ÉÉŚTI NSV TEADUSTE ÁKADEEMIA TOIMETISED. 32. KOIDE FÜÜSIKA * MATEMAATIKA. 1983, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 32 ФИЗИКА * МАТЕМАТИКА. 1983, № 2

УДК 518,12 : 517.958 : 523

Ю. КНЯЗИХИН

МЕТОД ДИСКРЕТНЫХ ОРДИНАТ ПРИМЕНИТЕЛЬНО К РЕШЕНИЮ УРАВНЕНИЯ ПЕРЕНОСА ИЗЛУЧЕНИЯ В ОДНОРОДНОЙ ПЛОСКОПАРАЛЛЕЛЬНОЙ АНИЗОТРОПНО РАССЕИВАЮЩЕЙ АТМОСФЕРЕ. 2

(Представил Г. Кузмин)

Одним из возможных методов решения интегро-дифференциального уравнения переноса является метод дискретных ординат. В [¹] был рассмотрен один из вариантов этого метода: интегро-дифференциальное уравнение приближенно заменяется системой линейных дифференциальных уравнений с краевыми условиями, которая получается путем замены интегрального члена некоторой квадратурной суммой. Было показано, что при «равномерной» дискретизации уравнения переноса по азимуту матрица коэффициентов системы дифференциальных уравнений разбивается на блоки — циркулянты, которые легко приводятся с помощью унитарного преобразования, не зависящего от конкретного блока, к диагональному виду. Это позволило разбить приближенную задачу большой размерности на подзадачи меньшей размерности.

В настоящей работе исследуется класс систем дифференциальных уравнений с краевыми условиями, который интерпретируется как класс приближенных методов решения уравнения переноса. Сюда входят, например, дискретные методы решения уравнения переноса излучения, рассмотренные в [1-4]. Для решения системы из этого класса предлагается итерационный метод Зейделя. Устанавливается сходимость и оценивается скорость сходимости этого метода (теорема 1). Для решения задачи Коши, которая возникает на каждом итерационном шаге, обсуждается метод трапеций с переменным шагом. Показано, что при определенных ограничениях на шаг решение этой задачи положительно (теорема 2). В двух последних разделах приводятся два приближенных метода решения уравнения переноса излучения из рассматриваемого класса, использующие «равномерную» дискретизацию по азимуту, и их численные реализации на конкретном примере.

1. Постановка задачи

Рассмотрим одну из основных краевых задач атмосферной оптики

$$\mu \frac{d\mathfrak{I}(\tau,\mu,\varphi)}{d\tau} = -\mathfrak{I}(\tau,\mu,\varphi) + \lambda (4\pi)^{-1} \int_{0-1}^{2\pi+1} g(\gamma') \mathfrak{I}(\tau,\mu',\varphi') d\mu' d\varphi' + \frac{1}{2\pi} \int_{0}^{2\pi+1} g(\gamma') \eta' d\varphi' + \frac{1}{2\pi} \int_{0}^{2\pi+1} g(\gamma') \eta' d\varphi' d\varphi' + \frac{1}{2\pi} \int_{0}^{2\pi+1} g(\gamma') \eta' d\varphi' + \frac{1}{2\pi} \int_{0}^{2\pi+1}$$

$$+Fg(\gamma)\exp(\sigma\tau), \quad 0 \leqslant \tau \leqslant H, \quad -1 \leqslant \mu \leqslant 1, \quad 0 \leqslant \varphi \leqslant 2\pi, \tag{1}$$

$$\mathfrak{I}(0,\mu,\phi) = 0$$
 при $\mu > 0, \ \mathfrak{I}(H,\mu,\phi) = 0$ при $\mu < 0.$ (2)

Задача (1)—(2) описывает перенос излучения в освещенной параллельными лучами анизотропно рассеивающей плоскопараллельной сре-

5 ENSV TA Toimetised. F*M-2 1983

де оптической толщины H и вероятностью λ ($0 \le \lambda \le 1$) выживания кванта в акте столкновения с частицей среды. Анизотропность рассеяния учитывается индикатрисой рассеяния $g(\gamma) \ge 0$, нормированной условием

$$(4\pi)^{-1} \int_{\omega}^{\pi} g(\gamma') d\omega = (4\pi)^{-1} \int_{-1}^{+1} \int_{0}^{2\pi} g(\gamma') d\mu' d\varphi' = 1,$$
(3)

$$\cos \gamma' = \mu \mu' + \gamma \overline{(1-\mu^2)(1-\mu'^2)} \cos (\varphi - \varphi'),$$
(3)

$$\sin \gamma = \mu \mu_0 + \gamma \overline{(1-\mu^2)(1-\mu_0^2)} \cos (\varphi - \varphi_0), \quad \gamma, \gamma' \in [0,\pi].$$

Здесь (—агссоѕ μ_0 , φ_0) — направление прямого излучения в сферической системе координат с полярной осью, идущей в сторону растущих оптических глубин, $\sigma = -1/\mu_0$. Искомая функция $J(\tau, \mu, \varphi)$ — это интенсивность излучения на оптической глубине τ в направлении, которое определяется полярным расстоянием агссоѕ μ и азимутом φ .

Для решения задачи (1)—(2) рассмотрим следующий класс дискретных методов

$$a_{sm}\frac{d\mathfrak{I}_{sm}(\tau)}{d\tau} = -b_{sm}\mathfrak{I}_{sm}(\tau) + \lambda(4\pi)^{-1} \left[\sum_{j=1}^{n}\sum_{l=1}^{p}g_{jlsm}\mathfrak{I}_{jl}(\tau) + \right]$$

$$+\sum_{j=1}^{n}\sum_{l=1}^{p}g_{-jlsm}\tilde{J}_{-jl}(\tau)\right]+u_{sm}\exp(\sigma\tau),$$
(4)

 $\mathfrak{Z}_{im}(0) = \mathfrak{Z}_{-im}(H) = 0, \quad s = \pm 1, \ \pm 2, \ \dots, \ \pm n; \quad i = 1, \ 2, \ \dots, \ n, \qquad (5) \\ m = 1, \ 2, \ \dots, \ p.$

На параметры asm, bsm и gilsm наложим следующие ограничения:

$$a_{im} > 0, \ b_{im} > 0, \ a_{-im} = -a_{im}, \ b_{-im} = b_{im},$$
 (6)

$$g_{iljm} \ge 0,$$
 (7)

$$g_{iljm} = g_{-il(-j)m}, g_{il(-j)m} = g_{-iljm}, g_{iljm} = g_{jlim} = g_{jmil},$$
(8)

$$b_{im}^{-1} \sum_{j=1}^{n} \sum_{l=1}^{p} (g_{jlim} + g_{-jlim}) = 4\pi, \qquad (9)$$

$$i, j = 1, 2, \ldots, n; m, l = 1, 2, \ldots, p.$$

Отметим, что свойство (9) является дискретным аналогом условия (3). Сформулированная нами задача имеет единственное решение. Для доказательства этого факта достаточно дословно повторить рассуждения раздела 2 работы [¹].

2. Векторно-матричная запись системы (4)-(5)

Используя векторно-матричную символику и учитывая свойства (6) и (8), перепишем задачу (4)—(5) в виде

$$A_i \frac{d\mathfrak{I}_i(\tau)}{d\tau} = -B_i\mathfrak{I}_i(\tau) + \sum_{j=1}^n (G_{ij}\mathfrak{I}_j(\tau) + G_{-ij}\mathfrak{I}_{-j}(\tau)) + u_i \exp(\sigma\tau),$$

$$A_i \frac{d\mathfrak{I}_{-i}(\tau)}{d\tau} = B_i \mathfrak{I}_{-i}(\tau) - \sum_{j=1}^n (G_{-ij}\mathfrak{I}_j(\tau) + G_{ij}\mathfrak{I}_{-j}(\tau)) - u_{-i} \exp(\sigma\tau), \quad (10)$$

$$\mathfrak{I}_i(0) = \mathfrak{I}_{-i}(H) = 0, \quad i = 1, 2, \dots, n.$$
 (11)

зараллельной сре-

COS

Здесь

$$\begin{split} \tilde{J}_{i}(\tau) &= (\tilde{J}_{i1}(\tau) \ \tilde{J}_{i2}(\tau) \dots \tilde{J}_{ip}(\tau))^{\tau}, \\ u_{i} &= (u_{i1} \ u_{i2} \ \dots \ u_{ip})^{\tau}, \\ G_{ij} &= \frac{\lambda}{4\pi} \begin{pmatrix} g_{j1i1} \ g_{j1i2} \ \dots \ g_{j1ip} \\ g_{j2i1} \ g_{j2i2} \ \dots \ g_{j2ip} \\ \ddots \ \ddots \ \ddots \ \ddots \ \ddots \ \ddots \end{pmatrix}, \quad B_{j} &= \begin{pmatrix} b_{j1} \ b_{j2} \ \ddots \ b_{j2} \\ \ddots \ \ddots \ \ddots \ \ddots \ \ddots \ \end{pmatrix}, \end{split}$$

Кроме этой, будем использовать еще одну форму записи задачи (4) - (5)

$$x'(\tau) = Rx(\tau) + A^{-1}G^{-}y(\tau) + A^{-1}\tilde{f}^{+}(\tau),$$
(12)

$$y'(\tau) = -Ry(\tau) - A^{-1}G^{-x}(\tau) - A^{-1}l^{-}(\tau),$$

$$x(0) = y(H) = 0.$$
(13)

,

Здесь $R = A^{-1}B(B^{-1}G^+ - I),$

$$A = \begin{pmatrix} A_{1} & 0 \\ A_{2} & 0 \\ \vdots & \vdots \\ 0 & \vdots \\ A_{n} \end{pmatrix}, \quad B = \begin{pmatrix} B_{1} & 0 \\ B_{2} & 0 \\ \vdots \\ 0 & \vdots \\ B_{n} \end{pmatrix}, \quad G^{\pm} = \begin{pmatrix} G_{\pm 11} & G_{\pm 12} & \dots & G_{\pm 1n} \\ G_{\pm 21} & G_{\pm 22} & \dots & G_{\pm 2n} \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ G_{\pm n1} & G_{\pm n2} & \dots & G_{\pm nn} \end{pmatrix},$$
$$x(\tau) = (\mathfrak{I}_{1}(\tau)\mathfrak{I}_{2}(\tau)\dots\mathfrak{I}_{n}(\tau))^{\mathsf{T}}, \quad y(\tau) = (\mathfrak{I}_{-1}(\tau)\mathfrak{I}_{-2}(\tau)\dots\mathfrak{I}_{-n}(\tau))^{\mathsf{T}}, \quad \mathbb{I}_{n} \in \mathbb{I},$$
$$f^{\pm} = \exp(\sigma\tau) (u_{\pm 1}u_{\pm 2}\dots u_{\pm n})^{\mathsf{T}},$$

а I — единичная матрица.

3. Итерационный процесс

Рассмотрим итерационный процесс

$$\begin{aligned} x'_{k+1}(\tau) &= R x_{k+1}(\tau) + A^{-1} G^{-} y_{k}(\tau) + A^{-1} f^{+}(\tau), \\ x_{k+1}(0) &= 0, \\ y'_{k+1}(\tau) &= -R y_{k+1}(\tau) - A^{-1} G^{-} x_{k+1}(\tau) - A^{-1} f^{-}(\tau), \\ y_{k+1}(H) &= 0. \end{aligned}$$
(14)

Для описания этого итерационного процесса введем ряд обозначе ний и определений, а именно:

1)
$$g = \min_{\substack{1 \le s \le n \\ 1 \le m \le p}} (4\pi b_{sm})^{-1} \sum_{j=1}^{n} \sum_{l=1}^{p} g_{jlsm}; \quad G = \max_{\substack{1 \le s \le n \\ 1 \le m \le p}} (4\pi b_{sm})^{-1} \sum_{j=1}^{n} \sum_{l=1}^{p} g_{jlsm};$$

5* 187

2)
$$m = (1 - \lambda G) \min_{\substack{1 \le i \le n \\ 1 \le m \le p}} a_{im}^{-1} b_{im}; \quad M = (1 + \lambda G) \max_{\substack{1 \le i \le n \\ 1 \le m \le p}} a_{im}^{-1} b_{im};$$

3) для x, y
 R^{пр} определим скалярные произведения

$$(x,y) = \sum_{j} x_{j} y_{j},$$

 $(x, y)_B = (Bx, y), \quad \langle x, y \rangle = (AB^{-1}x, y)_B = (Ax, y)$

и нормы

$$||x||_{B} = (x, x)^{\frac{1}{2}}, \quad ||x|| = \langle x, x \rangle^{\frac{1}{2}};$$

4) $L_2[0, H]$ — пространство вектор-функций $x(\tau)$, определенных на отрезке [0, H] и принимающих значения в R^{np} , в котором норма задается как

$$|||x||| = (\int_{0}^{H} ||x||^{2}(\tau) d\tau)^{1/2};$$

5) $\theta_1 = \lambda (1 - g) (1 - \lambda g)^{-1};$ 6) $\theta_2 = 1 - \exp(-MH);$

7) $q = \theta_1 \theta_2$.

Теорема 1. Итерационный процесс (14) сходится при любом начальном приближении $y_0 \in L_2[0, H]$. Имеют место оценки

$$|\|x^* - x_{k+1}\|| \leq m^{-1/2} (1 - q^2)^{-1} q^{2k+1} |\|y_0 - y_1\||,$$

$$|\|y^* - y_{k+1}\|| \leq m^{-1/2} (1 - q^2)^{-1} q^{2k+2} |\|y_0 - y_1\||, \quad k = 1, 2, 3, \dots.$$

Замечание 1. Теорема остается в силе, если «нулевые» краевые условия (13) заменить на «ненулевые». Кроме того, применяемый для исследования математический аппарат позволяет обобщить теорему на случай зависящих от переменной т матриц.

Доказательство теоремы будет дано в конце этого раздела.

Лемма 1. Матрица $R = A^{-1}B(B^{-1}G^+ - I)$ является самосопряженным оператором в гильбертовом пространстве со скалярным произведением < ... >. Имеет место неравенство

$$-M\langle x, x\rangle \leqslant \langle Rx, x\rangle \leqslant -m\langle x, x\rangle.$$
(15)

Доказательство. Определение матриц A, B и G⁺ с использованием условий (8) порождает цепочку равенств

$$\langle Rx, y \rangle = ((B^{-1}G^+ - I)x, y)_B = (x, G^+y) - (x, By) =$$
$$= (x, (B^{-1}G^+ - I)y)_B = \langle x, Ry \rangle,$$

доказывающую самосопряженность оператора *R*.

Используя неравенство Коши-Буняковского, имеем

$$-(\|B^{-1}G^+\|_B+1)(x,x)_B \leqslant \langle Rx,x \rangle = (B^{-1}G^+x,x)_B - (x,x)_B \leqslant -(1-\|B^{-1}G^+\|_B)(x,x)_B.$$
(16)

Учитывая самосопряженность оператора $B^{-1}G^+$, действующего в гильбертовом пространстве со скалярным произведением $(.,.)_B$, и определение величины G, получим

$$\|B^{-1}G^+\|_B \leqslant G. \tag{17}$$

Ввиду того, что матрица А-1В диагональна, имеет место соотношение

$$\left(\min_{\substack{1 \le i \le n \\ 1 \le m \le p}} a_{im}^{-4} b_{im}\right) \langle x, x \rangle \leq \langle A^{-1} B x, x \rangle = (x, x)_B \leq \left(\max_{\substack{1 \le i \le n \\ 1 \le m \le p}} a_{im}^{-4} b_{im}\right) \langle x, x \rangle.$$
(18)

Сопоставление последних двух соотношений с неравенством (16) завершает доказательство леммы.

Вернемся теперь к задаче (12)—(13). Решая первое уравнение системы (12) относительно $x(\tau)$, а второе — относительно $y(\tau)$, получим

$$x(\tau) = \int_{0}^{\tau} \exp(R(\tau - s)) A^{-1} G^{-} y(s) ds + \int_{0}^{\tau} \exp(R(\tau - s)) A^{-1} f^{+}(s) ds,$$

$$y(\tau) = \int_{\tau}^{H} \exp(R(s - \tau)) A^{-1} G^{-} x(s) ds + \int_{\tau}^{H} \exp(R(s - \tau)) A^{-1} f^{-}(s) ds$$

или в операторном виде

$$x = V_{1}y + f_{1}, \quad f_{1}(\tau) = \int_{0}^{\tau} \exp\left(R\left(\tau - s\right)\right) A^{-1}f^{+}(s) \, ds,$$

$$y = V_{2}x + f_{2}, \quad f_{2}(\tau) = \int_{\tau}^{H} \exp\left(R\left(s - \tau\right)\right) A^{-1}f^{-}(s) \, ds. \tag{19}$$

Рассмотрим итерационный процесс

$$u_k = V_1 v_{k-1} + f_1,$$

$$v_k = V_2 v_{k-1} + f_2, \quad k = 1, 2, 3, \dots$$
 (20)

Сравнивая итерационные процессы (20) и (14), получим

$$x_k = u_{2k-1}, \quad y_k = v_{2k}.$$
 (21)

Определим на L₂[0, H] операторы

$$(\tilde{V}_1 x)(\tau) = \int_0^\tau \exp\left(R\left(\tau - s\right)\right) Rx(s) ds, \qquad (\tilde{V}_2 x) = \int_\tau^H \exp\left(R\left(s - \tau\right)\right) Rx(s) ds.$$

Лемма 2. Имеют место неравенства

$$|||\widetilde{V}_i||| \leq 1 - \exp(-MH), \quad i=1, 2.$$
 (22)

Доказательство. Так как матрица — R является самосопряженным положительно определенным оператором в гильбертовом пространстве со скалярным произведением < .,..>, то существует ортонормированный базис $e_1, e_2, ..., e_N$ (N = np) [⁵], состоящий из собственных векторов оператора — R, соответствующих собственным числам $m \leq \gamma_1 \leq \gamma_2 \leq ... \leq \gamma_N \leq M$. Пусть $u \in L_2[0, H]$. Тогда

$$u(\tau) = \sum_{k=1}^{N} u_k(\tau) e_k.$$

Отсюда

$$\|(\widetilde{V}_1 u)(\tau)\|^2 = \sum_{k=1}^N (\int_0^\tau \gamma_k \exp\left(-\gamma_k(\tau-s)\right) u_k(s) ds)^2.$$

Далее

$$|\|\widehat{V}_{1}x\||^{2} = \sum_{k=1}^{N} \int_{0}^{T} \left(\int_{0}^{\tau} \gamma_{k} \exp\left(-\gamma_{k}(\tau-s)\right) x_{k}(s) ds\right)^{2} d\tau \leq$$
$$\leq \sum_{k=1}^{N} \int_{0}^{H} \left(\int_{0}^{\tau} \gamma_{k} \exp\left(-\gamma_{k}(\tau-s)\right) ds\right) \left(\int_{0}^{\tau} \gamma_{k} \exp\left(-\gamma_{k}(\tau-s)\right) x_{k}^{2}(s) ds\right) d\tau \leq$$

$$\leq (1 - \exp(-MH)) \sum_{k=1}^{N} \int_{0}^{H} x_{k}^{2}(s) (1 - \exp(-(H - s)\gamma_{k})) ds \leq$$

$$\leq (1 - \exp(-MH))^{2} \sum_{k=1}^{N} \int_{0}^{H} x_{k}^{2}(s) ds = (1 - \exp(-MH))^{2} ||x|||^{2}$$

Отсюда следует неравенство (22) для i = 1. Доказательство леммы для i = 2 аналогично.

Замечание. 2. Для доказательства леммы 2 фактически потребовалось только два свойства оператора R — самосопряженность и отрицательная определенность, поэтому в определении 3) норму $\|\cdot\|$ можно заменить любой другой нормой $\|\cdot\|_{*} := (.,.)_{*}^{1/2}$, лишь бы в новом пространстве оператор R был самосопряженным и отрицательно определенным.

Лемма З. Имеют место неравенства

$$|||V_i||| \le (1 - \exp(-MH)) ||(B^{-1}G^+ - I)^{-1}B^{-1}G^-||, i=1, 2$$

Доказательство леммы очевидно.

Лемма 4. Спектральный радиус ϱ оператора $(I - B^{-1}G^+)^{-1}B^{-1}G^$ удовлетворяет неравенству $\varrho \leqslant \theta_1$.

Доказательство. Положим

$$K_1 = I - (B^{-1}G^+ + tB^{-1}G^-), \quad K_2 = tB^{-1}G^-, \quad K = K_1 + K_2 + K_2^*,$$

где t — некоторый параметр. Матрицы K, K_1 и K_2 являются самосопряженными операторами в гильбертовом пространстве со скалярным произведением $(.,.)_B$. Будем оценивать спектральный радиус $\varrho_1 = t_Q$ оператора

$$C = (K_1 + K_2)^{-1} K_2^* = t (I - B^{-1}G^+)^{-1} B^{-1}G^-.$$

Имеем

$$(Kx, x)_{B} = (x, x)_{B} - ((B^{-1}G^{+} - tB^{-1}G^{-})x, x) \ge$$
$$\ge (1 - \|B^{-1}G^{+} - tB^{-1}G^{-}\|_{B})(x, x)_{B}.$$

Так как матрицы $B^{-1}G^+$ и $B^{-1}G^-$ являются самосопряженными операторами в гильбертовом пространстве со скалярным произведением $(.,.)_B$, то величина $||B^{-1}G^+ - tB^{-1}G^-||_B$ есть наибольшее по абсолютной величине собственное значение матрицы $(B^{-1}G^+ - tB^{-1}G^-)$. Это собственное значение с учетом (7) можно оценить следующим образом

$$\begin{aligned} \|B^{-1}G^{+} - tB^{-1}G^{-}\|_{B} &\leq \max_{\substack{1 \leq s \leq n \\ 1 \leq m \leq p}} \lambda (4\pi b_{sm})^{-1} \sum_{j=1}^{n} \sum_{l=1}^{p} |g_{jlsm} - tg_{-jlsm}| \leq \\ &\leq \lambda \max_{\substack{1 \leq s \leq n \\ 1 \leq m \leq p}} (\alpha_{sm} + t\beta_{sm}), \end{aligned}$$

где

$$\alpha_{sm} = (4\pi b_{sm})^{-1} \sum_{j=1}^{n} \sum_{l=1}^{p} g_{jlsm}, \quad \beta_{sm} = (4\pi b_{sm})^{-1} \sum_{j=1}^{n} \sum_{l=1}^{p} g_{-jlsm},$$

 $\alpha_{sm}+\beta_{sm}=1.$

Отсюда

$$\|B^{-1}G^{+}-tB^{-1}G^{-}\|_{B} \leq \lambda \max_{\substack{1 \leq s \leq n \\ 1 \leq m \leq p}} \left((1-t) \alpha_{sm}+t \right) = \lambda \left((1-t) \alpha+t \right) = \gamma(t).$$

190

Здесь

$$\alpha = \begin{cases} G, t \leq 1, \\ g, t > 1. \end{cases}$$

Пусть $t \in (0, (1 - \lambda g)(\lambda(1 - g))^{-1})$. Тогда, учитывая последнее неравенство, получим

$$(Kx, x)_B \ge (1 - \gamma(t)) (x, x)_B, \quad 1 - \gamma(t) > 0.$$

Аналогично

OTP LEDA

$$(K_1x, x)_B \ge (1 - \gamma(t)) (x, x)_B.$$

Используя теорему [⁶] (с. 105) об оценке спектрального радиуса, получим

$$\varrho_1 \leq 1 - \gamma_0 \|K_1 + K_2\|_{R}^{-1}$$

где уо удовлетворяет неравенству

$$\gamma_0 \ge \beta_0 - \sqrt{\beta_0^2 - (1 - \gamma(t))^2}, \quad \beta_0 = \sup_{\|x\|_B = 1} |((K_1 + K_2)x, x)_B|.$$

Учитывая самосопряженность оператора $K_1 + K_2$ и соотношение $\varrho_1 = t \varrho$, получим

 $\varrho^2 \leq t^{-2} (1 \rightarrow (1 - \gamma(t))^2 / (1 + \gamma(0))^2) = \psi(t), \quad \forall t \in (0, (1 - \lambda g) (\lambda(1 - g))^{-1}).$ Нетрудно заметить, что функция $\psi(t)$ монотонно убывает. Следовательно,

$$\varrho^2 \leq \psi(t^*) < \psi(t), \quad t^* = (1 - \lambda g) (\lambda (1 - g))^{-1}$$

или, что то же самое,

 $\varrho \leqslant \lambda (1-g) (1-\lambda g)^{-1} = \theta_1.$

Лемма доказана.

Доказательство теоремы. Положим

$$(x, y)_* = ((I - B^{-1}G^+)x, y)_B = -\langle Rx, y \rangle, \quad ||x||_* = (x, x)^{\frac{1}{2}}.$$

Определим в L₂[0, H] эквивалентную норму

$$\|\|x\|\|_{L^{*}}^{2} = \int_{0}^{H} \|x(\tau)\|_{*}^{2} d\tau, \quad \mathrm{m}^{1/2} \|\|x\|\| \leq \|\|x\|\| \leq M^{1/2} \|\|x\|\|.$$

Очевидно, матрицы R и $(I - B^{-1}G^+)^{-1}B^{-1}G^+$ являются самосопряженными операторами в гильбертовом пространстве со скалярным произведением (.,.). Отсюда следует равенство

$$|| (B^{-1}G^+ - I)^{-1}B^{-1}G^+ ||_* = \varrho,$$

где ϱ — спектральный радиус матрицы $(B^{-1}G^+ - I)B^{-1}G^+$. Обозначим $X = L_2[0, H] \times L_2[0, H]$. Введем в X конусную норму ([⁶], с. 93)

$$\forall z = (x, y)^{\mathrm{T}} \in X : |z|^* = (|||x|||_*, |||y|||_*)^{\mathrm{T}} \in \mathbb{R}^2.$$

Запишем систему (16) в операторном виде

$$z = Vz + f, \quad V: X \to X, \tag{23}$$

а итерационный процесс (20) — в виде

$$z_{k+1} = V z_k + f, \quad z_k = (u_k, v_k)^{\mathrm{T}}$$

Пусть $z^* = (x^*, y^*)^{T}$ — решение уравнения (23). Из лемм 2—4 и замечания 2 следует справедливость следующих преобразований:

$$\begin{aligned} |z^* - z_{2k+1}|^* &= |V^2 z^* - V^2 z_{2k-1}|^* \leq q^2 |z^* - z_{2k-1}|^* \leq q^2 (|z^* - z_{2k+1}|^* + |z_{2k+1} - z_{2k-1}|^*). \end{aligned}$$

Учитывая, что q < 1, получим

$$z^{*} - z_{2k+1} | * \leq q^{2} (1 - q^{2})^{-1} | z_{2k+1} - z_{2k-1} | * \leq \leq q^{2} (1 - q^{2})^{-1} q^{2k-1} E^{2k-1} | z_{2} - z_{0} | *,$$
(24)

где

$$E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Аналогично

$$|z^* - z_{2k}|^* \leq q^2 (1 - q^2)^{-1} q^{2k-2} |z_2 - z_0|^*.$$
(25)

Учитывая (21) и эквивалентность норм |||·||| и |||·|||+, убеждаемся, что неравенство (24) для первой координаты дает

$$|||x^* - u_{2k+1}||| = |||x^* - x_{k+1}||| \le m^{-1/2} (1 - q^2)^{-1} q^{2k+1} |||y_0 - y_1|||,$$

а неравенство (25) для второй координаты дает

$$||y^* - y_{k+1}|| \le m^{-1/2} (1 - q^2)^{-1} q^{2k+2} |||y_0 - y_1|||$$

Теорема доказана.

4. Обсуждение итерационного процесса

При использовании итерационного метода (14) для решения системы дифференциальных уравнений (4) с условиями (5)—(9) нам необходимо на каждом итерационном шаге решить две задачи: а) проинтегрировать «вперед» задачу Коши с отрицательно определенной матрицей R и б) проинтегрировать «назад» задачу Коши с положительно определенной матрицей —R, т. е. нам необходимо решить уравнение вида

$$x' = Rx + f_n$$
; $x(0) = 0$, $t \in [0, H]$. (26).

Коэффициент жесткости ([⁷], с. 118) системы (26) определяется величиной М/т. Согласно лемме 1, все собственные значения матрицы R вещественны. Это позволяет использовать для решения задачи (26) любой A(0) — устойчивый метод ([⁷], с. 119).

Рассмотрим метод трапеций с переменным шагом

$$(I - 0,5h_{l+1}R) x^{l+1} = (I + 0,5h_{l+1}R) x^{l} + \int_{t_{l}}^{t_{l+1}} f_{n}(s) ds,$$

$$h_{l+1} = t_{l+1} - t_{l}, \quad l = 1, 2, \dots, N.$$
 (27)

Этот метод наиболее точен среди неявных линейных многошаговых методов, обладающих свойством *А*-устойчивости ([⁷], с. 119), и имеет второй порядок.

Теорема 2. Если $g(\gamma) > 0$, а также * $x^l \ge 0$, $\int_{t_1}^{t_{1+1}} f_n(s) ds \ge 0$ и

^{* 2-}е и 3-е неравенства выполняются для каждой координаты.

$$h_{l+1} \leq 2 \min_{1 \leq i \leq n} \min_{1 \leq m \leq p} a_{im} b_{im}^{-4} [1 - \lambda (4\pi b_{im})^{-1} g_{imim}]^{-1},$$
(28)

то решение x^{l+1} системы (27) положительно.

Доказательство. Условие $g(\gamma) > 0$ гарантирует неразложимость матрицы $(I - 0.5h_{l+1}R)$. Используя свойство (9) и теорему 2 монографии [⁸] (с. 353), получим, что матрица $(I - 0.5h_{l+1}R)^{-1}$ состоит из положительных элементов.

Рассмотрим матрицу (I + h_{l+1}R). Недиагональные элементы этой матрицы положительны. Для этого чтобы и диагональные элементы были положительны, потребуем

 $1+0.5h_{l+1}a_{im}^{-1}b_{im}[\lambda(4\pi b_{im})^{-1}g_{imim}-1] \ge 0, i=1, 2, ..., n; m=1, 2, ..., p.$

Простой анализ последнего выражения приводит нас к неравенству (28).

Теорема доказана.

5. Примеры метода дискретных ординат

Пусть

$$0 = \mu_0 < \mu_1 < \dots < \mu_n = 1 \tag{29}$$

— некоторое разбиение отрезка [0, 1]. Рассмотрим задачу (4)—(5) со следующими значениями параметров a_{sm} , b_{sm} , g_{ilsm} :

$$a_{im} = 0.5 h_{\varphi} (\mu_i^2 - \mu_{i-1}^2), \quad h_{\varphi} = 2\pi/p,$$
 (30)

$$b_{im} = h_{\varphi}(\mu_i - \mu_{i-1}), \quad \varphi_m = (m - 0.5)h_{\varphi},$$
 (31)

$$g_{ilsm} = \int_{\mu_{l-1}}^{\mu_{l}} \int_{\phi_{l-1}}^{\phi_{l}} \int_{\phi_{m-1}}^{\mu_{s}} \int_{\phi_{m-1}}^{\phi_{m}} g(\gamma) \, d\mu \, d\varphi \, d\mu' \, d\varphi'.$$
(32)

Для получения этих формул проинтегрируем уравнение (1) по переменным µ и φ на множестве

$$\Omega_{im} = \{(\mu, \varphi) \mid \mu_{i-1} \leqslant \mu \leqslant \mu_i, \varphi_{m-1} \leqslant \varphi \leqslant \varphi_m \}$$

при μ > 0 и

$$\Omega_{-im} = \{(\mu, \varphi) \mid \mu_{-i+1} \leqslant \mu \leqslant \mu_{-i}, \varphi_{m-1} \leqslant \varphi \leqslant \varphi_m \}$$

при $\mu < 0$. Полагая, что функция $\mathfrak{I}(\tau, \mu, \varphi)$ постоянна по μ и φ на множестве Ω_{im} , получим метод (29)—(32).

Можно показать, что матрицы G_{ij} , определенные в разделе 2, являются циркулянтами ([¹], с. 6; [⁹], с. 263) с образующими векторами

$$(\varkappa^0_{ij}\,\varkappa^1_{ij}\ldots\,\varkappa^{q-1}_{ij}\,\varkappa^q_{ij}\,\varkappa^{q-1}_{ij}\ldots\,\varkappa^1_{ij})$$

при p = 2q и

$$\varkappa_{ij}^0 \varkappa_{ij}^1 \ldots \varkappa_{ij}^{q-1} \varkappa_{ij}^q \varkappa_{ij}^q \varkappa_{ij}^{q-1} \ldots \varkappa_{ij}^1)$$

при p = 2q + 1. Здесь

$$\varkappa_{ij}^{l} = \int_{\mu_{l-1}}^{\mu_{t}} \int_{\phi_{l}}^{\phi_{l+1}} \int_{\mu_{l-1}}^{\mu_{f}} \int_{0}^{h_{\phi}} g(\gamma') d\mu \, d\phi \, d\mu' \, d\phi',$$

5 Auga 1	μ15	1,00	5 Auya 2	ним с	00,	2	272,7 44,72 25,74 25,74 17,76 11,85	о точек
Ta	µ14	0,988	Ta	T = 10	$\tau = 1$	No.	336,8* 46,82 25,57 19,94 17,61 11,52**	количеств
	h13	0,943	Land Land	TEN.	,75	2	248,4 36,53 20,30 16,11 15,75 14,19 14,19 14,19 6,268 2,874 1,496 1,020 0,8482	τy, <i>N</i> – (τ, 0).
	µ12	0,899		$^{-1} = 0.03$	τ = 0	1	308,1* 38,24 20,12 16,04 15,79 14,30** 14,30** 6,834 2,930 1,537 1,017 0,8482	ю азиму в точке
V KUTAN	μ11	0,826	цоннон	$t_{\tau} = HN$	$\eta_{\tau} = HN$	2	6,41,18 6,45 4,04 1,26 11,26 13,30 13,21 13,21 13,21 13,21 12,292 5,292 5,292 5,292 5,292 5,292 5,292 5,292 5,292 5,292 5,292 5,292 5,292 5,292 5,293 5,203 5,293 5,2035	- то же
Учиты	µ10	0,746 0,960 	n = 15	dan dob	$\tau = 0.5$	1	2,1,2* 7,69 3,88 11,18 1,1,18 3,808 1,1,18 3,60** 1,117 3,60** 1,117 3,60** 1,117 7,61 1,176 1,117 7,61	ство раз 1), ** –
и	6ri	0,649 0,940	идп (2	N N	00-44 210-24	Har)	- 6 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	количе чке (т,
Хынчых	μ8	0,553 0,900 1,000)—(2) методом (29)—(32	: 20,	$\tau = 0,20$	1 2	10,0 11,6 5,76 5,77 5,77 5,77 10,6 * 10,1 7,14 10,16 2,888 2,888 2,888 2,888 2,888 2,888 2,888 2,888 2,888 2,888 2,888 2,888 2,888 2,888 2,786 2,786 2,776 2,776 2,776 2,776 2,776 2,776 2,776 2,776 2,776 2,776 2,776 2,776 2,776 2,776 2,777 2,778 2,777 2,778 2,777 2,778 2	й, <i>р</i> — ИЯ В ТОЧ
ie (29) при раз.	μ7	0,448 0,880 0,949		N =		1	$\begin{array}{c} 128,4*\\ 12,19\\ 5,676\\ 6,044\\ 10,90*\\ 7,329\\ 7,329\\ 7,329\\ 2,885\\ 2,885\end{array}$	итераци излучен [11]
	he	0,351 0,720 0,848		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\tau = 0,10$	2	$\begin{array}{c} 55,67\\ 55,67\\ 6,006\\ 2,887\\ 2,887\\ 3,031\\ 9,260\\ 9,926\\ 7,482\\ 7,482\\ 7,482\\ 3,829\\ 3,829\\ 3,255\\ 3,255\\ \end{array}$	инчество сивность — (9) из
Разбиен	μs	0,255 0,680 0,678	дачи (1)	= 20,		1	69,73* 6,286 5,286 2,841 2,249 9,44** 9,44** 10,38 7,689 5,222 3,904 3,256	— Кол — ИНТЕН Пачи (1)
козфо ониба онибсононо оно оно оно оно оно оно оно оно о	µ4	0,175 0,520 0,506	пение за		p = 20, $\tau = 0.05$	2	28,99 3,049 11,422 11,124 11,124 11,124 12,133 12,14 12,14 12,14 12,14 12,14 12,14 12,14 12,14 12,14 14,12814,128 14,128 14,128 14,128 14,128 14,128 14,128 14,128	ах): NI 1022; * Пения за
	μ3	0,101 0,280 0,311	Pei	= d		1	3,34* 192 110 629 629* 450** 111 812 812 424 424 424 444	BBM EC
	µ2	07 · 10 ⁻¹ 20 64		0.6.1	τ=0	2	3 3 3 4 5 5 7 4 1 1 1 1 3 3 3 4 1 1 1 1 1 3 3 3 3 3 3	далее в адачи на З
		-1 0,5 -1 0,1 0,1	- 1. s	No. No.		1	3,950*** 3,750*** 3,620 3,620 3,620	адесь и решения за онках — 1
	μι	0,120 · 10 0,100 0,392 · 10	Carrier and	NI = 6	11	10		- время
Teop	u	15 11 8) > 0, (b ob 4)	a	hi		0,99 0,67 0,67 0,39 0,39 0,21 6 · 1 0,39 6 · 1 0,78 - 0,50 - 0,50	по т, Т - В пе

$$\varkappa_{-ij}^{l} = \int_{\mu_{-t}}^{\mu_{-t+1}} \int_{\phi_{t}}^{\phi_{t+1}} \int_{\mu_{-t}}^{\mu_{f}} \int_{0}^{h_{\phi}} g(\gamma') d\mu \, d\phi \, d\mu' \, d\phi',$$

$$i, j = 1, 2, \dots, n, \quad l = 0, 1, 2, \dots, q.$$

Последнее позволяет с помощью унитарного преобразования (см. [¹]) привести задачу (4)—(5) с параметрами (29)—(32) к удобному для алгоритмизации виду.

Рассмотрим еще один пример метода дискретных ординат из класса (4)—(9). Положим

$$h_{\mu} = 1/n, \ \mu_j = (j - 0.5) h_{\mu}, \ h_{\varphi} = 2\pi/p, \ \varphi_j = (j - 0.5) h_{\varphi},$$
(33)

 $g_{iljm} = h_{\mu}h_{\varphi}g(\gamma_{iljm}), \quad \cos\gamma_{iljm} = \mu_i\mu_j + \sqrt{(1-\mu_i^2)(1-\mu_j^2)}\cos(\varphi_m - \varphi_l), \quad (34)$

$$p_i = (2np)^{-1} \sum_{j=1}^n \sum_{l=1}^p g(\gamma_{iljm}),$$
 (35)

$$a_{im} = \mu_i p_i, \quad b_{im} = p_i, \quad u_{sm} = Fg(\gamma_{sm}), \quad (36)$$

$$\cos \gamma_{sm} = \mu_0 \mu_s + \sqrt{\left(1 - \mu_0^2\right) \left(1 - \mu_s^2\right)} \cos \left(\varphi_0 - \varphi_s\right).$$

Величину $p_{|s|} \mathfrak{I}_{sm}(\tau)$, где $\mathfrak{I}_{sm}(\tau)$ — решение задачи (4)—(5) с параметрами (33)—(36), будем считать приближенным решением $\mathfrak{I}(\tau, \mu_s, \varphi_m)$ задачи (1)—(2). Соотношения (33)—(36) можно получить, дискретизируя с учетом баланса частиц ([¹⁰], с. 127) уравнение переноса (1)—(2) методом, предложенным в [¹].

6. Численные результаты

Задача (1)—(2) заменялась системой (4)—(5) с параметрами (29)— (32). Система дифференциальных уравнений (4)—(5) с краевыми условиями (5) решалась итерационным методом (14). Для решения задачи Коши (26) использовался метод трапеций (27) с постоянным шагом $h_{\tau} = H/N$ (N из (27)).

В табл. 1 приведено разбиение (29) для n = 15, 11, 8. Отметим, что при n = 15 и 8 величина 0,5 ($\mu_{i-1} + \mu_i$) есть узел квадратурной формулы Гаусса для отрезка [0, 1].

В табл. 2 приведено решение уравнения переноса (1)—(2) с начальными данными $\lambda = 1, H = 1, \mu_0 = 1, F = 0,0025 \lambda$ и индикатрисой рассеяния из [¹¹]. Расчеты проводились на ЭВМ ЕС 1022. Для срав-

Таблица 3

NI = 6,		p = 20,		N =	= 20,	<i>T</i> = 15 мин	
μι	$\tau = 0$	$\tau = 0.05$	$\tau = 0,10$	$\tau = 0,20$	$\tau = 0,50$	$\tau = 0,75$	$\tau = 1,00$
0.79	-(S)-(4.4	4.4	4.4	4.4	4.4	0.2
0,60	0 3.02	1.8	1.6	1,5	1,2	0,9	0.7
0,40	be interest	1.3	1.2	1,1	0.7	0.4	0.4
0,21	in in -	5,9	5,2	4,4	2,0	0,3	0.9
-0,21	3,4	3,8	4.4	4.7	6.2	8.2	_
-0,40	2,9	2,8	2.7	2,5	2.2	1.9	-
-0,60	2,9	2,8	2,7	2,7	2,4	2.6	-
-0,79	2,1	1,9	1,9	1.8	1.3	0.3	
-1,0	0,1	0,2	0,1	0,1	0,1	0,1	E

Погрешности решения задачи (1)-(2) при $n \doteq 15$, %

Таблица 4

Погрешности решения задачи (1)-(2) при n = 11, %

N	I = 6,	p = 20,		N =	= 20,	<i>T</i> = 11 мин	
μί	$\tau = 0$	$\tau = 0.05$	$\tau = 0,10$	$\tau = 0,20$	$\tau = 0,50$	$\tau = 0,75$	$\tau = 1,00$
0.8	(3 <u>2)</u> к vi	6,7	6,6	6,2	5,1	4.3	3.6
0,6	-	1,7	1,8	1,9	2,0	2,0	1,8
0,4	IND O THE	2,3	1,4	1,5	1,5	1,5	1,6
-0.2	4.5	4.3	1,5 4.5	4.0	$^{1,2}_{3,0}$	0,4	0,2
-0,4	3,3	3,1	3,0	2,7	1,9	1,1	- 2
-0,6	2,1	1,9	1,8	1,7	1,3	1,6	
-0,8	3,0	2,8	2,8	2,8	2,6	1,2	-
-0,98	3,4	3,1	3,4	3,4	3,5	3,6	au-salas

Таблица 5

Погрешности решения задачи (1)-(2) при n = 10 и равномерном разбиении (29), %

(36)	NI = 5,	p p	= 20,	N =	= 20,	T =	10 мин
μi	$\tau =$	$0, \ \left \tau = 0, 0 \right $	$5 \mid \tau = 0,10$	$\tau = 0,20$	$\tau = 0,50$	$\tau = 0,75$	$\tau = 1,00$
0,8	- (4) (5)	- 9,1	8,6	8,1	5,3	3,2	1,5
0,6		- 2,5	2,2	1,8	0,4	0,8	1,8
0,4	2 2 Stanno	- 0,6	0,6	0,2	1,3	0,3	3,3
0,2	ROUGH (GET	- 3,4	2,1	0,1	3,1	4,1	5,3
-0,2	- 11.	8 7,1	7,3	6,9	5,8	3,0	OH-COTHP
-0,4	6,	2 6,0	5,8	5,7	5,0	4,0	arminition .
-0,6	. 5.	3 5,2	5,2	5,2	5,1	5,5	_
-0,8	6.	1 6,0	6,2	6,4	6,8	5,9	- 22
-0,95	0,	1 0,4	0,5	0,8	0,1	2,3	_

Таблица 6

Погрешности решения задачи (1)—(2) при n = 8, %

NI = 5,		p = 20,		N =	= 20,	T = 7мин		
μi	$\tau = 0$	$ \tau = 0,05 $	$\tau = 0,10$	$\tau = 0,20$	$\tau = 0,50$	$ \tau = 0,75 $	$\tau = 1,00$	
$\begin{array}{c} 0,8\\ 0,6\\ 0,4\\ 0,2\\ -0,20\\ -0,41\\ -0,6\\ -0,76\\ -1,00\end{array}$		20 0,14 0,4 12,8 7,1 5,3 1,6 0,3 2,5	20 0,1 1,2 11,6 8,1 5,3 1,5 0,3 2,4	19,6 14,9 1,1 9,6 9,1 5,3 1,2 0,7 2,6	$17,8 \\ 0,2 \\ 0,9 \\ 4,4 \\ 13,3 \\ 5,3 \\ 0,7 \\ 1,3 \\ 3,0 \\ 1,3 \\ 3,0 \\ 17,1 \\ 3,0 \\ 1$	$16,7 \\ 0,5 \\ 0,7 \\ 1,1 \\ 18,2 \\ 5,6 \\ 0,9 \\ 2,8 \\ 3,3$	15,8 0,9 0,7 1,5 	

нения здесь же дано «точное» решение (с погрешностью менее 1%) этой задачи из [11].

В табл. 3-6 приведены погрешности (в процентах) решения уравнения (1)—(2), соответствующие различным способам разбиения (29). Отметим, что, как показали расчеты, методы (4)-(5), (29)-(32) с равномерным разбиением (29) и (4)-(5), (33)-(36) при n = 10 и p = 20, совпадают.

ЛИТЕРАТУРА

Князихин Ю. Изв. АН ЭССР, Физ. Матем., 31, № 1, 1—10 (1982).
 Аhmad, Z., Fraser, R. S. J. Atmos. Sci., 39, № 3, 656—665 (1982).
 Herman, B. M., Browning, S. R. J. Atmos. Sci., 22, № 3, 559—566 (1965).

- 4. Eschelbach, G. J. Quant. Spectrosc. and Radiat. Transfer, 11, № 6, 757-765 (1971).
- Рисс Ф., Сёкефальви-Надь Б. Лекции по функциональному анализу. М., «Мир», 5. 1979.
- 6. Красносельский М. А., Вайникко Г. М., Забрейко П. П., Рутицкий Я. Б., Сте-ценко В. Я. Приближенное решение операторных уравнений. М., «Наука», 1969.
- 7. Современные численные методы решения обыкновенных дифференциальных уравнений (под ред. Дж. Холла, Дж. Уатта). М., «Мир», 1979.
- 8. Коллатц А. Функциональный анализ и вычислительная математика. М., «Мир», 1969.

- Беллман Р. Введение в теорию матриц. М., «Наука», 1976.
 Смелов В. В. Лекции по теории переноса нейтронов. М., Атомиздат, 1978.
 Standard Procedures to Compute Atmospheric Radiative Transfer in a Scattering Regulation. Atmosphere (ed. by Jac. Lenoble). IAMAP, Radiation Commission, Boulder, USA, July, 1977.

Институт астрофизики и физики атмосферы Академии наук Эстонской ССР Поступила в редакцию 29 апреля 1982

После переработки 10 октября 1982

J. KNJAZIHHIN

DISKREETSETE ORDINAATIDE MEETODI KASUTATAVUS KIIRGUSLEVI VÕRRANDI LAHENDAMISEKS HOMOGEENSE, TASAPARALLEELSE, ANISOTROOPSELT HAJUTAVA ATMOSFÄÄRI KORRAL. 2

В настоящей статье обисянается установка, собранная на базе

Artiklis on jätkatud diskreetsete ordinaatide meetodi käsitlemist selle vahetul raken-damisel, kasutamata hajumisindikatrissi reaksarendusi Legendre'i polünoomide kaudu. Ülesanne taandub harilike diferentsiaalvõrrandite süsteemi rajaülesandele. Peetähele-panu on koondatud rajaülesande lahendamisele iteratsioonimeetodil. On näidatud koonduvus ja geomeetriline koonduvuskiirus. On käsitletud ka vastava Cauchy üles-ande lahendamist (Cauchy ülesanne on iteratsioonimeetodi sammuks), 'arvestades' diferentsiaalvõrrandite süsteemi jäikust diferentsiaalvõrrandite süsteemi jäikust.

J. KNJAZIHHIN

INVESTIGATION OF THE DISCRETE ORDINATES SOLUTION OF THE RADIATIVE TRANSFER EQUATION IN THE HOMOGENEOUS, PLANE-PARALLEL, ANISOTROPICALLY SCATTERING ATMOSPHERE, 2

The present paper presents the second part of the investigation of the discrete ordinates solution of the radiative transfer equation in the homogeneous, plane-parallel, ordinates solution of the radiative transfer equation in the homogeneous, plane-parallel, anisotropically scattering atmosphere. The following variant of this method is con-sidered: the integro-differential equation (1) with boundary conditions (2) is replaced by a system of linear differential equations (4) with boundary conditions (5). The coefficients of this system must satisfy conditions (6)—(9). It has been stressed that this approach does not use any circuitous series developments. It is shown that conditions (6)—(9) guarantee the existence of the unique solution of the system (4) with boundary conditions (5) (See Section 2). The system of linear equations (4) with boundary conditions (5) is solved by way of Seidel iteration (14). The convergence is proved and the rate of convergence estimated (See Theorem 1, Section 3). The rate of convergence depends on λ and g. The value of g may be presented as a characteristic of scattering anisotropy. To solve the initial value problem (26) which occurs on each iterative step, we should apply the methods for the solution of stiff problems [⁷]. For the solution of the initial value problem, the trapezoidal method is applied (See Section 4). Two possibilities of the discretization of the transfer equation are derived by way of an example (See Section 5). The numerical results confirm the correct-ness of the considered method (See Section 6).