EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. FOOSIKA * МАТЕМААТІКА ИЗВЕСТИЯ АКАДЕМИЙ НАУК ЭСТОНСКОЙ ССР. ФИЗИКА * МАТЕМАТИКА

PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE ESTONIAN SSR. PHYSICS * MATHEMATICS

1986, 35, 2

УДК 517.98

https://doi.org/10.3176/phys.math.1986.2.02

Анна МИНЦ

ОПЕРАТОРНЫЕ ИТЕРАЦИИ СО СЛУЧАЙНОЙ ПОГРЕШНОСТЬЮ ОКРУГЛЕНИЯ

(Представил Э. Тыугу)

Исследуется влияние случайной ошибки округления на сходимость метода операторных итераций и проводится сравнение полученных оценок с соответствующими оценками в случае детерминированной ошибки округления.

Постановка задачи

Операторное уравнение

$$4u = f$$
.

где A — самосопряженный неотрицательный ограниченный оператор в гильбертовом пространстве H, $||A|| \leq 1$, решается методом операторных итераций

$$B_{k} = B_{k-1}(2I - AB_{k-1}), \quad B_{0} = g(A).$$
⁽²⁾

(1)

Здесь $g(\lambda)$ непрерывна на промежутке $[0, ||A||], 0' < g(\lambda) < 2/\lambda$, причем приближение к решению (1) вычисляется следующим образом (см., напр., [1]):

$$u_n = (I - AB_k) u_0 + B_k f,$$

где $u_0 \in H$, $n = 2^k$.

Предполагается, что на каждом шаге итераций (2) делается ошибка C_k такая, что $\|C_k\|$ есть случайная величина на R

$$\widetilde{B}_{k} = \widetilde{B}_{k-1}(2I - A\widetilde{B}_{k-1}) + C_{k}, \quad \widetilde{B}_{0} = g(A) + C_{0}.$$

$$(3)$$

Обозначим $\varepsilon_h := \|\tilde{B}_h - B_h\|$ (k = 0, 1, ...).

В дальнейшем выводятся оценки математического ожидания и дисперсии ε_h (соответственно $E\varepsilon_h$ и $D\varepsilon_h$), причем рассматривается случай равномерно и «нормально» распределенных $||C_h||$ (определение «нормально» распределенной случайной величины приведено в пункте 2).

1. Случай равномерно распределенной ошибки

Рассмотрим сначала случай, когда на каждом маге итераций делается ошибка C_k такая, что плотность распределения $||C_k||$ удовлетворяет условию

$$p(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{\varepsilon}, & 0 \le x \le \varepsilon. \\ 0, & x > \varepsilon \end{cases}$$
(1.1)

Это условие в каком-то смысле соответствует условию $\|C_k\|$ для детерминированного случая.

Используя выведенные в [3] формулы и тот факт, что

$$\forall i \in \|C_i\| = \in \|C_0\|,$$

оценим математическое ожидание єк

$$\mathbb{E}_{\varepsilon_{k}} \leq 2^{k} (d_{0}^{k} \mathbb{E} \| C_{0} \| + \ldots + d_{2^{k}-1}^{k} \mathbb{E} \| C_{0} \|^{2^{k}}).$$
(1.2)

Здесь d^{k}_{i} — некоторые коэффициенты, удовлетворяющие неравенству $d^{k}_{i} \leq 2^{i(k+1)}$. (1.3)

Учитывая, что

$$\mathbb{E} \|C_0\|^i = \frac{1}{\varepsilon} \int_0^{\varepsilon} x^i \, dx = \frac{\varepsilon^i}{i+1},$$

имеем:

$$\mathbb{E} \varepsilon_k \leq 2^k \sum_{i=1}^{2^k} d_{i-1}^k \frac{\varepsilon^i}{i+1},$$

и, используя (1.3), окончательно получаем

$$E \varepsilon_{k} \leq 2^{k} \sum_{i=1}^{2^{k}} 2^{(i-1)(k+1)} \frac{\varepsilon^{i}}{i+1} .$$
 (1.4)

Преобразуем правую часть (1.4)

$$2^{k} \sum_{i=1}^{2^{k}} 2^{(i-1)(k+1)} \frac{\varepsilon^{i}}{i+1} = 2^{k} \sum_{i=2}^{2^{k}+1} \frac{\varepsilon^{i-1}}{i} 2^{(i-2)(k+1)} =$$
$$= 2^{k} \frac{1}{\varepsilon^{2^{2(k+1)}}} \sum_{i=2}^{2^{k}+1} \frac{\varepsilon^{i}}{i} 2^{i(k+1)} = \frac{2^{k}}{\varepsilon^{2^{2(k+1)}}} \sum_{i=1}^{2^{k}+1} \frac{(\varepsilon 2^{k+1})^{i}}{i} - \frac{1}{2}.$$
(1.5)

Используя оценку (1.4), докажем следующую теорему: Теорема 1. Пусть $||C_k||$ распределены в соответствии с (1.1). Тогда при $k < -\lg_2 \varepsilon - 1$ имеет место оценка

$$E \varepsilon_k \leq \frac{1}{\varepsilon 2^{k+2}} \ln (1 - \varepsilon 2^{k+1}) - \frac{1}{2}.$$
 (1.6)

Доказательство. Очевидно, что $2^{k+1} \varepsilon < 1$ при данных k. Тогда

$$\sum_{i=1}^{2^{k+1}} \frac{(\varepsilon 2^{k+1})^i}{i} \leq \ln(1-\varepsilon 2^{k+1}).$$

Отсюда, учитывая (1.4) и (1.5), получим (1.6) и теорема доказана.

Оценим теперь дисперсию є_h. Для этого воспользуемся известным неравенством

$$D^{1/2}(\sum_{i=1}^{M} X_i) \leq \sum_{i=1}^{M} D^{1/2} X_i,$$

где X_i — любые случайные величины. Таким образом, в нашем случае

$$\mathrm{D}^{1/2} \varepsilon_h \leqslant \sum_{i=1}^{2^k} \mathrm{D}^{1/2} (2^h d_{i-1}^h \| C_0 \|^i),$$

откуда, учитывая, что $D \| C_0 \|^i = \varepsilon^{2i} i^2 (2i+1)^{-1} (i+1)^{-2}$, получим

$$D^{1/2} \varepsilon_k \leqslant \sum_{i=1}^{2^k} 2^k 2^{(i-1)(k+1)} \cdot \frac{\varepsilon^{i}i}{\sqrt{2i+1}} =$$

$$= \frac{1}{2} \sum_{i=1}^{2^k} (2^{k+1} \varepsilon)^i \cdot \frac{i}{(i+1)\sqrt{2i+1}}.$$
(1.7)

Используя (1.6) и (1.7), сравним рассмотренный выше случай со случаем, когда известно только, что на каждом шаге итераций делается ошибка, норма которой не превосходит є. Этот случай подробно рассмотрен в [³], где получена оценка

$$\varepsilon_k \leqslant 3 \cdot 2^k \varepsilon \quad (0 \leqslant k \leqslant -\lg_2 \varepsilon - 2).$$

Обозначим $x_k = \epsilon 2^{k+1}$. Тогда (1.6) можно переписать в виде

$$\mathbb{E} \varepsilon_k \leqslant -\frac{1}{2x_k} \ln(1-x_k) - \frac{1}{2} \quad (0 \leqslant k < -\lg_2 \varepsilon - 1), \qquad (1.8)$$

а в соответствующем детерминированном случае

$$\varepsilon_h \leqslant \frac{3}{2} x_h \quad (0 \leqslant k \leqslant -\lg_2 \varepsilon - 2).$$
 (1.9)

Для сравнения оценки при случайной ошибке округления с оценкой (1.9) воспользуемся неравенством Чебышева (см. [²], с. 170),

$$P(|\xi - E\xi| \ge \varepsilon) \leqslant \frac{D\xi}{\varepsilon^2}; \qquad (1.10)$$

справедливым для любой случайной величины ξ.

Обозначим правую часть (1.8) через О₁, правую часть (1.9) через О₂ и правую часть (1.7) через D₁. Тогда из (1.10) получим

$$P(|\varepsilon_k - O_1| \leq cO_2 - O_1) \geq 1 - \frac{D_1}{(cO_2 - O_1)^2}, \quad cO_2 - O_1 > 0.$$

Потребуем, чтобы

$$\mathbf{P}(|\varepsilon_h - O_1| \leq cO_2 - O_1) \geq 0.8.$$

Тогда должно выполняться неравенство

$$\frac{D_1}{(cO_2 - O_1)^2} \leq 0,2. \tag{1.11}$$

В табл. 1 приведены значения O_1 , O_2 , D_1 для различных x_h , а также значения c, для которых выполняется (1.11). Эти данные позволяют,

			Iu	Inuigu I	Тиолици					
Xh	01	<i>O</i> ₂	D ₁	С	X _h	03	04	D ₃	С	
0,001 0,01 0,1 0,2 0,3	0,0003 0,0025 0,0268 0,0579 0,0945	0,0015 0,015 0,15 0,30 0,45	$2 \cdot 10^{-8}$ $2 \cdot 10^{-6}$ 0,0003 0,0013 0,0038	0,5 0,5 0,5 0,5 0,5 0,6	0,001 0,01 0,1 0,2 0,3	0,0010 0,0101 0,1072 0,2314 0,3778	0,004 0,04 0,4 0,8 1,2	$3 \cdot 10^{-7}$ 3,4 \cdot 10^{-5} 0,0041 0,0210 0,0616	0,6 0,6 0,7 0,7 0,8	

в частности, утверждать, что для $x_k \ge 0, 2$ оценка величины ε_k , полученная из теоремы 1, с вероятностью 0,8 лучше, чем приведенная в [³] оценка, деленная на два.

Если 0 принадлежит спектру оператора A, то нормы $||B_k||$ растут как 2^k

$$||B_k|| \leq \gamma 2^k$$
, $\gamma = \text{const}$,

поэтому в детерминированном случае естественно считать, что и посрешность округления на k-м шаге итераций пропорциональна $2^{k} : \|C_{k}\| \ge 2^{k} \varepsilon$. В нашем случае по аналогии с детерминированным случаем разумно будет предположить, что нормы $\|C_{k}\|$ представляют собой такие случайные величины, что

$$\mathbf{P}(\|C_{\hbar}\| \leq x) = \mathbf{P}\left(\|C_{0}\| \leq \frac{1}{2^{\hbar}}x\right) \quad (k \geq 1), \tag{1.12}$$

где $||C_0||$ удовлетворяет (1.1). Тогда, согласно [³], формула (1.2) остается в силе, причем

$$d_{i}^{k} \leq 2^{i(k-1)}(k+1)^{i+1},$$

и для математического ожидания є имеем

$$E \varepsilon_{k} \leq 2^{k} \sum_{i=1}^{2^{k}} 2^{(i-1)(k-1)} (k+1)^{i} \frac{\varepsilon^{i}}{i+1} = 2 \sum_{i=2}^{2^{k}+1} \frac{(\varepsilon 2^{k-1}(k+1))^{i-1}}{i}$$

Обозначим $x_k = \varepsilon 2^{k-1}(k+1)$. Тогда

$$E \varepsilon_{k} \leqslant 2 \sum_{i=2}^{2^{k+1}} \frac{x_{k}^{i-1}}{i} = \frac{2}{x_{k}} \sum_{i=2}^{2^{k+1}} \frac{x_{k}^{i}}{i} = \frac{2}{x_{k}} \sum_{i=1}^{2^{k+1}} \frac{x_{k}^{i}}{i} - 2.$$
(1.13)

Теперь легко доказать следующую теорему.

Теорема 2. Пусть выполнены условия (1.13), (1.1) и k таково, что $2^{k-1}(k+1)\varepsilon < 1$. Тогда

$$\mathbb{E} \varepsilon_{k} \leq \frac{2}{2^{k-1}(k+1)\varepsilon} \ln\left(1-2^{k-1}(k+1)\varepsilon\right)-2.$$
(1.14)

Доказательство проводится аналогично доказательству теоремы 1.

Легко также показать (см. (1.7)), что

$$D \varepsilon_{k} \leq 2 \sum_{i=1}^{2^{k}} (2^{k-1}(k+1)\varepsilon)^{i} \frac{i}{(i+1)\sqrt{2i+1}}.$$
(1.15)

В случае, когда известно только, что $\|C_{h}\| \leq 2^{h} \varepsilon$, как показано в [³], выполняется оценка

$$\varepsilon_k \leqslant 2^{k+1} (k+1)\varepsilon, \tag{1.16}$$

где $k < k_* = \max \{k : 2^{k-1}(k+1) \varepsilon' < 1\}.$

Обозначим правую часть (1.15) через O_3 , правую часть (1.17) через O_4 , и правую часть (1.16) через D_3 . В табл. 2 приведены данные для рассмотренного случая, аналогичные данным табл. 1.

2. Случай «нормально» распределенной ошибки

В предыдущем пункте предполагалось, что норма ошибки может принимать только значения, находящиеся в некотором ограниченном промежутке. Однако можно рассмотреть и такой случай, когда нормы $\|C_k\|$ могут принимать сколь угодно большие значения, но с малой вероятностью. Этот случай хорошо описывается случайной величиной со следующей плотностью распределения:

$$p(x) = \begin{cases} 0, & x < 0 \\ c e^{-x^2/2\sigma^2}, & x \ge 0 \end{cases} \quad (c = \text{const}).$$
(2.1)

Назовем такую случайную величину «нормально» распределенной. Константа с находится из условия нормировки и получается равной

Предположим сначала, что на каждом шаге итераций делается ошибка C_k , такая, что $||C_k||$ имеет плотность распределения p(x), удовлетворяющую (2.1). Тогда

$$E \|C_k\|^{2n} = (2n-1)!!\sigma^{2n}, \quad n=1, 2, \dots$$

$$E \|C_k\|^{2n+4} = (2n)!!\sigma^{2n+4} \sqrt{\frac{2}{\pi}}, \quad n=0, 1, \dots$$
(2.2)

Формулы (1.2) и (1.3) остаются в силе, поэтому

$$\mathbb{E} \, \varepsilon_k \leq 2^k \left(\sum_{n=0}^{2^{k-1}} (2n) \, !! \, \sigma^{2n+1} \, \sqrt{\frac{2}{\pi}} \, 2^{2n(k+1)} + \sum_{n=1}^{2^{k-1}} (2n-1) \, !! \, \sigma^{2n} 2^{(2n-1)(k+1)} \right).$$
 (2.3)

Заметим, что

/σ.

$$(2n)!!=2^nn!, (2n-1)!!=2^{n-1}\left(n-\frac{1}{2}\right)\cdot\ldots\cdot\frac{3}{2},$$

и, используя понятие Г-функции и ее свойства (см., напр., [4], т. 2, с. 758), получим

$$(2n)!!=2^{n}\Gamma(n+1), \quad (2n-1)!!=2^{n-1}\Gamma\left(n+\frac{1}{2}\right)\frac{2}{\sqrt{\pi}}.$$

Теперь оценку (2.3) можно записать в виде

$$E \varepsilon_{h} \leq 2^{k} \left(\sqrt{\frac{2}{\pi}} \sum_{n=0}^{2^{k-1}-1} 2^{n} \Gamma(n+1) \sigma^{2n+1} 2^{2n(k+1)} + \frac{2}{\sqrt{\pi}} \sum_{n=1}^{2^{k-1}} 2^{n-1} \Gamma\left(n+\frac{1}{2}\right) \sigma^{2n} 2^{(2n-1)(k+1)} \right) = 2^{k} \left(\sqrt{\frac{2}{\pi}} \sigma \sum_{n=0}^{2^{k+1}-1} \sigma^{2n} 2^{2n(k+3/2)} \Gamma(n+1) + \frac{2^{-k-1}}{\sqrt{\pi}} \sum_{n=1}^{2^{k-1}} \sigma^{2n} 2^{2n(k+3/2)} \Gamma\left(n+\frac{1}{2}\right) \right).$$
(2.4)

Оценим сначала значение выражения

 $\sum_{n=0}^{2^{k-1}-1} \sigma^{2n} \Gamma(n+1) 2^{2n(k+3/2)}.$

Для этого рассмотрим функцию

$$(x) = \sigma^{2x} \Gamma(x+1) 2^{2x(k+3/2)},$$

Видно, что $\sigma^{2n}\Gamma(n+1)2^{2n(k+3/2)}=f(n)$.

Дважды продифференцировав f(x), получим

$$f''(x) = p^x \int_0^\infty e^{-y} (\ln p + \ln y)^2 y^x \, dy > 0$$

где $p = (\sigma 2^{k+3/2})^2$.

Следовательно, f(x) выпукла.

Видно, что $f(n)/f(n-1) = \sigma^2 2^{2k+3}n$. Если

$$f(2^{k-1}-1)/f(2^{k-1}-2) = \sigma^2 2^{2k+3}(2^{k-1}-1) \leq 1,$$

то и

$$f(n)/f(n-1) \leq 1$$
 при любом $n \leq 2^{k-1} - 1$,

и следовательно, каждое последующее слагаемое нашей суммы не превосходит предыдущее.

Далее, так как f(x) выпукла, имеем

$$\sum_{n=0}^{2^{k-1}-1} \sigma^{2n} \Gamma(n+1) 2^{2n(k+3/2)} = 1 + \sum_{n=1}^{2^{k-1}-1} f(n) \leq \\ \leqslant 1 + \int_{0}^{2^{k-1}-1} f(x) dx \leqslant 1 + \frac{f(0) + f(2^{k-1}-1)}{2} (2^{k-1}-1).$$

Пусть k таково, что $\sigma^2(2^{3k+2}-2^{2k+3}) \leqslant 1$. Тогда $f(2^{k-1}) \leqslant f(0)$, и окончательно,

$$\sum_{n=0}^{2^{n+1}-1} \sigma^{2n} \Gamma(n+1) 2^{2n(k+3/2)} \leqslant 2^{k-1}.$$
(2.6)

Аналогично показывается, что при k, удовлетворяющих (2.5),

$$\sum_{n=1}^{2^{k+1}} \sigma^{2n} \Gamma\left(n+\frac{1}{2}\right) 2^{2n(k+3/2)} \leqslant 2^{3k+2} \sigma^2 \sqrt{\pi}/2.$$
(2.7)

Из (2.6), (2.7) и (2.4) следует Теорема 3. Пусть выполнено (2.1) и к удовлетворяет (2.5). Тогда

$$E \varepsilon_{k} \leq 2^{k} \sigma \left(\frac{2^{k}}{\sqrt{2\pi}} + 2^{2k} \sigma \right).$$
(2.8)

Чтобы сравнить (2.8) с соответствующей оценкой для случая, когда известна лишь граница $||C_k||$, воспользуемся известным правилом «Зо»: если ξ — случайная величина, плотность распределения которой удовлетворяет (2.1), то P($\xi \leq 3\sigma$) > 0,99. Таким образом, случаю с $||C_k|| \leq \varepsilon$ разумно сопоставить в наших условиях p(x), удовлетворяющее (2.1) с $\varepsilon = 3\sigma$. Тогда оценка (2.8) равносильна

$$\mathbb{E} \varepsilon_{\hbar} \leqslant \frac{2^{\hbar} \varepsilon}{3} \left(2^{\hbar} / \sqrt{2\pi} + 2^{2\hbar} \varepsilon / 3 \right), \tag{2.9}$$

где k таково, что $4/9\varepsilon^2(2^{3k}-2^{2k+1}) \leq 1.$ (2.10)

В случае $||C_k|| \leq \varepsilon$ имеем

$$\varepsilon_k \leqslant 3 \cdot 2^h \varepsilon$$
, где $k \leqslant -\lg_2 \varepsilon - 2.$ (2.11)

Используя полученные ранее результаты, запишем оценку диспер-

(2.5)

$$D^{1/2} \varepsilon_{h} \leqslant \frac{1}{2} \sum_{n=1}^{2^{k-1}} \frac{(\varepsilon 2^{h+1})^{2n}}{3^{2n}} \sqrt{(4n-1)!! - ((2n-1)!!)^{2}} + \frac{1}{\sqrt{2\pi}} \sum_{n=0}^{2^{k-1}-1} \left(\frac{\varepsilon 2^{h+1}}{3}\right)^{2n+1} \sqrt{(4n+1)!! \sqrt{\pi/2} - ((2n)!!)^{2}}.$$

Пусть $x_k = 2^{k+1} \varepsilon$. Обозначим также правые части (2.9) и (2.11) через O_5 и O_6 соответственно. В табл. З приведены данные по оценкам (2.9) и (2.11) в зависимости от значений x_k и k.

Таблица 3

Xk	k									
		1	2	3	4	5	6	7	8	
0,001	O_5	$1,3.10^{-4}$	$2,7 \cdot 10^{-4}$ 0.0015	0,0005	0,0011	0,0021 0,0015	0,0043 0,0015	0,0085 0,0015	0,0170 0,0015	
0,01	O_5 O_6	0,0013 0,015	0,0028 0,015	0,0053 0,015	0,0107 0,015	0,0214 0,015	$0,0427 \\ 0,015$	0,0855 0,015	0,1709 0,015	
0,1	$O_5 \\ O_6$	0,0139 0,15	0,0277 0,15	0,0554 0,15	0,1108 0,15	0,2217 0,15	0,4433 0,15	0,8866 0,15	1,7733 0,15	
0,20	$O_5 \\ O_6$	0,029 0,300	0,058 0,300	0,115 0,300	0,231 0,300	0,461 0,300	0,922 0,300	$1,844 \\ 0,300$	-	
0,25	$\begin{array}{c} O_5\\ O_6\end{array}$	0,037 0,375	0,073 0,375	0,147 0,375	0,294 0,375	0,587 0,375	1,175 0,375	2,350 0,375		
0,70	$\begin{array}{c} O_5\\ O_6\end{array}$	0,120 1,050	$0,241 \\ 1,050$	0,481 1,050	0,962 1,050	7 64	-			

Видно, что при небольших значениях k оценка (2.9) дает лучшие результаты, чем (2.11), однако при возрастании k числа, полученные из (2.9), растут значительно быстрее чисел, полученных из (2.11). Можно предположить, что «ухудшение» (2.9) по сравнению с (2.11) происходит из-за допущения сколь угодно больших значений погрешности, хотя и с малой вероятностью.

Наконец, докажем теорему, аналогичную теореме 2. Теорема 4. Пусть для p(x) выполнено (2.1),

$$\mathbf{P}\left(\|C_{h}\| \leq x\right) = \mathbf{P}\left(\|C_{0}\| \leq x/2^{h}\right).$$

Тогда при к таких, что

$$\sigma^2(k+1)^2(2^{3k-2}-2^{2k-1}) \leq 1, \tag{2.12}$$

имеем

$$\mathbb{E} \varepsilon_k \leq 2^k \sigma(k+1) \left(\frac{2^k}{\sqrt{2\pi}} + \frac{2^{2k} \sigma(k+1)}{4} \right).$$
(2.13)

Доказательство. Аналогично (2.4) получаем

$$\mathbb{E} \,\varepsilon_{k} \leq 2^{k} \Big(\sqrt{\frac{2}{\pi}} \,\sigma(k+1) \sum_{n=0}^{2^{k+1}-4} \Gamma(n+1) \,\sigma^{2n} 2^{2n(k-1/2)} (k+1)^{2n} + \frac{2^{-k+1}}{\sqrt{\pi}} \sum_{n=1}^{2^{k+1}} 2^{2n(k-1/2)} \Gamma\left(n+\frac{1}{2}\right) \sigma^{2n} (k+1)^{2n} \Big).$$

Используя (2.12), аналогично (2.6) и (2.7) находим

$$\sum_{n=0}^{2^{k+1}-1} \Gamma(n+1) \,\sigma^{2n} 2^{2n(k-1/2)} (k+1)^{2n} \leq 2^{k-1}, \tag{2.14}$$

$$\sum_{n=1}^{2^{k+1}} 2^{2n(k-1/2)} \Gamma\left(n+\frac{1}{2}\right) \sigma^{2n} (k+1)^{2n} \leq 2^{3k-2} \sigma^2 (k+1)^2 \frac{\sqrt{\pi}}{2},$$

и следовательно,

$$\mathbb{E} \, \varepsilon_{k} \leq 2^{k} \Big(\sqrt{\frac{2}{\pi}} \, \sigma(k+1) \, 2^{k-1} + \frac{2^{4-k}}{\sqrt{\pi}} \, 2^{3k-2} \sigma^{2}(k+1)^{2} \, \frac{\sqrt{\pi}}{2} \Big) = \\ = 2^{k} \sigma(k+1) \Big(\frac{2^{k}}{\sqrt{2} \, \pi} + 2^{2k-2} \sigma(k+1) \Big),$$

откуда сразу следует (2.13), и теорема доказана.

Как и в предыдущей оценке, рассмотрим случай, когда известно, что $\|C_k\| \leq 2^k \varepsilon$ и положим $\sigma = \varepsilon/3$. Тогда (2.13) будет выглядеть следующим образом:

$$E_{\varepsilon_k} \leqslant \frac{2^k \varepsilon(k+1)}{3} \left(\frac{2^k}{\sqrt{2\pi}} + \frac{2^{2k} \varepsilon(k+1)}{12} \right), \qquad (2.15)$$

где k удовлетворяет условию

$$\varepsilon^2/9(k+1)^2(2^{3k-2}-2^{2k-1}) \leq 1,$$
 (2.16)

а оценка для случая $||C_k|| \leq 2^k \varepsilon$ есть (1.17). Дисперсия ε_h удовлетворяет неравенству

$$\mathsf{D}^{1/2}\varepsilon_k \leq 2\sum_{n=1}^{2^{k-1}} \left(\frac{\varepsilon}{3} 2^{k-1} (k+1)\right)^{2n} \sqrt{(4n-1)!! - ((2n-1)!!)^2} +$$

$$+\frac{2\sqrt{2}}{\sqrt{\pi}}\sum_{n=0}^{2^{k+1}-1} \left(\frac{\varepsilon}{3} 2^{k-1} (k+1)^{\sqrt{2n+1}} \sqrt{(4n+1)!!} \sqrt{\frac{\pi}{2}} - ((2n)!!)^2\right)$$

Таблица 4

X _k	tope	k									
	100	1	2	3	4	5	6	7	8		
0,001	07	1,3.10-4	2,7.10-4	5,3 · 10-4	0,0011	0,0021	0,0043	0,0085	0,0170		
0,01	08 07	0,004 0,0013	0,004 0,0027	0,004 0,0053	0,004 0,0106	0,004 0,0213	0,004 0,0426	0,004 0,0852	0,004 0,1704		
0,1	O_8 O_7 O_8	0,0134	0,04 0,0269	0,04 0,0537	0,04 0,1075	0,04 0,2150	0,04 0,4300	0,04 0,860	0,04		
0,15	O_7 O_8	0,085 0,600	0,4 0,170 0,600	0,339 0,600	0,678 0,600	0,357	2,713 0.600	5,426 0,600	10,85		
0,20	$\begin{array}{c} O_7\\ O_8\end{array}$	0,115 0,800	0,231 0,800	0,461 0,800	0,922 0,800	1,844 0,800	3,689 0,800	7,378 0,800	0,800		
0,25	$\begin{array}{c} O_7\\ O_8\end{array}$	0,147 1,000	0,294 1,000	0,587 1,000	1,175 1,000	2,350 1,000	4,700 1,000	9,400 1,000	g use a		
0,35	$\begin{array}{c} O_7\\ O_8\end{array}$	0,213 1,400	0,427 1,400	0,854 1,400	1,707 1,400	3,414 1,400	6,829 1,400	-	-		
0,70	07 08	0,481 2,800	0,962 2,800	1,925 2,800	3,850 2,800		ane Usod	5	te near		

Пусть $x_k = 2^{k-1} \varepsilon (k+1)$. Обозначим правые части (2.15) и (1.17) через О7 и О8 соответственно. В табл. 4 приведены данные, аналогичные данным табл. З.

Примечание. Прочерки в клетках табл. 3 и 4 показывают, что для данных xk и k не выполнены соответственно (2.10) и (2.16), и следовательно, оценки (2.9) и (2.15) не могут быть использованы.

Автор выражает глубокую благодарность Г. Вайникко за руководство работой.

ЛИТЕРАТУРА

- Вайникко Г. Методы решения линейных некорректно поставленных задач в гиль-бертовых пространствах. Тарту, ТГУ, 1982.
 Лоэв М. Теория вероятностей. М., ИЛ, 1962.
 Минц А. Уч. зап. Тартуск. ун-та, вып. 672, 35—39 (1984).
 Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. М.—Л., Физматгиз, 1960.

Институт кибернетики Академиц наук Эстонской ССР Поступила в редакцию 19/VI 1985

Anna MINTS

OPERAATORITERATSIOONE JUHUSLIKE ÜMARDAMISVIGADEGA

On tehtud operaatoriteratsioonide analüüs eeldusel, et ümardamisvigade normid on juhuslikud suurused, mis on jaotatud ühtlaselt väikesel lõigul või normaalselt positiivsel arvteljel, kusjuures dispersioon on väike.

Anna MINTS

OPERATOR ITERATIONS WITH A RANDOM ROUNDING ERROR

This work deals with the influence the error of rounding-off has on a nearness of the approximate solution of the operator equation Au = j to the correct solution when the approximate solution is calculated by means of operator iterations method, and norm of the error of rounding-off is a random value. Obtained estimates are compared with the corresponding estimates for the case of determined error.