ÉÉSTI NSV TEADUSTÉ AKADÉEMIA TOIMÉTISÉD. 31. KÖIDÉ FÜÜSIKA * MATEMAATIKA. 1982, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ФИЗИКА * МАТЕМАТИКА. 1982, № 2

УДК 535.34: 621.373.8

Л. Л. ВАЛКУНАС, Э. ГАЙЖАУСКАС, Ш. П. КУДЖМАУСКАС

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ АБСОРБЦИОННЫХ ИЗМЕНЕНИЙ В РЕАКЦИОННЫХ ЦЕНТРАХ ФОТОСИНТЕЗИРУЮЩИХ БАКТЕРИЙ

Первичные процессы, протекающие в реакционных центрах (РЦ) фотосинтезирующих систем, изучаются в последнее время методами пикосекундной лазерной спектроскопии. В случае использования при этом ультракоротких лазерных импульсов для возбуждения и зондирования на разных частотах сопоставление полученных результатов с теоретическими расчетами дает возможность, в принципе, определять как кинетические параметры системы, так и энергетические состояния, участвующие в переносе электрона в РЦ. Однако в широких пределах изменения интенсивности и длительности возбуждающих импульсов лазера могут проявить себя нелинейные и когерентные эффекты взаимодействия РЦ со светом, что необходимо учитывать при их теоретическом описании.

В настоящем сообщении проанализированы первичные стадии физических превращений в РЦ фотосинтезирующих бактерий, возбужденных ультракоротким импульсом лазера. Энергетическая модель РЦ (рис. 1) заимствована нами из [¹], где она построена на основе многочисленных экспериментов по поглощению света РЦ, ЭПР-спектроскопии и др. Она содержит нижайшие синглетные переходы димера и мономера бактериохлорофилла, *P_F*-состояние, а также состояние, в котором электрон переходит на первичный акцептор хинонной природы (*P*+*Q*⁻). Эволю-

Рис. 1. Схема энергетических уровней РЦ: 1 — основное состояние системы; 2 и 4 — возбужденные уровни Р800 и Р870; 3 — их совместное возбуждение; 5—7, 10 — основной и возбужденные уровни состояния P_F ; 8 и 9 — основное и возбужденное состояния P^+Q^- . W_e , W_Q и W_M — скорости продольной релаксации. ция РЦ, взаимодействующих с полем электромагнитной волны, описывалась нами уравнениями для элементов матрицы плотности. Последние решались совместно с уравнениями Максвелла. Такая самосогласованная система уравнений учитывает возможность влияния среды на излучение при высоких уровнях возбуждения.

В условиях слабого возбуждения РЦ, когда время фазовой релаксации T_2 , коэффициент поглощения σ_{mn} , интенсивность возбуждающего импульса I_0 и его длительность τ_0 удовлетворяют неравенству

$$\sigma_{mn} I_0 \tau_0^{-1} \ll T_2^{-1}, \tag{1}$$

нами получены аналитические выражения для заселенностей энергетических уровней РЦ. При возбуждении РЦ на длине волны перехода димера и при зондировании мономера бактериохлорофилла изменение оптической плотности образца ΔA представляется в виде

$$\Delta A = (\ln 10)^{-1} \ln (\varrho_{11}(d, t) / \varrho_{11}(0, t)) \sigma_{41}^{-1} \times \\ \times \{ \sigma_{21} - \sigma_{98} + (\sigma_{98} - \sigma_{65}) \exp (-W_x t) \},$$
(2)

где

 $\varrho_{11}(x,t) = \exp\left(\sigma_{41}\varepsilon_{0}^{-1}N_{\mathrm{PII}}x\right) \left\{ \exp\left(\sigma_{41}\varepsilon_{0}^{-1}N_{\mathrm{PII}}x\right) + \exp\left[\sigma_{41}\int_{-\infty}^{t}I(t)\,dt\right] - 1 \right\}^{-1} \quad (3)$

— заселенность основного состояния системы РЦ, $N_{\rm PU}$ — концентрация РЦ, I(t) — интенсивность возбуждения. Сопоставление теоретических расчетов (см. [²]) по формуле (2) с серией экспериментальных кривых [^{3, 4}] позволяет определить спектры поглощения $\sigma_{65}(\lambda)$, $\sigma_{98}(\lambda)$. Оказывается, что полоса поглощения мономера бактериохлорофилла одинаково смещается как в состоянии P_F , так и в состоянии P^+Q^- , а интенсивность поглощения почти не изменяется. Это говорит о том, что электрон на мономере бактериохлорофилла или вблизи него не локализуется. Штарковское смещение обусловлено, вероятно, электрическим полем ионизованного первичного фотодонора, расположенного вблизи мономера бактериохлорофилла. Поскольку отсутствие изменений в полосе первого синглетного перехода бактериофеофитина при линейном возбуждении РЦ [⁵] также свидетельствует против локализации на нем электрона, остается лишь предположить, что электрон в состоянии P_F

Для описания кинетических процессов в РЦ, протекающих в условиях мощного возбуждения лазерными импульсами, т. е. в условиях, противоположных (1), рассмотренную выше энергетическую схему следует дополнить уровнем, на который переходит электрон из возбужденного состояния P_F (уровень 7 на рис. 1). Как следует из [³⁻⁵], им не может быть окисленное состояние акцептора Q, поэтому далее будем его обозначать через P_G. При возбуждении РЦ на длине волны 870 нм в резонансе находятся основной и возбужденные уровни бактериохлорофилла и состояния P_F. Заселенность последних меняется как под влиянием резонансного взаимодействия с полем электромагнитной волны, так и под влиянием продольной релаксации между уровнями 4→5, 5→8, 7→P_G. Учет возможности возникновения нелинейных и когерентных эффектов значительно усложняет систему уравнений, требующую самосогласованного решения, и затрудняет получение для нее аналитического выражения. Поэтому анализ изменения оптической плотности образца проводился нами численными методами.

На рис. 2 показаны результаты вычислений для разных площадей импульса

$$\Psi_{\lambda} = \mu_{nm} \hbar^{-1} \int_{-\infty}^{\infty} E(t) dt,$$

(4)

Рис. 2. Изменение оптической плотности в случае зондирования Р800 при нелинейном возбуждении на длине волны 870 н.м. $\Psi_{870} = 3\pi$ (1), 12π (2, 3); $\tau_0/T_2 = 25$ (2) н 10 (3).

где μ_{nm} — диполный момент перехода, E(t) — напряженность возбуждающей волны, и для разных параметров T_2 . Ряд констант определен из экспериментальных результатов, полученных в линейной области.

Результаты показывают, что когерентные эффекты, действительно, имеют место и, следовательно, должны учитываться в экспериментах по пикосекундной спектроскопии РЦ. Так, на рис. 2 видны значительные нелинейные изменения оптической плотности образца для соотношения $\tau_0/T_2 = 10$ при мощном возбуждении РЦ ($\Psi_{\lambda} \gg \pi$). И хотя при $\tau_0/T_2 \gg 1$ нелинейные эффекты довольно сильно подавляются, необходимость учета когерентных эффектов остается.

Представляет интерес возможность определения времени фазовой релаксации в системе РЦ по нелинейным изменениям оптической плотности образца в зависимости от интенсивности возбуждающего импульса. Так, например, в [^{3, 4}] абсорбционные изменения в полосе 802 *нм* определены по резонансному возбуждению фотодонора. Кинетика абсорбционных изменений в указанных работах качественно меняется в случае превышения порогового уровня, равного $\simeq 10^{16} \phi otoh/cm^2$. Если матричный элемент дипольного перехода μ_{41} положить равным 5D, то возбуждающему импульсу такой интенсивности (длительность $\tau_0 = 30$ *nc*) будет соответствовать «площадь» импульса $\Psi = 1,5\pi$. Таким образом, согласуя результаты [^{3, 4}] с приведенными нами вычислениями, получаем время релаксации $T_2 = 2-3$ *nc*.

ЛИТЕРАТУРА

- 1. Валкунас Л., Куджмаускас Ш., Препринт ИФІ-79, Вильнюс, 1979.
- 2. Gaižauskas, E., Kudžmauskas, S., Valkunas, L., Preprint IPI-81, Vilnius, 1981.
- Ахманов С. А., Борисов А. Ю., Козловский В. С., Разживин А. П., Гадонас Р. А., Данелюс Р. В., Пискарскас А. С., В кн.: Нелинейная оптика, Тр. VI Вавиловской конференции, ч. 2, Новосибирск, «Наука», 1979, с. 74—84.
- Akhmanov, S. A., Borisov, A. Yu., Danielius, R. V., Gadonas, R. A., Kozlowski, V. S., Piskarskas, A. S., Razjivin, A. P., In: Laser Spectroscopy IV (ed. H. Walter, K. W. Rothe), Springer-Verlag, Berlin-Heidelberg-New York, 1979, p. 387-398.
- Akhmanov, S. A., Borisov, A. Yu., Danielius, R. V., Gadonas, R. A., Kozlowski, V. S., Piskarskas, A. S., Razjivin, A. P., Shuvalov, V. A., FEBS Lett., 114, № 1, 149–152 (1980).

Институт физики Академии наук Литовской ССР

7 ENSV TA Toimetised. F*M 2 1982

L. L. VALKUNAS, E. GAIZAUSKAS, S. P. KUDŹMAUSKAS

FOTOSUNTEESIVATE BAKTERITE REAKTSIOONITSENTRITES ILMNEVATE NEELDUMISE MUUTUSTE TEOREETILINE UURIMUS

On uuritud ülilühikese impulsslaserergastuse järel fotosünteesivate bakterite reaktsioonitsentrites tekkivaid neeldumise muutusi. Tulemuste võrdlemisest eksperimendiandmetega on järeldatud, et elektron on delokaliseeritud olekus P_F , samuti on määratud reaktsioonitsentri faasirelaksatsiooni aeg $T_2 \approx 2$ —3 ps.

L. L. VALKUNAS, E. GAIZAUSKAS, Sh. P. KUDZMAUSKAS

THEORETICAL INVESTIGATION OF THE ABSORPTION CHANGES IN THE REACTION CENTRES OF PHOTOSYNTHETIC BACTERIA

We have carried out a theoretical investigation of the absorption changes in the reaction centres (RC) of photosynthetic bacteria under the ultra-short laser pulse excitation. In the case of a weak excitation of a bacteriochlorophyll dimer (870 nm) and probing at the 800 nm-wavelength, the change of the optical density (ΔA) is expressed analytically. In the case of a powerful excitation when coherent and non-linear effects must be included into consideration, the analysis of ΔA is carried out numerically. Comparing these results with those of known experiments it is concluded that the electron is delocalized in P_F state. The phase relaxation time in the RC system is estimated to be 2–3 ps.