_{3u} -мода частотой 555 см $^{-1}$ [5]); в удвоенной решетке возможны четные колебания этой группы атомов, частота которых должна быть близка к

частоте соответствующей нечетной моды простой решетки,



Рис. 2. Четные симметризованные смещения ядер элементарной ячейки *орто-*II фазы, дающие вклад в Г-точку зоны Бриллюэна.

Проведенный анализ показывает, что упорядочение вакансий кислорода с образованием фазы opto-II возможно детектировать по изменению колебательного спектра $YBa_2Cu_3O_{7-x}$. Рассмотрим отличия, ожидаемые в спектрах КРС при образовании фазы opto-II, опираясь на интерпретацию спектров КРС обычной opto-фазы, данную в [7,8]. Наиболее четкое различие состоит в появлении колебаний симметрии B_{1g} , которые отсутствуют в случае разупорядочения вакансий. Четыре симметризованных смещения B_{1g} показаны на рис. 2. Тензор рассеяния для этих мод имеет недиагональные компоненты α_{xy} , поэтому образование фазы opto-II можно детектировать по появлению спектра рассеяния от кристаллической плоскости (ab) в перпендикулярной поляризации. Моды B_{1g} не имеют аналогов в простой решетке, однако, можно думать, что смещение тяжелого атома Ва дает низкочастотную моду в области 90—130 см $^{-1}$, где лежат остальные частоты колебаний Ва.

Полносимметричные x-смещения удвоенной ячейки должны обладать отличными от нуля компонентами тензора рассеяния α_{xx} и привести к появлению трех новых мод в спектре КРС, снятом от плоскости (ab) в параллельной поляризации. По приведенным выше соображениям можно ожидать близости частот новых колебаний к частотам соответствующих нечетных колебаний симметрии B_{3u} .

Еще одним отличительным признаком упорядочения вакансий может служить изменение контура полосы 500 см⁻¹, наиболее интенсивной полосы в спектре КРС в zz-поляризации. Во многих работах наблюдалось уширение этой полосы при появлении разупорядоченных вакансий кислорода [9]. Образование фазы opto-II должно сопровождаться сужением полосы 500 см⁻¹ и появлением второго компонента, по-видимому, со стороны низких частот.

Нами рассчитаны также симметризованные смещения для сверхрешетки с элементарной ячейкой $2\sqrt{2}a\times2\sqrt{2}b\times c$, существование которой обсуждается в работе [3]. Такая сверхрешетка образуется, если вакансии кислорода занимают каждую четвертую позицию O(4) в

каждой второй цепочке, как показано на рис. 3. Хотя упорядочения вакансий вдоль оси c экспериментально не наблюдалось, мы идеализировали структуру, приняв расширенную элементарную ячейку, соответствующую стехиометрии $Y_8Ba_{16}Cu_{24}O_{55}$.

Эта элементарная ячейка также отвечает орторомбической симметрии и ее 309 колебательных степеней свободы распределяются по неприводимым представлениям следующим образом: $44A_g + 34B_{1g} +$

 $+35B_{2g}+37B_{3g}+27A_u+44B_{1u}+45B_{2u}+43B_{3u}$.

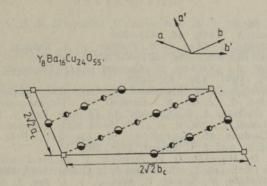


Рис. 3. Cu(1)O(4) плоскость элементарной ячейки сверхрешетки кристалла $Y_1Ba_2Cu_3O_{6,875}$ с упорядоченными вакансиями.

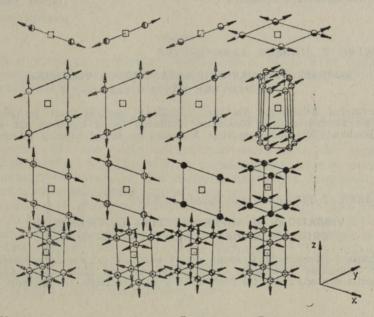


Рис. 4. Некоторые из дающих вклад в Γ -точку зоны Бриллюэна полносимметричных смещений ядер сверхрешетки кристалла $Y_1Ba_2Cu_3O_{6,875}$ с упорядоченными вакансиями.

Поворот осей расширенной ячейки в плоскости (ab) на 45° приводит к появлению симметризованных смещений x- и y-типа, показанных на рис. 4. При малой концентрации вакансий трудно ожидать существенного их влияния на частоты колебаний по сравнению с частотами колебаний простой решетки, однако появление колебаний $A_g(y)$ и связанных с ними компонентов тензора КРС α_{yy} возможно выделить, особенно в спектрах монокристаллических образцов лишенных двойникования.

Приведенные выше рассуждения могут быть экспериментально проверены лишь на образцах, обладающих высокой степенью упорядочения вакансий, для достижения которой требуется отработка режимов дополнительной температурной тренировки образцов [4].

ЛИТЕРАТУРА

1. Farneth, W. E., Bordia, R. K., McCarron III, Grawford, M. K., Flippen, R. B. // Solid

- Farneth, W. E., Bordia, R. K., McCarron III, Grawford, M. K., Flippen, R. B. // Solid State Commun, 1988, 66, 953—960.
 Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., Werder, D. // Phys. Rev. B, 1987, 36, 5719—5722.
 Alario-Franco, M. A., Chaillout, C., Capponi, I. J., Chenavas, I., Marezio, M. // Physica C. 1988, 156, 455—460.
 Takabatake, T., Ishikawa, M., Nakazawa, Y., Koga, K. // Physica C, 1988, 152, 424.
 Liu, R., Thomsen, C., Kress, W., Cardona, M., Gegenheimer, B., Wette, F. W., Prade, I., Kulkarni A. D., Schröder, U. // Phys. Rev. B, 1988, 37, 7971—7974.
 Cardona, M., Genzel, L., Liu, R. et al. // Solid State Commun, 1987, 64, 727.
 Thomsen, C., Cardona, M., Gegenheimer, B., Liu, R. // Proc. of Interlaken Conf. (ed. J. Müller and J. L. Olsen). 1988, 262.
 Kulakovskii, V. D., Misochko, O. V., Timofeev, V. B., Emel'chenke, G. A. // Proc. of Interlaken Conf. (ed. J. Müller and J. L. Olsen). 1988, 286.
 Nishitani, R., Yoshida, N., Sasaki, Y., Nishina, Y. // Jap. J. Appl. Phys., 1988, 27, L1284—L1286.

L1284-L1286.

Институт химической и биологической физики Академии наук Эстонской ССР

Поступила в редакцию 16/XII 1988

G. BLUMBERG, T. FIMBERG, Ljubov REBANE

KORRASTATUD HAPNIKU VAKANTSIDEGA YBa2Cu3O7-x SUPERVÕRE VÕNKUMISED

On arvutatud ülijuhtivate ühendite $Y_2Ba_4Cu_6O_{13}$ (orto-II faas) ja $Y_6Ba_{16}Cu_{24}O_{56}$ kristallvõrede sümmetriseeritud võnkumised Brillouini tsooni Γ -punktis. On vaadeldud muutusi kombinatsioonhajumise spektris. Muutused on seotud hapniku vakantside korrastusega.

G. BLUMBERG, T. FIMBERG, and Lyubov REBANE

VIBRATIONS OF SUPERSTRUCTURE LATTICES WITH ORDERED OXYGEN VACANCIES IN YBa2Cu3O7-x

Symmetrized vibrations in Brillouin zone Γ -point are calculated for superconductor crystalline compounds $Y_2Ba_4Cu_6O_{13}$ (ortho-II phase) and $Y_8Ba_{16}Cu_{24}O_{55}$. Changes in Raman spectra connected with the ordering of oxygen vacancies are discussed.