## EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, 27. KÕIDE FÜÜSIKA \* MATEMAATIKA. 1978, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 27 ФИЗИКА \* МАТЕМАТИКА. 1978, № 2

## Т. РИЙСМАА

УДК 519.1

## ОБ ОДНОЙ ПОСТАНОВКЕ ЗАДАЧИ ОПТИМИЗАЦИИ ИЕРАРХИЧЕСКИХ СТРУКТУР

T. RHSMAA. ÜHEST HIERARHILISTE STRUKTUURIDE OPTIMEERIMISE ÜLESANDE ESITUSEST

T. RIISMAA. ON A STATEMENT OF THE OPTIMIZATION PROBLEM FOR HIERARCHICAL STRUCTURES

Конечный граф (E, U) есть прадерево с корнем  $x_1 \in E$ , если

1) в каждую его вершину, кроме x<sub>1</sub>, заходит одна единственная дуга;

2) в x<sub>1</sub> не заходит ни одна дуга;

3) (E, U) не содержит контуров ([<sup>1</sup>], с. 173).

Предположим, что множество вершин E разделено на два непустых непересекающихся множества  $E = C \cup P$ :  $C = \{x \in E \mid \Gamma x \neq \emptyset\}$  и  $P = \{x \in E \mid \Gamma x = \emptyset\}$ , где  $\Gamma x = \{y \mid (x, y) \in U\}$  и  $x, y \in E$ , (x, y) - дугаграфа, U — множество дуг.

Множество  $C = \{c_1, \ldots, c_m\}$  будем называть множеством узлов (невисящих вершин),  $P = \{p_1, \ldots, p_n\}$  — множеством точек (висящих вершин) ([<sup>1</sup>], с. 165).

На всяком подмножестве  $F \subset E$  определим всевозможные прадеревья, множеством вершин которых является это подмножество. Получим множество прадеревьев  $H_E$ . Для F предполагается

 $F = F_1 \cup F_2, F_1 \subset C, F_2 \subset P, F_2 \neq \emptyset.$ 

Таким образом, множество узлов любого прадерева  $H \Subset H_E$  является подмножеством множества C, а множество точек — подмножеством множества P.

Каждой точке  $p_i \in P$  поставим в соответствие функцию  $f_i(x_i)$ , где  $f_i: R^q_+ \to R_+, f_i(0) = 0 \ (i = 1, ..., n)$ . Пусть  $x_i = (x_{i1}, ..., x_{iq})$  и  $Q = \{x = (x_1, ..., x_n) | G(x) \ge 0, x \ge 0\}$ . Каждому узлу  $c_j \in C$  поставим в соответствие функцию  $h_j(k_j)$ , где  $h_j: N \to R_+, h_j(0) = 0, h_j(k_j) > 0$  при  $k_j > 0$  и  $h_j$  — возрастающая функция  $(j = 1, ..., m), N = \{0, 1, ...\}$ . Величина  $k_j$  интерпретируется как число дуг, исходящих из узла  $c_j$ .

Далее, прадерево будем называть иерархией. Каждой иерархии  $H \Subset H_E$  со множеством узлов и точек  $F = F_1 \cup F_2 = \{c_{\tau_1}, \ldots, c_{\tau_{\alpha}}\} \cup \cup \{p_{\nu_1}, \ldots, p_{\nu_B}\}$  сопоставлена функция

$$\varphi(H) = f * h = f_{v_1} * \ldots * f_{v_B} * h_{\tau_1} * \ldots * h_{\tau_{\alpha}},$$

где \* означает некоторый закон синтеза, v1, ..., v<sub>β</sub> и τ1, ..., т<sub>α</sub> явля-

ются подпоследовательностями последовательностей 1, ..., *n* н 1, ..., *m* соответственно.

В качестве такого закона рассмотрим соотношение

$$f * h = \sum_{i=1}^{\beta} f_{v_i}(x_{v_i}) - \sum_{j=1}^{\alpha} h_{\tau_j}(k_{\tau_j}).$$
(1)

Иерархия Но, при которой

$$\varphi(H_0) = \max_{H \in H_E} \varphi(H), \qquad (2)$$

называется оптимальной иерархией.

Иерархия интерпретируется как структура иерархической системы, которая состоит из координаторов (узлов), процессов (точек) и соотношений между ними (дуг), направление которых показывает определенную подчиненность этих узлов и точек.

Первое слагаемое в соотношении (1) интерпретируется как продукция  $\beta$  процессов ( $\beta \leq n$ ), а второе — как затраты на координирование работы  $\beta$  процессов и  $\alpha$  — 1 координаторов ( $\alpha \leq m$ ). Величина  $x_i$  может быть рассмотрена как ресурсы в распоряжении процесса  $p_i$ , а величина  $k_i$  — как координаторы и процессы, подчиненные координатору  $c_j$ .

Задача нахождения оптимальной нерархии сводится к решению следующей задачи частично целочисленного нелинейного программирования: по  $x_1, \ldots, x_n, \beta, k_1, \ldots, k_m, \alpha$  максимизировать

$$\sum_{i=1}^{n} f_i(x_i) - \sum_{j=1}^{m} h_j(k_j)$$
(3)

при условиях

$$\sum_{j=1}^{m} k_j = \beta + \alpha - 1, \tag{4}$$

$$\sum_{j=1}^{m} \delta(k_j) = \alpha, \quad \sum_{i=1}^{n} \delta(x_i) = \beta, \tag{5}$$

$$\alpha \in \mathbb{N}, \quad \beta \in \mathbb{N} \setminus \{0\}, \quad k_j \in \mathbb{N} \quad (j = 1, \dots, m), \tag{6}$$

$$x \in Q, \tag{7}$$

где  $\delta(k_j) = \begin{cases} 1, k_j > 0 \\ 0, k_j = 0 \end{cases}$ ,  $(j=1,\ldots,m); \delta(x_i) = \begin{cases} 1, x_i > 0 \\ 0, x_i = 0 \end{cases}$ ,  $(i=1,\ldots,n);$ 

$$x = (x_1, \ldots, x_n).$$

Здесь а — число узлов (а  $\leq m$ ), а  $\beta$  — число точек ( $\beta \leq n$ ) иерархии. Левая часть ограничения (4) представляет собой те узлы, откуда дуги исходят, а правая — те узлы и точки, куда они заходят. В один узел это корень иерархии — не заходит ни одна дуга. Ограничения (5) показывают, что у иерархии есть а узлов и  $\beta$  точек. Из определения  $\delta(x_i)$  ясно, что иерархия имеет точку  $p_i$  тогда и только тогда, когда  $x_i > 0$ . Из определения  $\delta(k_j)$  ясно, что иерархия имеет узел  $c_j$  тогда и только тогда, когда  $k_j > 0$ . Естественно, что  $\alpha$ ,  $\beta$ ,  $k_j(j = 1, ..., m)$ неотрицательные целые числа, и из предположения  $F_2 \neq \emptyset$  следует:  $\beta \geq 1$ .

Решение задачи (3)—(7) обозначим через  $(k^0, x^0)$ , где  $k^0 = (k_1^0, \ldots, k_m^0, \alpha^0), x^0 = (x_1^0, \ldots, x_n^0, \beta^0).$ 

S all's

Каждой иерархии H из множества  $H_E$  соответствует допустимое решение задачи (3)—(7) и, наоборот, каждому допустимому решению задачи (3)—(7) соответствует некоторая иерархия из множества  $H_E$ .

Допустимое решение (k, x) задачи (3) - (7) не определяет иерархию полностью в том смысле, что каждому допустимому решению может соответствовать целое множество иерархий. Вектор  $k = = (k_1, \ldots, k_m, \alpha)$  определяет множество узлов иерархии и число дуг, исходящих из каждого узла. Вектор  $x = (x_1, \ldots, x_n, \beta)$  определяет множество точек иерархии. Всевозможные иерархии, имеющие вышеуказанное множество точек, узлов и число дуг, исходящих из каждого узла и заданных положительными компонентами вектора k, соответствуют допустимому решению (k, x) задачи (3) - (7).

Иногда возникает задача о нахождении оптимальной иерархии, где число точек β фиксировано заранее. Тогда задача (3)—(7) распадается на две самостоятельные задачи:

$$\max_{x_1, \dots, x_n} \{ \sum_{i=1}^n f_i(x_i) \, | \, x \in Q, \, \sum_{i=1}^n \delta(x_i) = \beta \}$$
(8)

И

$$\min_{k_1,...,k_m,\alpha} \{ \sum_{j=1}^m h_j(k_j) \mid \sum_{j=1}^m k_j = \beta + \alpha - 1, \\ \sum_{i=1}^m \delta(k_j) = \alpha, \ \alpha \in N, \ k_j \in N \ (j = 1, ..., m) \},$$
(9)

где  $\delta(x_i)$  (i = 1, ..., n) и  $\delta(k_j)$  (j = 1, ..., m) уже определенные функции.

Задача (8) является задачей нелинейного программирования с дополнительным условием, что положительными могут быть точно в компонент. Задача целочисленного нелинейного программирования (9) является задачей нахождения оптимальной иерархии при фиксированном числе точек. Для решения задачи (9) можно использовать метод динамического программирования ([<sup>2</sup>], с. 251).

Развитый здесь подход к задачам оптимизации иерархии представляет собой одно из возможных продолжений идеи Р. Куликовского [<sup>3</sup>], который рассматривал иерархии, состоящие из объектов двух типов (процессов, координаторов) и связей (дуг) между ними.

Пример. Пусть

$$h_1(k_1) = \begin{cases} \frac{1}{2} k_1, & k_1 = 0, 1, 2, \\ 8k_1 - 15, & k_1 \ge 3, \end{cases}$$
$$h_3(k_3) = k_3^2, & h_4(k_4) = 4k_4, \end{cases}$$

где  $k_j \in N$  (j=1, ..., 4), и m = 4. Зафиксировано:  $\beta = 6$ .

При этих данных задача (9) имеет вид

$$\min_{k_1,\ldots,k_4,\alpha} \{ \sum_{j=1}^4 h_j(k_j) \mid \sum_{j=1}^4 k_j = 5 + \alpha, \\ \sum_{j=1}^4 \delta(k_j) = \alpha, \ \alpha \in \mathbb{N}, \ k_j \in \mathbb{N} \ (j=1,\ldots,4) \},$$

ее решенисм является вектор  $k^0 = (k_1^0, \ldots, k_4^0, \alpha^0) = (2, 3, 3, 0, 3).$ 



На рисунке показаны некоторые иерархии, соответствующие решению k<sup>0</sup>.

## ЛИТЕРАТУРА

- 1.
- Берж К., Теория графов и ее применения, М., 1962. Корбут А. А., Финкельштейн Ю. Ю., Дискретное программирование, М., 1969. 2.
- 3. Kulikowski, R., Arch. Automat. i Telemech., 12, № 3, 295 (1967).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 1/VII 1977