EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 27. KÕIDE FÜÜSIKA * MATEMAATIKA. 1978, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 27 ФИЗИКА * МАТЕМАТИКА. 1978, № 2

УДК 517: 518.392

М. ЛЕВИН, В. АРРО

ЗАМЕЧАНИЕ О НАИЛУЧШИХ КВАДРАТУРНЫХ ФОРМУЛАХ С ВЕСОВОЙ ФУНКЦИЕЙ

- M. LEVIN, V. ARRO. MÄRKUS PARIMATE KAALUFUNKTSIOONIGA KVADRATUURVALEMITE KOHTA
- M. LEVIN, V. ARRO. A REMARK ON THE OPTIMAL QUADRATURE FORMULAS WITH WEIGHT FUNCTION

Для приближенного вычисления определенного интеграла от функции $f_0(x)$ возможен следующий путь [¹⁻²]. Среди множества квадратурных формул определенного вида выбираем ту, которая в некотором смысле является наилучшей на множестве H функций f(x), содержащем заданную функцию $f_0(x)$. Интеграл от $f_0(x)$ считаем по выбранной наилучшей формуле.

Пусть *r*, *n*, *M*, $1 \le q \le \infty$ заданы, $W^r L_q$ — множество всех функций f(x), которые на отрезке [0, 1] имеют абсолютно непрерывную производную порядка r - 1 и удовлетворяют условию

$$||f^{(r)}(x)||_{L_{q}(0,1)} \leq M.$$

Для заданной функции $\alpha(x)$ через $W^{r}_{\alpha(x)}L_{q}$ обозначим множество всех непрерывных на [0, 1] функций f(x) таких, что $f(\alpha(x)) \Subset W^{r}L_{q}$.

Через x_k^* , A_k^* (k = 1, ..., n) обозначим узлы и веса наилучшей [²] на множестве $W^r L_q$ формулы вида

$$\int_{0}^{1} f(x) dx = \sum_{k=1}^{n} A_{k} f(x_{k}) + R_{n}(f), \qquad (1)$$

где $0 \leq x_1 < x_2 < \ldots < x_n \leq 1$. Другими словами, будем считать числа $x_k = x_k^*$, $A_k = A_k^*$ ($k = 1, \ldots, n$) выбранными из условия, чтобы

$$\sup_{f \in W^{r}L_{q}} |R_{n}(f)|$$

имело наименьшее значение.

Существенно отметить, что числа $\{x_h^*, A_h^*\}$ не зависят от величины M и для ряда значений r известны [²].

Будем считать, что заданная функция $\varrho(x)$ суммируема на [0,1] и такова, что функция

$$\varphi(x) = \frac{1}{v} \int_{0}^{x} \varrho(t) dt,$$

где $v = \int_{0}^{1} \varrho(t) dt$, монотонно возрастает на [0,1]. Через $\lambda(x)$ обозначим функцию, обратную на [0,1] к функции $\varphi(x)$. Например, если $\varrho(x) = x^{-1/2}$, то $\lambda(x) = x^{2}$, а для $\varrho(x) = [x(1-x)]^{-1/2}$ легко подсчитать, что $\lambda(x) = \sin^{2}\left(\frac{\pi}{2}x\right)$.

Теорема. Наилучшая на $W^r_{\lambda(x)}L_q$ формула вида

$$\int_{0}^{1} \varrho(x) f(x) dx = \sum_{k=1}^{n} B_{k} f(t_{k}) + E_{n}(f) \quad (0 \leq t_{1} < t_{2} < \dots < t_{n} \leq 1), \quad (2)$$

т. е. формула (2) с наименьшим значением величины

$$E_n = \sup_{\substack{f \in W_{\lambda(x)}^r L_q}} |E_n(f)|,$$

имеет узлы, веса

$$t_k = \lambda(x_k^*), \quad B_k = vA_k^* \quad (k = 1, 2, ..., n)$$

и оценку остатка

$$E_n = v \cdot \inf_{\{x_k, A_k\}} \sup_{f \in W^r L_q} |R_n(f)|.$$
(3)

Доказательство. Пусть f(x) непрерывна на [0,1], $F_f(x) = f(\lambda(x))$. Тогда, учитывая обозначения (в том числе и (1)), имеем

$$\int_{0}^{1} \varrho(x) f(x) dx = v \int_{0}^{1} F_{f}(x) dx = v \sum_{h=1}^{n} A_{h} F_{f}(x_{h}) + v R_{n}(F_{f}).$$
(4)

Очевидно, здесь

$$\sup_{f \in W_{\lambda(x)}^{r}L_{q}} |R_{n}(F_{f})| \leq \sup_{f \in W^{r}L_{q}} |R_{n}(f)|.$$
(5)

С другой стороны, пусть $\mu(x)$ — произвольная функция из W^rL_q , а $\gamma(x) = \mu(\varphi(x))$. Тогда $\gamma(x) \in W^r_{\lambda(x)}L_q$. Кроме того,

$$R_n(F_{\gamma}) = \int_0^1 \gamma(\lambda(x)) dx - \sum_{k=1}^n A_k \gamma(\lambda(x_k)) = \int_0^1 \mu(x) dx - \sum_{k=1}^n A_k \mu(x_k) = R_n(\mu).$$

Поэтому

$$\sup_{f \in W^{r}L_{q}} |R_{n}(f)| \leq \sup_{f \in W^{r}_{\lambda(x)}L_{q}} |R_{n}(F_{f})|.$$
(6)

Из формул (5) и (6) следует, что

$$\sup_{f \in W_{\lambda(x)}^r L_q} |R_n(F_f)| = \sup_{f \in W^r L_q} |R_n(f)|.$$

Отсюда получаем, что наилучшая на множестве $W_{\lambda(x)}^{r}L_{q}$ формула (4)

имеет узлы и веса x_{k}^{*}, A_{k}^{*} (k = 1, ..., n), а ее оценка совпадает с оценкой (3).

Поскольку $0 \leq \lambda(x) \leq 1$ для $0 \leq x \leq 1$, формулы (4) являются формулами вида (2). И обратно, так как каждому значению $t \in [0,1]$ соответствует значение $x \in [0,1]$ такое, что $t = \lambda(x)$, каждая формула (2) является формулой вида (4). Следовательно, множества формул (2) и (4) совпадают, но тогда наилучшая на $W_{\lambda(x)}^r L_q$ формула (2) совпадает с наилучшей на этом же множестве функций формулой (4). Теорема доказана.

Из этой теоремы, например, следует, что при $\varrho(x) = [x(1-x)]^{-1/2}$ наилучшая формула (2) на множестве непрерывных на [0,1] функций f(x) таких, что $f\left(\sin^2\frac{\pi}{2}x\right) \in W^r L_q$, имеет вид

$$\int_{0}^{1} \frac{f(x)}{\sqrt{x(1-x)}} dx = \pi \sum_{h=1}^{n} A_{h}^{*} f\left(\sin^{2} \frac{\pi}{2} x_{h}^{*}\right) + E_{n}(f).$$
(7)

Замечание. Вышедоказанная теорема распространяется и на случай, когда рассматриваются квадратурные формулы, использующие производные подынтегральной функции, а также на формулы с частично (или полностью) фиксированными узлами.

Пример. Приведем результаты вычисления интеграла

 $\int_{0} \frac{\arctan x}{\sqrt{x(1-x)}} dx = 1,3417069$ по формуле (7) для случая $r = 2, q = \infty$:

п	Значение интеграла по (7)	Ошибка $ E_n(f) $
4	1,3405	0,0012
8	1,34156	0,00015
16	1,341689	0,000017
32	1,3417047	0,0000022
64	1,34170665	0,0000003

ЛИТЕРАТУРА

1. Sard, A., Amer. J. Math., LXXI, 80 (1949).

2. Никольский С. М., Квадратурные формулы, М., 1974.

Таллинский политехнический институт Поступила в редакцию 30/IX 1977