3. Дзюб И. П., Лубченко А. Ф., Иинъ Юнь-вень, Укр. физ. ж., 7, 457 (1962).

- 4. Казарновский М. В., Степанов А. В., Acta Phys. Acad. Sci. Hung., 14, 45 (1962).
- 5. Казарновский М. В., Степанов А. В., Тр. Физического ин-та им. П. Н. Лебедева, 33, М., 1964.
- 6. Хаас М. А., Препринт FAI-21, 1973. 7. Hizhnyakov V., Tehver I., Phys. Stat. Sol., 21, 755 (1967).

Институт физики Академии наук Эстонской ССР

Поступила в редакцию 16/VI 1966

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 26. KÕIDE FÜÜSIKA * MATEMAATIKA. 1977, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 26 ФИЗИКА * МАТЕМАТИКА. 1977. № 2

А. СТУЛОВ

УДК 534.26

О ДИФРАКЦИИ АКУСТИЧЕСКОГО ИМПУЛЬСА НА ЖЕСТКОМ ЭЛЛИПТИЧЕСКОМ ЦИЛИНДРЕ

A. STULOV. AKUSTILISE IMPULSI DIFRAKTSIOON JÄIGAL ELLIPTILISEL SILINDRIL A. STULOV. DIFFRACTION OF ACOUSTIC PULSE BY RIGID ELLIPTICAL CYLINDER

Использование интегральных уравнений в задачах дифракции позволяет вычислять эхо-сигнал практически от любых объектов. Численные результаты были впервые получены в [1]. Р. Шоу [2, 3], применяя интеграл Кирхгофа, решил задачу дифракции импульса на цилиндрах прямоугольного и кругового поперечного сечения. В настоящей работе с помощью этого же интеграла вычислена дифракция плоского акустического импульса на цилиндрическом препятствии эллиптического поперечного сечения.

Согласно [1], интеграл Кирхгофа имеет вид

$$\epsilon \varphi(r, t) = \varphi_{i}(r, t) + (4\pi)^{-1} \oint_{S} \left[R^{-1} \frac{\partial \varphi(r_{0}, t_{0})}{\partial n_{0}} + \left(R^{-2} \varphi(r_{0}, t_{0}) + c^{-1} R^{-1} \frac{\partial \varphi(r_{0}, t_{0})}{\partial t_{0}} \right) \frac{\partial R}{\partial n_{0}} \right]_{t_{0} = t - c^{-1} R} dS_{0}.$$
(1)

Функцией ф(r, t) может быть потенциал скорости или давление эхо-сигнала, вызванного дифракцией непрерывного зондирующего импульса $\varphi_i(r, t)$, заданного потенциалом скорости или давлением в точке (r, t). Если точка наблюдения (r, t) находится внутри цилиндра, на его поверхности или в окружающей его жидкости, то $\varepsilon = 0, 1/2, 1$ соответственно. $R = |r - r_0|$ — расстояние между точками наблюдения и интегрирования, to — время, необходимое для прохождения расстояния R

со скоростью *с*, *S*₀ — трехмерная поверхность цилиндра с внешней нормалью *n*.

Рассмотрим «абсолютно жесткий» цилиндр с нулевыми начальными условиями перед фронтом зондирующего импульса

$$\frac{\partial \varphi}{\partial n} = 0 \quad (\text{Ha } S_0), \tag{2}$$

$$\varphi = \varphi_i, \quad t < 0. \tag{3}$$

Устремляя точку наблюдения к поверхности цилиндра и учитывая сингулярность при R = 0, из выражения (1) получим

$$\varphi(s,t) = 2\varphi_i(s,t) + \pi^{-1} \int \int \left[R^{-2}\varphi(s_0,t_0) + c^{-1}R^{-1} \frac{\partial\varphi(s_0,t_0)}{\partial t_0} \right]_{t_0 = t - c^{-1}R} \times \frac{\partial R}{\partial n_0} dz_0 ds_0.$$
(4)

Область интегрирования в уравнении (4) определяется положением фронта зондирующего импульса на поверхности цилиндра и легко поддается вычислению, s и s_0 — дуговые координаты контура цилиндра, z_0 — координата вдоль оси цилиндра.

Использование поверхностного интеграла (4) позволяет уменьшить размерность задачи и искать $\varphi(s, t)$ -функцию только двух переменных. Вычисляется она следующим образом. Разбивая контур цилиндра *s* некоторым числом точек на отрезки и предполагая неизменность подынтегральной функции на каждом из них, можно аппроксимировать уравнение (4) двойной суммой запаздывающих по времени значений φ , при этом $\partial \varphi / \partial t_0$ заменяется отношением левых разностей.

Разностные уравнения принимают вид

$$\varphi(s_m, t_h) = \varphi_i(s_m, t_h) + \sum_{\substack{j=1\\j\neq m}}^N \sum_{l=1}^T A_{mjl}\varphi(s_j, t_{h-l+1}) + B_{mjl}\varphi(s_j, t_{h-l}).$$
(5)

В формуле (5) суммирование ведется по всем отрезкам разбиения контура и с шагом по времени Δt . Коэффициенты A_{mjl} и B_{mjl} являются интегралами от $R^{-1} \frac{\partial R}{\partial n_0}$ и $R^{-2} \frac{\partial R}{\partial n_0}$ и вычисляются точно.

Начав суммирование с первого шага, можно продолжать процесс вычисления до любого момента времени. При условии, что $\Delta t < \Delta s$, полученные значения $\varphi(s, t)$ относительно нечувствительны к величине фиксированных отрезков разбиения контура. Определив поле на поверхности цилиндра, можно легко по формуле (1) найти значение $\varphi(r, t)$ в произвольной точке пространства.

На рис. 1 показаны нормированные эхо-сигналы от эллиптического цилиндра с отношением полуосей a = 1,5, определенные по формулам (5) и (1). Зондирующий импульс давления (кривая 1) падает на цилиндр под углом $\Theta = 60^{\circ}$. Эхо-сигналы (кривые 2—6), нормированные множителем $(2r)^{1/2}$, вычислены для соответствующих точек наблюдения (r = 5).

На рис. 2 изображены эхо-сигналы от эллиптического цилиндра с отношением полуосей a = 10. Эхо-сигналы 2, 3 вызваны зондирующим импульсом (кривая 1), падающим вдоль большой оси эллипса, а 4, 5 — вдоль малой. Эхо-сигналы 2, 4 вычислены для точки наблюдения, находящейся на расстоянии L = 3 от поверхности цилиндра, а 3, 5 — для точки наблюдения с L = 20. Кривые 2—5 нормированы геометри-

ческим множителем $(2rK+1)^{1/2}$, где r — расстояние от точки наблюдения до оси эллипса, K — кривизна цилиндра в точке отражения. Как и следовало ожидать, уменьшение амплитуды эхо-сигнала с расстоянием согласуется с законами геометрической акустики.

ЛИТЕРАТУРА

Фридман М. Б., Шоу Р. П., Прикл. мех., Сер. Е, № 1, 47 (1962).
 Shaw, R. P., J. Acoust. Soc. America, 44, 1062 (1968).
 Shaw, R. P., J. Sound and Vibration, 42, 295 (1975).

Институт кибернетики Поступила в редакцию Академии наук Эстонской ССР 18/V 1976

EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 26. KÕIDE FÜÜSIKA * MATEMAATIKA. 1977, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 26 ФИЗИКА * МАТЕМАТИКА. 1977, № 2

УДК 007:621.391:681.327.8

Ю. ЛИЙВАК

ОРГАНИЗАЦИЯ СЕТИ ВЫЧИСЛИТЕЛЬНЫХ ЦЕНТРОВ В ЭССР

J. LIIVAK. ARVUTITEVÕRGU ORGANISEERIMINE ENSV-s

J. LIIVAK. A NOTE ON ORGANIZATION OF COMPUTER COMMUNICATION NETWORKS IN THE ESSR

Основной задачей республиканской автоматизированной системы управления (РАСУ) является совершенствование планирования и управления экономикой народного хозяйства и социальной жизнью республики на базе широкого применения экономико-математических методов, средств электронно-вычислительной техники и связи. Для успешного решения этой задачи необходимо прежде всего обеспечить качество циркулирующей в РАСУ информации программно-техническими средствами. Если за критерий функциональной эффективности принять обеспечение качества данных при минимальных затратах [1], то наибольшего эффекта при построении технического обеспечения РАСУ ЭССР следует ожидать от республиканской сети вычислительных центров (РСВЦ).

В данном сообщении определяются требования к РСВЦ, рассматриваются ее структура и топология.

Требования к РСВЦ

Сеть ЭВМ есть совокупность вычислительных центров и абонентских пунктов, соединенных с помощью подсети передачи данных, для предоставления потребителям возможности передачи, обработки и хранения данных в режиме разделения ресурсов.

Эффективно функционирующая РСВЦ должна удовлетворять следующим требованиям:

1. Обеспечивать необходимое качество данных (достоверность, время получения ответа, секретность).

2. Иметь соответствующие ресурсы для обработки заданных объемов данных и удовлетворения разнообразных запросов потребителей.