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2. Basis systems
Making use of fundamental properties of algebraic operations described
previously [*], one can establish general relationships between vectors
and operators associated with the above-mentioned linear spaces. It is
rational to use these general algebraic relationships foremost. However,
in order to specify vectors and operators and to discuss particular expe-
riments, one needs ordered sets of numbers coordinates of vectors
and matrices of operators. Thus, basis systems of vectors must be intro-
duced in each linear space described in Sec. 1.1.

Two different kinds of orthogonal basis systems will be used through-
out this work the /-basis and the Л-basis. Below we describe
both kinds of basis systems and their physical meaning, using the two
spin 1/2 system as an demonstrative example.
2Л. A-ba si s. The orthonormalized Л-bases in space С, О and Hof
a <i-level system refer to the particular spin system under study. If H 0
denotes the static Hamiltonian of this system, then its Л-basis in Cis
the orthonormalized set of eigenvectors | am> gС,m=l, 2, ..., d, of Я0:

Ho\Clm} = (£) o
rn \ CLrn>. (2.1)

The corresponding orthonormalized Л-basis in the space О is given by
the following set of d 2 linear operators

Amn — |m><n|, 2, d). (2.2)
These basis operators form an orthonormal set of eigenvectors of the
corresponding static Superhamiltonian JC0 of the spin system under study:

'К'()Л тп:= (2-3)

where the so-called transition frequencies
coo =,o)0 iQ)O (2.4)mn in n 4

are subject to the Ritz relationships
to0 =O, (2.5)

mm ’ v '

< 2-6 >

<* +<.=<.„•
,

(2J )

The matrix elements of the operator Amn relative to the Л-basis of C
vanish except for the one on the intersection of m-th row and n- th column
which possess the value 1. Therefore, if one expands a linear operator

https://doi.org/10.3176/phys.math.1984.2.03

https://doi.org/10.3176/phys.math.1984.2.03


2 ENSV TA Toimetised. F * M 2 1984 153

on C, say the density operator P, in terms of the Л-basis of О as shown
by Eq: (2.8)

P === ЯшпЛтпп, (2.8)
m n

one gets for the coordinates of the vector Pd О

Лтп = {P, Amn ) = (CL m JP [ CL ny (2.9)
the matrix elements of the linear operator P calculated relative to the
Л-basis of C.

Some properties of the basis operators A mn are given by Eq. (2.10),
(2.11)

A mm =Amm , Amn =Anm, (2.10)
tr Лтт=1, tr Лтп =O. (2.11)

The matrix products between the basis operators Amn vanish unless they
have a «common level». In the latter case

AmhAkn ==Amn . (2.-12)
Starting from Eq. (2.12), one gets the following commutators of basis
operators which do not vanish

[ Лтт, Amn ]=Aran, (2.13)
[Amn, Anm] =Amm А пп, (2.14)
[A mh, Afm] =Amn- (2.15)

An hermitian operator on C, like HO , is specified: a) by the set of
eigenvectors (by the unitary orientation of H 0 in C) b) by the
set of eigenvalues co° . All hermitian operators (considered as vectors
of O) with the same unitary orientation are located in a d-dimensional
subspace 0A cz О spanned by basis operators Amm. They form the
corresponding subspace Нас H also spanned by Amm . The traceless
hermitian operators are located in the {d —1)-dimensional subspace
O c: Oa and form the corresponding subspace H°4

cz H. The latter is a
[d —1)-dimensional commutative Lie subring associated
with the Л-basis.,

The transformation
Нт=ЪНO=ТН OГ-\ 7eSU(rf) (2.16)

generates a new hermitian operator HT which has the same spectrum of
energy levels ы°

/п
as H O, and a different unitary orientation given by

\bm y =T\Om}. (2.17)

If in Eq. (2.16) T runs through SU(d), one gets a class of equivalent
hermitian operators (a spectral class) specified by the eigenvalue spect-
rum (o°

m
. Each possible spectral class has a representative H 0 in sub-

space .

The transformations (2.16), (2.17) induce corresponding transforma-
tions in the adjoint representation

Жт=ЪЖOЪ-\ (2.18)
Втп=ЧзА I b my (b n I. (2.19);
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The bases |6 m)eC and BM eO (the Б-bases) are of the same kind
as the corresponding Л-bases, but they refer to HT and to 3tT , respec-
tively;

Note that the definition (2.1) of the Л-basis in C is not unique —.

one can multiply each |am> with an arbitrary phase factor:

U\am> =er***\am>. (2.20)
In this case the basis operators Ащп will also be multiplied by a corres-
ponding phase factor given by Eq. (2.21)

ТЬЛтп =

where the angles
'фтп =='фт 'фп (2.22)

are subject to Ritz relationships similar to Eq. (2.5)
Actually, Eq; (2.20) defines a unitary operator U OA,0A, the unitary

adjoint representation CIL of which being given by Eq. (2.21), All such
unitary operators U constitute the d-dimensional commutative Lie group
GA.cU(d). g°

A
= H°A

is the Lie ring of the unimodular subgroup
cz Ga . In Adiabatic NSD propagators which describe the motion in

case H(t) =H0 <= g°
A (Free Induction) belong to the subgroup cz

<nSU(d). Since
ТIЛO=UHO U-i=HO , (2.23)

Ga is also the symmetry group of all hermitian operators H 0 e Н°д . This
is, of course, a trivial case of symmetry. In what follows we will speak
about symmetrical hermitian operators and about their symmetry group
GczSU(d) only in case H 0 being degenerate and U running through G.

It is to emphasize that an arbitrary unitary superoperator on Оis
not necessarily the adjoint representation of an unitary operator on C.
Thus, an orthonormal basis in О is not always an Л-basis.

In order to introduce the Л-basis of space H which corresponds to
the Л-basis of O, let us first define the following set of hermitian ope-
rators [2 ]

= ( 1/2) (A mm ~F Ann), (2.24)
4n= (1/2) [A mm Ann ), (2.25)
Хщп =( 1/2) {Amn -(- Anm), (2.26)
Ymn z= — (i/2) {Amn A nm) . (2.27)

We adopt the term single transition operators [3 ] for these operators.
To each transition m-+n (m<n) corresponds a set of mutually orthogo-
nal single transition operators (2.24)
all single transition operators have equal norms

(IFTOn, Wmn) = (Zmn, Zmn) = ( Xmn, = (Y mn, Ymn) = 1/2. (2.28)
The traces of single transition operators are

tr Wmn = 1, trZmn =tr Amn =tr ymn ==o. (2.29)
If the space H is decomposed into the direct sum

H= HA-i-H ±
, (2.30)

then the single transition operators Xmn ,
Ymn, m,n— 1,2, ..., d\ m<.n}
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form an orthogonal basis of the d{d — 1)-dimensional subspace H
±

,

whereas Wmn and Zmn are located in the subspace Ha. However, the
traceless single transition operators Zmh, Zkn of a pair pf connected
transitions (e. g. of transitions which share a common level «&») are
linearly dependent

Zrnh -\~Zfrn Zmn» (2.31)
For this reason we put together the operators Amm <= H A and Xmn, Ymn e

H
±

in order to form the Л-basis of the space H. Replacing the
operators Amm with a new set of {d —1) -mutually orthogonal basis
operators which span the subspace H we get an orthogonal basis of
H° associated with the original Л-basis. These basis operators can be
constructed as suitable linear combinations of single transition opera-
tors Wmn and Zmn . The new basis in will be adapted to a Lie
subring gcsu(rf) which governs a kind of experiments associated with
Л-basis.

The single transition operators (2.24)
following set of commutation relations

— Утп]—Хтп (2.32)
and cyclic permutations,

[ Wmn, Zmn ]= [ Wmn, Xmn ]=l[ Wmn, Ymn ]=0. (2.33)
Eq. (2.32) tells that Xmn , Ymn and Zmn span a 3-dimensional Lie subring
gL {mn) cn su{d): The Lie algebra of gb{mn) is isomorphic with so(3)
and su(2). It is due to this isomorphism that selective excitation of a
single transition leads to phenomena well known in the dynamics of
sin-gle-spin 1/2 system.

Any two single transition operators which belong to different transi-
tions commute unless they share a common level. In the latter case we
have ([ 2 ]

i[Xmk, Xhn] = ( 1/2) Ymn, (2.34)
i[Xmh, Lftn ]=—( 1 /2 )Xmn, (2.35)
f[ Ymk, A/i n ] =— (1/2 )Xmn, (2.36)
i[Ymh, Lftn] ==—( 1/2) Ymn. (2.37),

To these equations we add the following two

46oAmn= f[F/o, Xmn] ы°тп Ymn, (2.38)

J£o Ymn == f[7/o, Tmn ] = (D°
mn Xmn, (2.39)

which show that the adjoint representation J£o of H 0 on H does not
possess eigenvectors in H

L , but there are invariant planes spanned by
Xmn, Ymn • To each transition corresponds an invariant plane of J6O .

In applying the transformation (2.21) to operators of the Л-basis ofH, we get
9T A mm Amm, (2.40)

TLxmn COS 'lJ)Tnn-Xrrm-l- Sln fmn Ymn, . (2.41)
TL Ymn sin l^rnnXmn -f-COS lj)mnYmn ■ (2.42)

’Therefore, the plane ATOn , L mn eH
±

of a typical transition is a rotation
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plane. The orthogonal adjoint representation TL of the unitary operator
U a rotates the vectors of this plane by the angle ty mn .

The physical meaning of Л-bases in Adiabatic NSD is in that they
induce a decomposition of spaces С, О and H into subspaces which
are invariant relative to propagators of the subgroup cz SU(4). This
is the dynamical group for experiments like Free Induction. If relaxation
is sufficiently weak, the Free Induction Decay experiments (the FT NMR
spectra) can also be described in terms of Л-bases of Liouville spaces.

If the Hamiltonian, the superoperator of relaxation [4 ], the density
operator and the observable are explained in terms of Л-basis, then the
dynamical relationships one gets do not depend upon the nature of the
spin system under study or upon particular interactions of this system.
In order to correlate the laws of such Abstract NSD with actual expe-
riments (e. g. to study possible physical realizations of the Abstract
NSD), one must establish a correspondence between the Л-basis and
another basis of Liouville spaces build-up with the help of single spin
operators the /-basis. In principle, the whole dynamical problem
could be studied in terms of the /-basis. Provided this is done, one can
speak about the direct method in the theory of NMR p-8 ]. We do not
mean that the direct method introduces an «economy of thinking» in
general. We will study the dynamical relationships of the Abstract NSD
in terms of suitable Л-bases. Then the physical interpretation of these
relationships in terms of the /-basis will be considered as selected
«static» topics.
2.2. /-basis. The /-basis of a many-spin system [9 ] is defined with
reference to the laboratory coordinate system and experiences an
orthogonal (space H) or unitary (space O) transformation when this
system rotates. The /-basis also refers to the composition of the spin
system under study. Below the build-up of the /-basis of two spin 1/2
systems is demonstrated.

The /-basis of 4-dimensional Liouville spaces О (A.) and H(A,) of a
single spin number 'A, (A1=1,2) of the two-spin system is composed of
single spin operators I0 {X) = (1/2)F(A,), Ix {X), Iy {X ) and IZ {X). The
correspondence between the latter three operators and the laboratory
coordinate system is established by Eq. (1.13). Note that Eq. (1.15)
remains valid for all four single spin operators. Since

[/o(b)./j(A.)]=0, (2.43)
-Ч[/*(Я)Л(Я) ]=/*(*,) (2-44)

and cyclic permutations, the single spin space H (A,) is a representation
of the Lie algebra u(2), whereas the 3-dimensional subspace H°(iL)
spanned by Ij{X) with j—x,y,z is a representation of su(2) and so(3).

Unitary unimodular operators D (X) on space C(A,) form a represen-
tation of SU(2). The adjoint representation D(L) of D (X) on О (A,) and
H (A) does not change the operator JO (A,) but rotates the other single spin
operators. If one establishes such a one-one correspondence between the
rotations of laboratory coordinate system and the superoperators 2)(A.)
that Eq. (1.13) remains valid for transformed quantities, one gets a
representation of SO(3) on spaces 0°(k) and H°(A,).

The /-basis of Liouville spaces О and H of two-spin 1/2 systems is
formed by direct products of single spin operators /j(A,) of both nuclei
X— 1,2:

Ijh=lj{ 1)X4(2)e0,H, U,k = o,x,y,z). (2.45)
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The term basic spin tensors (of two-spin 1/2 systems) will be used for
the hermitian operators (2.45).

The /-basis defined by Eq. (2.45) is orthogonal yet not normalized.
Indeed

(Л-ft, lih) =</j (1), h (1)) (/ft (2), Ik (2)) = 1/4. (2.46)
One gets an orthonormalized /-basis by replacing the basic spin tensors
(2.45) with the corresponding normalized basic spin tensors 2 ljh.

According to Eq. (2.47),
tr I jk= (tr /, (1)) (tr Ih (2)) = ö jh, (2.47)

the operator /0o=(l/4)E spans the 1-dimensional subspaces 0E and He,
whereas the other basic spin tensors span the 15-dimensional subspaces
0° and H° of traceless operators.

Such unimodular unitary operators DeSU (4) on space C which are
built-up as direct products

D= D (1) XD (2) <= SU (4) (2.48)
of the above-mentioned operators D (7) on C(7) constitute the Lie group
SU(2)XSU(2), a 6-dimensional subgroup of the 15-dimensional Lie
group SU(4). The adjoint representation Ю of the operator (2.48) on
Liouville spaces О and H is also a direct product of the corresponding
single spin superoperators 2)(7) on 0(7) and H(i7);

3) =T)(l) X2)(2). (2.49)
This means, in particular, that

3)/jft=3)(l)/j(l)X3)(2)/ft(2). (2.50)
Thus, the single spin spaces in Eq. '(1.3), (1.4) transform independently
as do the single spin spaces in Eq. (1.2) if the operators (2.48) are
applied.

The Liouville spaces of two-spin 1/2 systems decompose into a direct
sum of subspaces which are invariant (and irreducible) with respect to
the adjoint representation of SU(2)XSU(2). One gets this decomposi-
tion on the basis of Eq. (2.50) by noting that the superoperators (2.49)
do not cause a change of single-spin operators /0 (7), 7=1,2. So in case
of, say, space H we have the following decomposition

H= Не4-Н(1) (1)4-Н (1) (2)-4-Н (2) (1, 2). (2.51)
In Eq. (2.51) the 3-dimensional subspaces H(1) (l) and H(1) (2) are
spanned by Ijo and loj, ( j—x,y,z), respectively. The 9-dimensional sub-
space H(2)(l,2) is spanned by basic spin tensors I jh with j,k=x,y,z.

Such unitary operators (2.48) which carry out the same transfor-
mation in both single-spin spaces C(7), ,7=1,2, form the 3-dimensional
subgroup Gz c=SU(4), a representation of SU(2). The adjoint represen-
tation of Gz on H and О is a representation o(f SO(3) which describes
the effect of rotation of laboratory coordinate system. With respect to this
transformation the elements of subspaces HW(7), 7=1,2, are ordinary
tensors of the first degree (ordinary vectors), whereas the elements of
H (2) (l,2) are ordinary tensors of the second degree. However, the
adjoint representation of Gz on H(2) (l,2) is not irreducible. The subspace
H (2) (l,2) reduces into a 1-dimensional subspace of scalars, a 3-dimen-
sional subspace of asymmetric tensors and a 5-dimensional subspace of
irreducible symmetric tensors. The basis system of H (2) (l,2) which
induces this reduction is composed of irreducible spin tensors [lo ].

In order to make a difference in notation between unnormalized and
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normalized basic spin tensors we supply the latter with an upper label
a number in brackets showing tensorial degree. Eq. (2.52), (2.53) bring
examples of normalized basic spin tensors:

/<!>= 21го =lz (1) X£(2) €= H<« (1). (2.52)
= 2/zac= 2/z ( 1 )Х/эс (2) g H (2 > (1, 2). (2.53)

The commutation relations between basic spin tensors of many-spin
1/2 systems are given in [9 ]. For a two-spin 1/2 system the main

consequence of these relationships are: a) the subspaces H (1) (l) and
H (1) (2) are representations of su(2); b) the operators of the noncornmu-
tative Lie rings H (1) (l) and H (1 >(2) commute with each other; c) the
direct sum H(1) (l)4-H(1) (2) j s the infinitesimal ring of SU (2)XSU (2).

The total spin operators
/ j=/ä )+/

oj
e gz

’
(/=*, */,*), (2.54)

span the infinitesimal ring gz cz (H (1) (1) -4-Н (1 > (2)) of the subgroup
G 2 cz SU (2) XSU (2). Of course, gz is a representation of su (2). The
other 3-dimensional subspace Нл cz (H (1) (l)-j-H (1) (2)) which is ortho-
gonal and invariant with respect to gz, is spanned by

4j=/»~^eHä, (2.55)

Expansion of hermitian operators of physical quantities in terms of
normalized basic spin tensors allows one to specify these quantities.
So, the operator of total nuclear magnetic dipole moment of the two-spin
system in, say, x-direction Mx is the sum of corresponding individual
magnetic moments of both nuclei;

Mx =yiniw + y2m)x(= (HW (l)-i-H (1) (2)), (2.56)
where yi and y 2 denote the gyromagnetic ratios of nuclei number 1 and
2, respectively.

The density operator P of a two-spin 1/2 system is a positively defi-
nite hermitian operator on C which satisfies the following conditions

trP=l, (2.57)

The hermitian operator PeH is specified by its unitary orientation in
C and by a set of positive eigenvalues (by the natural populations). The
minimal lenght |P| =l/2 of the vector P is present in the state P=IOo
which possess equal natural populations. The maximal lenght |P| = 1
is realized only in case of pure quantum states like Р=Ашт. In Adia-
batic NSD only the unitary orientation of P does change if time pro-
ceeds.

Expanding P in terms of normalized basic spin tensors we have

P=/oo+P(i) (1) +P<« (2) +Р») (I,2)eH, (2.59)
where

Р(1) (1) = -27я^о>еН«(1).
.

(2.60)
j

and
P{2) (1.2) =2Jj яjhl% eH« (1,2), (2.61)

j h

are tensorial components of the density operator of the first and second
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degree, respectively. The observed average value of the operator (2.56)
(Mx)= (P, M x ) =уlЙПхо+у2%лох (2.62)

is directly sensitive only to tensorial components (2.60) of the first degree.
In summing up what has been said about Л-basis and /-basis it is

instructive to note that both are defined with reference to a subgroup
of SU (4) the commutative subgroup G°A and the noncommutative
subgroup SU (2)XSU (2), respectively. Both bases induce a decom-
position of Liouville spaces into subspaces which are irreducible with
respect to the adjoint representation of the corresponding subgroup of
SU(4). In turn, the reduction of the adjoint representation of a subgroup
GczSU(4) defines an orthogonal basis of Liouville spaces which will
be useful in the study of group, aspects associated with G.
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V. SINIVEE

PÕHIMÕISTEID VEDELIKE TUUMASPINNIDE DÜNAAMIKAS. 2

Tuurnaspinnide dünaamikas on otstarbekohane kasutada üheaegselt kaht baasvektorite
süsteemi Л-baasi ja /-baasi. Л-baasi keeles väljendatud üldised dünaamilised seadus-
pärasused ei sõltu tuurnaspinnide süsteemi konkreetsetest interaktsioonidest. Teisendus
/-baasi keelde võimaldab anda nende seaduspärasuste füüsikalise interpretatsiooni igal
konkreetsel juhul.

В. СИНИВЕЭ
ОСНОВНЫЕ ПОНЯТИЯ в ЯДЕРНОЙ СПИНОВОЙ ДИНАМИКЕ ЖИДКОСТЕЙ. 2.

В ядерной спиновой динамике целесообразно пользоваться одновременно двумя систе-
мами базисных векторов Л-базисом и /-базисом. Выраженные на языке Л-базиса
общие динамические закономерности не зависят от конкретных взаимодействий спи-
новой системы. Переход на язык /-базиса позволяет дать физическую интерпретацию
этих закономерностей в каждом конкретном случае.
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