EESTI NSV TEADUSTE AKADEEMIA TÕIMETISED, 31. KÕIDE FOOSIKA * MATEMAATIKA. 1982, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ФИЗИКА * МАТЕМАТИКА. 1982. № 2

https://doi.org/10.3176/phys.math.1982.2.13

УДК 539.196: 547.979.7

Р. П. ТАМКИВИ

5*

ИССЛЕДОВАНИЕ ГОМОПЕРЕНОСА ЭНЕРГИИ С ПОМОЩЬЮ СПЕКТРАЛЬНО СЕЛЕКТИВНОЙ КИНЕТИКИ НИЗКОТЕМПЕРАТУРНОЙ ФЛУОРЕСЦЕНЦИИ ХЛОРОФИЛЛОВ

Общепризнано, что одним из важнейших звеньев в цепи первичных процессов фотосинтеза является безызлучательный перенос энергии (ПЭ) электронного возбуждения различных форм хлорофилла. Поэтому исследования ПЭ в хлорофилловых растворах весьма необходимы для более полного понимания соответствующих процессов *in vivo*. Наше обращение к данной, довольно интенсивно изучаемой тематике (см., напр., обзор [¹]) связано со следующими обстоятельствами.

Как известно, межмолекулярный ПЭ обычно исследуется тремя методами, основанными на спектроскопически наблюдаемых явлениях концентрационного 1) тушения, 2) изменения закона затухания и 3) деполяризации люминесценции. Последнее из них до сих пор было практически единственным источником сведений о гомопереносе энергии между химически идентичными молекулами. Однако сопоставление результатов измерения деполяризации с соответствующей теорией встречает известные трудности (см. [²]). Несостоятельность первых двух методов в случае гомопереноса связана с невозможностью выделения такого подмножества из одинаковых молекул, которое состояло бы преимущественно либо из доноров, либо из акцепторов энергии. Цель настоящего сообщения — продемонстрировать возможности изучения гомопереноса между молекулами хлорофилла (Хл) с помощью спектрально селективной низкотемпературной флуорометрии — т. е. с помощью модификации второго метода.

Как было неоднократно показано, спектры идентичных молекул в низкотемпературных твердых матрицах подвергаются статистическому разбросу по частотам 0—0-перехода (рис. 1). Возникающее по этой

Рис. 1. Неоднородное распределение (НР) низкотемпературных однородных спектров молекул. Показаны бесфононные линии (БФЛ) и фононные крылья (ФК) спектров флуоресценции (Ф) и поглощения (П). Стрелкой указано направление ПЭ.

причине неоднородное уширение спектров Хл достигает ~300 см⁻¹ [³]. Нами было проведено изучение времен затухания т низкотемпературной флуоресценции Хл, монохроматически регистрируемой в пределах неоднородной полосы [⁴]. Обнаруженное концентрационное укорочение одноэкспоненциальных значений т на коротковолновом краю полосы мы интерпретировали как проявление ферстеровского ПЭ вдоль неоднородного спектрального распределения молекул Хл. Как видно из рис. 1, молекулы, излучающие на коротковолновом краю полосы, участвуют в ПЭ в основном как доноры. Монохроматически регистрируемые кривые затухания свечения таких молекул должны содержать наиболее доступную информацию об этом процессе.

Закон затухания свечения доноров энергии в теории Ферстера— Галанина [⁵] можно записать так:

$$I_D(t) \sim \exp\left(-\frac{t}{\tau_D} - \beta R_0^3 C_A \sqrt{\frac{t}{\tau_D}}\right). \tag{1}$$

Здесь τ_D — время жизни возбужденного состояния доноров в отсутствие ПЭ, C_A — концентрация акцепторов, R_0 — т. н. критический радиус ПЭ, служивший мерой эффективности ПЭ. R_0 пропорционален интегралу перекрывания спектра излучения доноров и спектра поглощения акцепторов. Коэффициент β в случае полностью замороженных молекул равен $\approx 3,77 \cdot 10^{-3}$ (R_0 измеряется в Å, а C_A — в моль/л) [²].

Нетрудно видеть, что основные условия применимости теории Ферстера—Галанина в исследуемой нами ситуации выполнены. Однако непосредственному использованию формулы (1) препятствует неоднородный состав акцепторов. Как показано в [⁶], тогда во втором члене экспоненты надо суммировать по всем сортам акцепторов (R_0 и C_A зависят от природы акцептора), что в нашем случае сводится к интегралу по неоднородному распределению. Даже для весьма простых моделей это ведет к довольно сложным и трудноинтерпретируемым выражениям. * Отметим, что поскольку последние содержат параметры как однородных, так и неоднородного спектров (см. рис. 1), такой подход может давать информацию о самом неоднородном распределении.

В данной работе мы аппроксимировали измеренные на коротковолновом спаде полосы флуоресценции кривые затухания формулой для однородного состава акцепторов, отдавая себе отчет в том, что определяемый таким образом R_0 соответствует взвешенной сумме интегралов перекрывания по неоднородному распределению акцепторов. Другими словами, наш R_0 представляет собой меру эффективности ПЭ от спектрально выделенных молекул ко всем возможным акцепторам из неоднородной совокупности.

Затухание флуоресценции измеряли методом счета фотонов на установке, описанной в [⁴]. Объектами служили эфирные растворы Хл a и b, их феофитинов (Фео), а также протохлорофилла (ПХл). Примеры искаженных влиянием ПЭ кривых приведены на рис. 2. Четко наблюдаются как ускорение, так и неэкспоненциальность затухания излучения. Следует добавить, что ввиду конечной длительности возбуждающего светоимпульса (см. рис. 2) кривые фактически аппроксимировались свертками закона (1) с измеренным временным ходом импульса S(t):

$$I(t) \sim \int_{0}^{t} S(x) \exp\left[\frac{x-t}{\tau_{D}} - \beta R_{0}^{3} C_{A}\right] \sqrt{\frac{(t-x)}{\tau_{D}}} dx, \qquad (2)$$

^{*} Аналоги (1) в случае спектральной неоднородности выведены «из первичных принципов» для предела, когда неоднородная ширина ≪kT (см. напр., [7] и ссылки там), т. е. для случая, обратного нашему.

Рис. 2. Кривые затухания флуоресценции Хл а (1, 2), зарегистрированной при 660 нм, и ПХл (3, 4) при 618 км. Концентрации: 5-10⁻⁶ (1, 3), 2-10⁻³ (2) и 1,2-10⁻³ моль/л (4). Показана форма возбуждения (5). Сплошные линии — наилучшие аппроксимации с формулой (2).

причем за τ_D были взяты τ , полученные на той же длине волны флуоресценции разбавленных растворов. **

Вместо СА мы везде пользовались полной концентрацией раствора С. Это оправдано, с одной стороны, выбором точки регистрации излучения (доля еще более «коротковолновых» молекул мала). С другой стороны, для большинства возможных акцепторов ПЭ определяется перекрыванием фононных крыльев (см. рис. 1). Относительно широкие (~100 *см*⁻¹) фононные крылья спектров Хл были экспериментально наблюдены методом выжигания провала [9]. Проведенный нами

модельный расчет (где все изображенные на рис. 1 контуры были взяты гауссовыми) показал, что в случае характерных для Хл величин параметров однородных и неоднородного спектров существенный вклад в сумму интегралов перекрывания вносят практически все молекулы, 0—0-переход которых лежит в длинноволновой стороне от спектрально выделенных доноров. Это также оправдывает наш выбор C_A .

Наилучшие приближения (2) к экспериментальным кривым показаны сплошными линиями на рис. 2. Результаты определения вышеизложенным способом R_0 для ряда соединений сведены в таблицу.

Если наша трактовка причин искажения кривых затухания верна, R_0 не должны зависеть от C, что и наблюдается в экспериментах на всех молекулах. В общем регистрация проводилась по возможности в самой коротковолновой области полосы свечения. Как видно из таблицы, сдвиг точки регистрации к более длинным волнам сопровождается заметным уменьшением найденных R_0 (Хл a, Фео a). Это, очевидно, обусловлено уменьшением концентрации акцепторов, подходящих к регистрируемому типу. доноров, и нарушением чисто донорного характера последних.

В связи с применением низких температур и новой методики следует с осторожностью относиться к сравнению численных значений

^{**} Как показано в [8], некоторая зависимость т даже в очень разбавленных растворах Хл от длины волны низкотемпературной флуоресценции сохраняется.

Молекула	С, моль/л	λ _{per} , <i>hm</i>	T, K	R ₀ , Å
Хла	2.10-3	660/664	5 20 50	64/61 65/63 66/63
	5.10-3	660	5 20 50	65 65 67
ПХл	1,2.10-3	618	5 50	46 47
	2,5.10-3	618	5	46
Хл b	$1,2\cdot10^{-3}$ 2,3·10 ⁻³	643	4,2	51 50
Фео а	1.10^{-3} 3.10^{-3}	661/664	4,2	68/63 67/64
Фео в	1,7.10-3	647	4,2	50

Значения R₀ для гомопереноса энергии в замороженных растворах хлорофиллоподобных молекул

наших R_0 с ранее опубликованными. К тому же для последних характерен значительный разброс, причинами которого являются, по-видимому, неодинаковые экспериментальные условия (методика, растворители, геометрия и т. п.), а возможно, и различные теоретические подходы к явлению деполяризации излучения [¹⁰], служившему основным источником данных о гомопереносе энергии. В обзоре [¹] проанализированы сведения разных авторов о R_0 для Хл *a* (в интервале значений от 42 до 92 Å) и предложено значение $R_0 \approx 70$ Å в качестве наиболее для него правдоподобного. Следует отметить близость нашего R_0 к этому значению. Зависимость R_0 от соединения также согласуется с ранее известными данными. Так, например, в [¹¹] при 300 К получены следующие значения R_0 : Хл *a* — 50 Å, Хл *b* — 43 Å, Фео *a* — 52 Å (ср. с таблицей). Найденный нами большой R_0 вновь подтверждает высокую эффективность ПЭ между молекулами Хл *a* — главного фотосинтетического пигмента.

Была снята и температурная зависимость R_0 для Хл *а* и ПХл. Как видно из таблицы, повышение температуры ведет к некоторому его росту. Такой, находящийся на пределе ошибок измерений рост может быть связан с увеличением эффективности ПЭ за счет включения актов ПЭ с участием матричных фононов. Альтернативным объяснением может служить температурный сдвиг неоднородной полосы, влияющий на R_0 аналогично сдвигу длины волны регистрации излучения. Учет последней возможности при постановке эксперимента, в принципе, позволяет исследовать и участие колебаний в процессах ПЭ.

Итак, можно заключить, что развитый в данной работе подход открывает возможность как наблюдать, так и количественно исследовать ПЭ в системах с большим неоднородным уширением, в том числе и в замороженных растворах хлорофиллоподобных молекул. Уместно упомянуть еще о применении его к детектированию ПЭ для Хл *in vivo* [¹²], хотя количественная трактовка в этом случае остается пока предметом будущих исследований.

Автор благодарен Р. А. Авармаа за постоянный интерес к данной работе и ценные замечания, а также С. А. Куузик и В. И. Нымм за очистку и приготовление образцов.

ЛИТЕРАТУРА

- Кпох, R. S., In: Primary Molecular Events in Photobiology, Elsevier, Amsterdam— London—New York, 1973, р. 45—77.
 Агранович В. М., Галанин М. Д., Перенос энергии электронного возбуж-дения в конденсированных средах, М., «Наука», 1978.
 Акортана В. В. Баларика, К., Старика, 1978.
- А varmaa, R., Rebane, K., Stud. Biophys., 48, № 3, 209—218 (1975). Тамкиви Р. П., Авармаа Р. А., Изв. АН СССР, сер. физ., 42, № 3, 568—572 3.
- 4. (1978).

- (1970).
 5. Förster, T., Ann. Phys., 2, № 1-2, 55-75 (1948); Галанин М. Д., Ж. эксперим. и теор. физ., 28, вып. 4, 485-495 (1955).
 6. Blumen, A., Manz, J., J. Chem. Phys., 71, № 11. 4694-4702 (1979).
 7. Klafter, J., Silbey, R., J. Chem. Phys., 72, № 2, 843-848 (1980).
 8. Avarmaa, R., Soovik, T., Tamkivi, R., Tönissoo, V., Stud. Biophys., 65, № 3, 213-218 (1977).
 9. Avarmaa, P. Mauring, K. Suisalu, A. Chem. Phys. Lett. 77. № 1.
- 9. Avarmaa, R., Mauring, K., Suisalu, A., Chem. Phys. Lett., 77, № 1, 88-92 (1981).
- 10. Knox, R. S., Physica, 39, № 2-3, 361-368 (1968).
- Gurinovitch, G. P., Losev, A. P., Zenkevitch, E. I., Spectrosc. Lett., 11, № 7, 493-511 (1978).
 Avarmaa, R. A., Kochubey, S. M., Tamkivi, R. P., FEBS Lett., 102, № 1, 139-142 (1979).

Институт физики Академии наук Эстонской ССР

R. P. TAMKIVI

ENERGIA HOMOULEKANDE UURIMINE KLOROFÜLLIDE MADALATEMPERATUURILISE FLUORESTSENTSI SPEKTRAALSELT SELEKTIIVSE KINEETIKA ABIL

Elektronergastuse energia kiirguseta homoülekanne klorofüllisarnaste molekulide vahel on jälgitav madalatemperatuurilise fluorestsentsi kineetika monokromaatilise registree-rimise tee!. Registreerimislainepikkuse sobiv valik mittehomogeenselt laienenud kiirgus-riba piires võimaldab otsest võrdlust Förster-Galanini teooriaga. On määratud rea ühendite kriitilised ülekanderaadiused ning hinnatud kõnealuse lähenemisviisi iseärasusi ja perspektiive.

R. P. TAMKIVI

INVESTIGATION OF THE ENERGY HOMOTRANSFER VIA THE SPECTRALLY SELECTIVE KINETICS OF LOW-TEMPERATURE FLUORESCENCE **OF CHLOROPHYLLS**

The homotransfer of electronic excitation energy between chlorophyll-like molecules is observable due to monochromatic registration of the kinetics of the low-temperature fluorescence. A suitable choice of the registration wavelength within the limits of inhomogeneously broadened emission band enables to realize a direct comparison with Förster-Galanin theory. The critical transfer radii for a number of compounds are determined. Features and perspectives of the approach are discussed.