EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 31. KÕIDE FOOSIKA * MATEMAATIKA. 1982, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 31 ФИЗИКА * МАТЕМАТИКА. 1982, № 2

А. П. СУЙСАЛУ

УДК 535.337

ПРИМЕНЕНИЕ МЕТОДА ФДМР ДЛЯ ИЗУЧЕНИЯ ХЛОРОФИЛЛОПОДОБНЫХ МОЛЕКУЛ

1. Магнитные свойства нижнего возбужденного триплетного состояния в последние годы успешно изучаются методом оптически детектированного микроволнового резонанса (ОДМР) в нулевом поле. Хлорофиллоподобные молекулы исследовались этим методом по регистрации флуоресценции или T-T-поглощения [¹]. Детектирование микроволнового резонанса непосредственно по изменению интенсивности фосфоресценции у данного класса соединений затруднено из-за малого выхода фосфоресценции и расположения ее в далекой красной области. Применив светосильный монохроматор и фосфороскопическую регистрацию сигнала, нам удалось получить спектры ОДМР для хлорофилла (Хл) и близких ему соединений [²]. Эти измерения дали дополнительную информацию об относительных излучательных способностях подуровней триплета. Например, для Хл *а z*-уровень (*z* — внеплоскостная ось) заметного вклада в излучение не дает, а излучательная способность *x*-уровня заметно больше, чем *y*-уровня.

Преимущество метода ОДМР перед известной техникой ЭПР состоит в сочетании магнитных резонансов с оптической селективностью детектируемых молекул. Как известно, спектры фосфоресценции хлорофиллоподобных молекул бесструктурны, а в спектрах флуоресценции обнаруживаются квазилинии из-за устранения неоднородного уширения при селективном лазерном возбуждении. В [³] рассматривается зависимость частоты микроволнового резонанса от длины волны регистрации флуоресценции при селективном возбуждении хлорофиллоподобных молекул.

2. В настоящем сообщении мы обращаем внимание на методику флуоресцентного детектирования микроволнового резонанса (ФДМР) и рассматриваем возможности ФДМР-спектрометра на примере некоторых хлорофиллоподобных молекул. Известно, что вызванные поглощением СВЧ-излучения изменения интенсивности флуоресценции лежат в пределах 0,1—1%. Для достижения достаточного отношения сигнал/шум необходимо усреднение по большому числу циклов измерения. С целью уменьшения общего времени накопления сигнала выгодно регистрировать сильные фототоки. Обычно это делается многократным усреднением аналогового фотосигнала [¹]. Мы предпочли метод счета фотонов, освобождаясь тем самым от интегрирующего влияния *RC*-фильтров при измерении кинетики микроволнового резонанса. Благодаря применению быстродействующей электроники (с полосой пропускания до 100 *Мгц*) нелинейность счета фотонов не превышала 1% при фотосигнале $10^6 \, um/c$ н 10% при $10^7 \, um/c$.

Принимались меры для уменьшения уровня шумов от всевозможных источников. Лазерная накачка флуоресценции стабилизировалась по интенсивности генерации света. Для устранения флуктуаций от пузырьков кипения жидкого гелия в оптическом криостате эксперименты проводились при температуре ниже λ -точки или в парах жидкого гелия

Рис. 1. Блок-схема ФДМР-спектрометра (сокращения приведены в тексте).

при 5 К. Темновой ток ФЭУ уменьшался охлаждением парами жидкого азота.

ФДМР-спектрометр (рис. 1) построен на базе оптического спектрометра, к которому прибавляется источник СВЧ-поля. Оптическая селективность получается с помощью источников лазерного возбуждения непрерывного действия и избирательной регистрации флуоресценции через монохроматор ДФС-24. Выходящее из монохроматора излучение детектируется фотоумножителем ЕМІ 9816В, дающим одноэлектронный фотоимпульс длительностью не более 10 *нс*. Быстродействующая система регистрации сигнала состоит из усилителя-дискриминатора в счетчике фотонов 5С1 (Brookdeal), стократного делителя частоты на базе частотомера ЧЗ-54 и многоканального анализатора импульсов LP 4840 (Nokia) в режиме многократного накопления сигнала.

Источником СВЧ-поля является свип-генератор НР 8620С/86222А (Hewlett-Packard), выходная мощность которого достигает 40 *мВт*. Держатель объекта в криостате заменен коаксиальной линией, нагрузкой которой служит объект в спиральной замедляющей системе. Временной блок синхронизирует свип микроволнового генератора с разверткой многоканального анализатора в режиме усреднения. ФДМР-спектрометр снабжен двухсторонним каналом обмена информации между анализатором и ЭВМ ЕС 1010, что позволяет разлагать кинетические кривые резонанса на многоэкспоненциальную зависимость в ходе эксперимента. Установка может работать без присмотра в течение нескольких часов.

3. Нижнее возбужденное триплетное состояние порфиринов изучалось методом магнитных резонансов начиная с пионерских работ З. П. Грибовой, Л. П. Каюшиным [⁴] и другими [⁵]. Нами исследовались методом ФДМР мезопорфирин-IX, копропорфирин-I и протопорфирин-IX (ППФ) в замороженных растворах *н*-октана. На рис. 2 слева приведен 0,0-мультиплет Шпольского, полученный при неселективном лазерном возбуждении (4965 Å) для ППФ. Справа показаны спектры ФДМР, зарегистрированные на разных линиях в мультиплете. В спектрах ФДМР наблюдаются два близко расположенных резонанса в области 1,4 *Гац*, причем при переходе с одной линии флуоресценции на другую в пределах всего мультиплета изменяется знак одного резонанса. Более того, низкочастотный резонанс в спектре *3* становится высокочастотным в

Рис. 2. (0,0)-Мультиплет Шпольского (слева) в спектре флуоресценции и спектры. ФДМР (справа) для протопорфирина-IX в *н*-октане.

спектре 2, и наоборот. В спектре 1 расстояние между резонансами увеличено. Объяснение такого поведения резонансов основывается на измерении кинетики для каждого из них. Двухэкспоненциальная аппроксимация пары кинетических кривых дала времена жизни подуровней триплета для ППФ $\tau_x = 4 \ mc$, $\tau_y = 15 \ mc$, $\tau_z = 150 \ mc$ при регистрации сигнала флуоресценции на линии 2 (x, y — плоскостные оси). При переходе на другие линии флуоресценции τ_z относительно постоянно, а τ_x и τ_y изменяются в пределах 50%.

Используя величины нуль-полевого расщепления D и E, мы наблюдали переходы D-E и D+E, причем оказалось, что величина |D| == 1,38 $\Gamma z q$ относительно мало меняется при переходе от одной компоненты Шпольского к другой, а величина E варьирует в пределах $0 - \pm 0,07 \Gamma z q$ и меняет знак. Магнитная неэквивалентность компонент Шпольского говорит в пользу того, что они принадлежат примесным центрам, где молекула по-разному ориентирована в кристаллической матрице *н*-октана. Надо отметить, что при регистрации флуоресценции на линии 4 микроволновых резонансов вообще не наблюдалось. Вероятно, для соответствующих центров величина $E \approx 0$, а заселенности подуровней таковы, что резонансы с почти равными частотами компенсируют друг друга.

Аналогичные результаты были получены для мезопорфирина и копропорфирина, у которых, однако, мультиплеты линий флуоресценции еще сложнее.

4. При изучении выжигания провала на коротковолновом крае спектра флуоресценции феофитина *a* (Фф *a*) обнаруживался слабый максимум при 650 *нм*, который был приписан фотопродукту Фф *a* [⁶]. Нас заинтересовала роль триплетного состояния при его образовании.

При двойной стационарной оптической накачке в образовании и разложении фотопродукта наступает равновесие, причем определенное количество молекул находится в триплетном состоянии. При наложении резонансного микроволнового поля изменяется как общая заселенность триплетного состояния, так и равновесие между молекулами фотопродукта и основной формы. Предполагая замкнутость цикла фотохимического превращения, получаем, что увеличение интенсивности флуоресценции фотопродукта пропорционально уменьшению числа молекул основной формы, и наоборот. Индуцированное микроволновым полем нарушение равновесия соответствует по величине сигналу ФДМР, но время восстановления равновесия определяется не скоростью дезактивации триплета, а скоростью фотохимического превращения. Если же образование фотопродукта происходит через триплетное состояние, то эффект увеличивается — становится пропорциональным изменению заселенности триплета. В последнем случае микроволновой резонанс, детектированный по флуоресценции, имеет величину сигнала порядка получаемой при регистрации ОДМР непосредственно по фосфоресценции.

Для Фф а в эфире при одновременном возбуждении линиями 6471 и 6764 Å Кг⁺-лазера и регистрации флуоресценции на длине волны 650 нм нарушения фотохимического равновесия, индуцированного микроволновым полем, не наблюдалось. Отсутствие заметного эффекта говорит в пользу того, что образование фотопродукта происходит не через триплетное состояние. Наблюдению эффекта, аналогичного ФДМР, препятствовала низкочастотная флуктуация флуоресценции при двойном оптическом возбуждении и спектрально-селективной регистрации ($\Delta \lambda = 5$ Å). Удалось зарегистрировать спектры ФДМР для Фф a и его фотопродукта в эфире при возбуждении люминесценции только одной линией 6471 Å, когда существовало стационарное количество фотопродукта. На длине волны флуоресценции 670 нм наблюдался один резонанс при 0,96 Гец, а на 650 нм — два резонанса при 0,90 и 1,10 Гец. На основе изменения спектров ФДМР можно заключить, что ответственные за флуоресценцию 650 и 670 нм примесные центры различаются не только влиянием матрицы растворителя (неоднородное уширение спектра люминесценции), но и химическим строением примесного центра молекулы $\Phi \phi a$, что подтверждает вывод [⁶] о ее фотохимическом превращении.

Автор благодарен Р. А. Авармаа за постоянное внимание к работе и К. Х. Маурингу за участие в экспериментах.

ЛИТЕРАТУРА

- Clarke, R. H., Connors. R. E., Schaafsma, T. J., Kleibeuker, J. F., Platenkamp, R. J., J. Amer. Chem. Soc., 98, № 12, 3674—3677 (1976).
 Авармаа Р. А., Суйсалу А. П., Изв. АН СССР, сер. физ., 44, № 4, 843—847
- (1979).
- А v аг m аа, R., S c h а a î s m a, T. J., Chem. Phys. Lett., 71, № 2, 339—344 (1980).
 Гр н б о в а З. П., К а ю ш н н Л. П., Успехн химин, 41, № 2, 287—320 (1972).
 Van D o r p, W. G., S c h a a î s m a, T. J., S o m a, M., van der W a a l s, J. H., Chem. Phys. Lett., 21, № 2, 221—225 (1973).
 Mauring, K., Avarmaa, R., Chem. Phys. Lett., 81, № 3, 446—449 (1981).

Институт физики Академии наук Эстонской ССР

FDMR-MEETODI RAKENDAMINE KLOROFULIJSARNASTE MOLEKULIDE UURIMISEKS

On kirjeldatud fluorestsentsi järgi detekteeritud mikrolaine resonantsi (FDMR) katseseadet, milles kasutatakse spektraalselt selektiivset laserergastust ja footoniloendust, ning toodud mõõtmistulemused *n*-oktaanis lahustatud protoporfüriin-IX kohta. Viimase resonantssagedused ja FDMR-signaali märgid osutusid sõltuvaiks fluorestsentsi lainepikkusest. On vaadeldud FDMR-meetodi sobivust feofütiini *a* molekulide fotomuundumise jälgimiseks.

A. P. SUISALU

APPLICATION OF FDMR TECHNIQUE FOR STUDYING CHLOROPHYLL-LIKE MOLECULES

An experimental set-up of the fluorescence detection of microwave resonance (FDMR) by a site-selective laser excitation and photon-counting system is described. The results of the measurements of protoporphyrin-IX in *n*-octane are presented, where the resonance frequencies as well as the signs of the FDMR signal depend on the fluorescence wavelength. A possibility of using the FDMR method for detecting the phototransformation of pheophytin *a* molecules is considered.