EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 30. KÕIDE FÜÜSIKA * MATEMAATIKA. 1981, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 30 ФИЗИКА * МАТЕМАТИКА. 1981, № 2

В. КОРРОВИТС, М. ТРУММАЛ

УДК 536.48: 537.228

ДИПОЛЬНАЯ ПОЛЯРИЗАЦИЯ KCI: OH-

(Представил К. К. Ребане)

Движение параэлектрических примесей в кристаллах с малым параметром туннельного расщепления, $\Delta \leq 0,1 \ cm^{-1}$, а также характеристики таких параэлектрических кристаллов во многом определяются спонтанными локальными механическими напряжениями до 100 $H \cdot m^{-2}$ и электрическими полями до 16 $\kappa B \cdot cm^{-1}$ [¹⁻³], что соответствует расщеплению наинизшего вращательного состояния $Y \simeq 1 \ cm^{-1}$. В системах с $\Delta \simeq 1 \ cm^{-1}$, например в KCl:Li⁺ [¹], эффекты локальных полей замаскированы.

В данной работе вычисляется дипольная поляризация систем с µ|(<100) при некоторых ориентациях внешнего электрического поля с учетом внутренних локальных полей. Из сравнения вычисленных зависимостей с экспериментальными данными из [⁴] сделаны выводы о распределении локальных полей в кристалле и о значениях параметра туннельного расщепления и дипольного момента.

1. Система параэлектрических примесей рассматривается как идеаль-

ный дипольный газ с дипольным моментом $\mu \| \langle 100 \rangle$ в кубическом кристалле с симметрией O_h . Учитывается туннелирование между эквива-

лентными состояниями с поворотом µ только на 90°. Из энергетического

спектра $W_i(E)$, полученного во внешнем электрическом поле E, можно через статистическую сумму $Z = \Sigma \exp(-W_i/kT)$ и свободную энергию $F = -kT \ln Z$ вычислить дипольную поляризацию примесной системы:

$$P = -\partial F / \partial E = kT \partial \ln Z / \partial E.$$
 (1)

Для ориентации $E \parallel [111]$ энергетический спектр $W_{111}(E)$ получен в [⁵]. Дипольную поляризацию можно записать в виде

$$P_{111} = N(\mu \delta / Z_{111}) \sum_{i=1}^{4} a_i \exp \beta A_i,$$
 (2)

где

$$Z_{111} = \exp \beta A_1 + 2 \exp \beta A_2 + \exp \beta A_3 + 2 \exp \beta A_4$$

$$a_1 = 1/u, \quad a_2 = 2/v, \quad a_3 = -1/u, \quad a_4 = -2/v,$$

 $A_1 = u + \Delta, \quad A_2 = v - \Delta/2, \quad A_3 = \Delta - u, \quad A_4 = -(v + \Delta/2).$

Рис. 1. Зависимость дипольной поляризации P_{111} от температуры T, K (a) и параметра туннельного расщепления Δ , cm^{-1} (δ).

$$u = \sqrt{\Delta^2 + \delta^2/3}, \quad v = \sqrt{\Delta^2/4 + \delta^2/3}, \quad \delta = \mu E, \quad \beta = (kT)^{-1},$$

Δ — параметр туннельного расщепления, k — постоянная Больцмана, N — концентрация параэлектрических примесей.

Из выражения (2) при $\Delta = 0$ получается поляризация системы без учета кристаллического поля:

$$P_{111}^{0} = N(\mu/\sqrt{3}) \text{th } x,$$
 (3)

где $x = \delta/\sqrt{3} kT$. Для максимального значения дипольной поляризации на один диполь получаем при данной ориентации электрического поля

$$\lim_{E \to \infty} P_{111}^0 = N \mu / \sqrt{3} \simeq 0.58 \mu N.$$
(4)

В пределе высокой температуры $T \gg \Delta/k$ и в слабом внешнем поле $E \ll kT/\mu$ имеем для поляризуемости классическое выражение Ланжевена—Дебая $\alpha = \mu^2/3 kT$. Поляризацию P_{100} в электрическом поле $\vec{E} \parallel [100]$ можно вычислить из энергетического спектра $W_{100}(E)$ [⁶] аналогично P_{111} . Без учета кристаллического поля получается

Дипольная поляризация KCl: OH-

Рис. 2. Дипольная поляризация \overline{P} при T = 0.39 (a), 0.77 (б) и 1.26 K (в):

- 1 распределение Гаусса, $\Gamma = 6 \kappa B \cdot cm^{-1}$, $\Delta = 0.3 cm^{-1}$, $\mu = 3D$; 2 распределение Лоренца, $\Gamma = 2.5 \kappa B \cdot cm^{-1}$, $\Delta = 0.3 cm^{-1}$, $\mu = 3D$; 3 распределение Лоренца, $\Gamma = 4 \kappa B \cdot cm^{-1}$, $\Delta = 0.25 cm^{-1}$, $\mu = 3.4D$; 4 распределение Лоренца, $\Gamma = 2.5 \kappa B \cdot cm^{-1}$;

 - 5 без функции распределения, $\Delta = 0;$
 - 6 без функции распределения, $\Delta = 0.2 \ cm^{-1}$.

Экспериментальные данные (жирная линия с точками) из [4].

$$P_{100}^{0} = N\mu \sinh x/(2 + ch x).$$
 (5)

Выражение (5) было выведено ранее в [7]. Из рис. 1,а на примере КСІ:ОН- видно, что при повышении температуры поляризация уменьшается из-за термической разориентации дипольной системы. Влияние величины Δ на поляризацию показано на рис. 1,6. Кривая $\Delta = 0$ соответствует зависимости (3). Уменьшение высоты барьеров приводит к уменьшению поляризации, поскольку сориентированные электрическим полем диполи разориентируются под действием поля фононов интенсивнее при более низких барьерах.

2. В реальных кристаллах при $N \leq 10^{18} \text{ см}^{-3}$ наиболее существенным фактором, вызывающим спонтанное упорядочение диполей, являются локальные поля. Будем учитывать действие электрического локального поля на диполь заменой $\mu E \rightarrow \mu (E + U)$ в формуле (2), где U — проекция локального электрического поля на направление (111). Вычислим среднее значение поляризации $P_{111}(T, \Delta, E)$, усредненное по локальным полям:

$$\overline{P} = \int_{-\infty}^{\infty} P_{\text{iii}}(T, \Delta, E, U) f(U) dU,$$
(6)

137

где f(U) — функция распределения локальных полей. Нами использовались распределение Гаусса $f_G = (\Gamma/\sqrt{2\pi})^{-1} \exp(-U^2/2\Gamma^2)$ и распределение Лоренца $f_L = (\Gamma/\pi) (U^2 + \Gamma^2)^{-1}$, где Γ — полуширины функций распределения. Если значения Δ и μ не указаны, то они принимаются равными 0,2 *см*⁻¹ и 3,8 *D* соответственно.

В данной системе энергия взаимодействия локальных полей с диполем сравнима с параметром туннельного расщепления. Поэтому прохождение частицы через барьер происходит в основном путем квантовомеханического туннелирования. В некоторых системах, например в NaBr:F⁻, где $\Delta = 6 \cdot 10^{-3} \ cm^{-1}$, вследствие внутренних напряжений с амплитудой расщепления состояний $Y \simeq 2 \ cm^{-1}$ происходит почти полная локализация состояний и переход через барьер осуществляется поглощением или испусканием фонона. В таком случае доля квантовомеханического туннелирования составляет Δ/Y [²].

Для сравнения с вычислениями нами используются экспериментальные данные P_{111} , полученные в [⁴] из измерения дифференциальной диэлектрической постоянной $\eta := \partial D/\partial E$ на кристалле KCl:OH⁻ с $N = 2 \cdot 10^{18} \ cm^{-3}$, выращенном по методу Киропулоса в атмосфере аргона. Концентрация других примесей в кристалле не превышает $10^{16} \ cm^{-3}$.

Кривые Р вычислялись по формуле (6) на ЭВМ ЕС-1010 методом прямоугольников при определенных значениях внешнего электрического поля. Ширина прямоугольников выбиралась (0,03-0,05) Г кВ·см⁻¹, вычисление прекращалось, когда следующий шаг давал прирост менее 0,1%. Как видно из рис. 2, кривая 5 ($\Delta = 0$) отличается от экспериментальной при 0,39 К до 60%, при 0,77 К до 20% и при 1,26 К до 7%; от кривой же 6 ($\Delta = 0,2 \ cm^{-1}$) отличается мало. При вычислении кривых изменялись параметры Γ, Δ, μ . При температуре 0,39 K (рис. 2, *a*) наилучшее согласие с экспериментом, с разницей в несколько процентов, обнаружилось при $E\leqslant 20~\kappa B\cdot cm^{-1}$ у гауссовой кривой 1 (Г = = 6 кВ · см⁻¹, Δ = 0,3 см⁻¹, μ = 3D). В сильных полях, $E \ge 20$ кВ · см⁻¹, лоренцовая кривая 2 ($\Gamma = 2,5 \ \kappa B \cdot c M^{-1}, \Delta = 0,3 \ c M^{-1}, \mu = 3D$) ближе к экспериментальной, чем гауссова. При 0,77 К (рис. 2,б) наилучшее приближение обнаруживается у лоренцовой кривой 3 ($\Gamma = 4 \ \kappa B \cdot c m^{-1}$, $\Delta = 0,25 \ cm^{-1}, \ \mu = 3,4D$). При 1,26 К (рис. 2,в) лоренцовая кривая 4 $(\Gamma = 2,5 \ \kappa B \cdot c M^{-1})$ практически совпадает с экспериментальной, но при анализе следует рассматривать результаты при 0,39 и 0,77 К.

3. Как видно, в рамках рассматриваемой модели экспериментальные данные наилучшим образом описываются распределением Лоренца, а при $T \simeq \Delta/k$ и во внешнем поле $E \leqslant 20 \kappa B \cdot c M^{-1}$ достаточно хорошо и распределением Гаусса. Величины $\Delta = 0,25$ и 0,3 см⁻¹ находятся на верхней границе интервала приведенных в литературе значений $(0,1-0,26 \ cm^{-1})$, а величины $\mu = 3$ и 3,4D — на нижней границе интервала (3,3—4,5D). Лучшая согласованность экспериментальной и лоренцовой кривых указывает на то, что значительную роль, особенно в сильном внешнем поле и при более высокой температуре, играют локальные поля с большей напряженностью, что и описывается распределением Лоренца. Некоторое увеличение параметра Δ по сравнению с обычно принимаемым в вычислениях значением 0,2 см-1 можно объяснить наличием локальных полей. Авторы [8] наблюдали уменьшение Δ на 50% в хорошо отожженных кристаллах. Уменьшение величины μ вызвано тем, что часть энергии взаимодействия диполя приходится на локальные поля.

Имея в виду малую концентрацию других примесей, можно предпо-

ложить, что возникновение описанных выше локальных полей вызывают искажения кристаллической решетки вокруг примеси.

Авторы выражают благодарность В. Вихнину, Г. Лийдья и О. Сильду за полезные советы.

ЛИТЕРАТУРА

- Pohl, R. O., Rev. Mod. Phys., 42, № 2, 201-236 1. Narayanamurti, V., (1970).
- Rollefson, R. J., Phys. Rev., B5, № 8, 3235-3253 (1972).
 Reymann, G. A., Lüty, F., Phys. status solidi (a), 16, № 2, 561-568 (1973).
 Burkard, H., Känzig, W., Rossinelli, M., Helv. Phys. Acta, 49, № 1, 13-43 (1976).
- 5. Корровитс В., Лийдья Г., Изв. АН ЭССР, Физ. Матем., 20, № 2, 156-166 (1971).
- Korrovits, V., Liidja, G., Mihkelsoo, V., Phys. status solidi (b), 67, № 2, 695-702 (1975).
 Lawless, W. N., J. Phys. Chem. Solids, 30, № 5, 1161-1172 (1969).
 Dreyfus, R. W., Solid State Commun., 7, № 11, 827-829 (1969).

Институт физики Академии наук Эстонской ССР Поступила в редакцию 28/X 1980

V. KORROVITS, M. TRUMMAL

KCI: OH DIPOOLNE POLARISATSIOON

Töös on arvutatud dipoolne polarisatsioon, mis on keskmistatud üle lokaalsete väljade

süsteemides, kus lisandi dipoolmomendi tasakaaluasend on µ∥<100> ja µ pöördub 90° võrra lisandi tunneleerimisel läbi potentsiaalbarjääride. Lokaalsete väljade kirjeldamisel sobib Lorentzi jaotus katseandmetega paremini kui Gaussi jaotus. Jaotuste poollaius on 2,5–6 kV·cm⁻¹. Arvutustes kasutatud tunnellõhenemise parameetri ja dipoolmomendi väärtused on kirjanduses esinevate väärtuste vahemikus.

V. KORROVITS, M. TRUMMAL

DIPOLAR POLARIZATION OF KCI: OH

Dipolar polarization is calculated for the paraelectric system with equilibrium orientation of the dipole moment $\mu \parallel < 100 >$. Tunneling of the impurity with a turn of μ only by 90° is assumed. For comparison with experiment in KCl:OH⁻¹, dipolar polariza-tion is averaged over random internal electric fields. At 0.39 K and in external fields up to 20 kV·cm⁻¹, internal fields are best described by Gauss distribution with half-width of 6 kV·cm⁻¹. In higher electric fields and at higher temperatures in fields from 0 to 100 kV·cm⁻¹, the internal fields are best described by Lorentz distribution with the halfwidths of 2.5 and 4 kV·cm⁻¹. In our calculations the tunneling parameter value was taken to be 0.25 cm⁻¹ and 0.3 cm⁻¹, the dipole moment 3 and 3,4*D*, which lies in the intervals of the experimental values for KCl: OH .