EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 25. KÖIDE FÜÜSIKA * MATEMAATIKA. 1976, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 25 ФИЗИКА * МАТЕМАТИКА. 1976, № 2

https://doi.org/10.3176/phys.math.1976.2.13

УДК 621.3.061

Т. ЛАУСМАА, Ю. ХУНТ

СХЕМА ЗАМЕЩЕНИЯ ДИФФЕРЕНЦИАЛЬНО-ТРАНСФОРМАТОРНОГО МАГНИТНОГО УСИЛИТЕЛЯ НА ДРОССЕЛЯХ С ПРЯМОУГОЛЬНОЙ КРИВОЙ НАМАГНИЧИВАНИЯ

Рассмотрим приведенную на рис. 1 схему усилителя [¹]. Обозначения следующие: Z_a динамическое сопротивление учитывает динамические свойства сердечника; OT — симметричный ограничитель тока — учитывает ширину гистерезисной петли ($2i_s$); u_1 — напряжение питания; U_0 — э.д.с. управления; Z_0 — сопротивление в цепи управления; Z_H сопротивление нагрузки.

Как видно, суммарные токи дросселей связаны системой уравнений

$$i_A = i_1 + i_0 + i_2 - i_{AZ},$$

$$i_B = -i_1 + i_0 + i_0 - i_{BZ}.$$
(1)

Предположим, что

$$i_{AZ} = +i'_1 - i'_2,$$

$$i_{BZ} = +i'_1 + i'_2,$$
(2)

откуда

$$i'_{4} = \frac{i_{AZ} + i_{BZ}}{2}, \qquad (3)$$
$$i'_{2} = \frac{i_{BZ} - i_{AZ}}{2}$$

$$i_A = i''_1 + i''_2 + i_0,$$

$$i_B = -i''_1 + i''_2 + i_0,$$
(4)

 $i''_1 = i_1 - i'_1,$ $i''_2 = i_2 + i'_2.$

2

Схема замещения дифференциально-трансформаторного...

Так как

$$i_{AZ} = \frac{u_A}{Z_d} + i_s, \qquad (5)$$

то

$$i'_{1} = \frac{\frac{u_{A} + u_{B}}{Z_{d}} + 2i_{s}}{2} = \left(\frac{u_{1}}{2Z_{d}} + i_{s}\right),$$

 $\frac{1}{Z_d} + i_s$

 $i_{BZ} =$

Системе уравнений (4) соответствует схема рис. 2. Пренебрегая i'_1 , так как он не влияет на режим работы усилителя, и совмещая обмотки управления и выхода, так как они соединены одинаково, приходим к схеме замещения на рис. 3.

Обозначим эквивалентное _____ сопротивление двухполюсника (11') через Z'_H , экви-

валентную э.д. с. через u'_2 и индуктивные сопротивления взаимной индукции обмоток дросселей соответственно через $Z_A = M_A d/dt$ и $Z_B = M_B d/dt$ и запишем отвечающее схеме рис. З матричное уравнение

$$\begin{bmatrix} u_1\\ u'_2 \end{bmatrix} = \begin{bmatrix} Z_A + Z_B & Z_A - Z_B\\ Z_A - Z_B & Z'_H + Z_A + Z_B \end{bmatrix} \begin{bmatrix} i_1\\ i_2 \end{bmatrix},$$
(7)

(6)

где

$$Z_{A} + Z_{B} = a_{11}, \qquad Z_{A} + Z_{B} + Z'_{H} = a_{22}; \qquad \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = A$$

Дроссельные токи *i*_A и *i*_B представим в виде

$$\begin{bmatrix} i_A \\ i_B \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = C \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}.$$
(8)

Перейдя на новые координаты тока $\begin{bmatrix} i_A \\ i_B \end{bmatrix}$, для соответствующих им напряжений получим выражение

$$\begin{bmatrix} u_A \\ u_B \end{bmatrix} = C_{t}^{-1} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{u_1 + u_2}{2} \\ \frac{u_1 - u_2}{2} \end{bmatrix}$$
(9)

и для соответствующей матрицы сопротивления — выражение

$$A' = C_{t}^{-1}AC^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} a_{11} + a_{21} + a_{12} + a_{22} & a_{11} + a_{21} - a_{12} - a_{22} \\ a_{11} - a_{21} + a_{12} - a_{22} & a_{11} - a_{21} - a_{12} + a_{22} \end{bmatrix}.$$
 (10)

Итак:

$$\begin{bmatrix} \frac{u_{1}+u_{2}}{2} \\ \frac{u_{1}-u_{2}}{2} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} a_{11}+a_{21}+a_{12}+a_{22}&a_{11}+a_{21}-a_{12}-a_{22} \\ a_{11}-a_{21}+a_{12}-a_{22}&a_{11}-a_{21}-a_{12}+a_{22} \end{bmatrix} \begin{bmatrix} i_{A} \\ i_{B} \end{bmatrix}, \quad (11)$$

а после замещения

$$\begin{bmatrix} \frac{u_1 + u'_2}{2} \\ \frac{u_1 - u'_2}{2} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 4Z_A + Z'_H & -Z'_H \\ -Z'_H & 4Z_A + Z'_H \end{bmatrix} \begin{bmatrix} i_A \\ i_B \end{bmatrix}.$$
 (12)

Полученному уравнению (12) соответствует схема замещения дифференциально-трансформаторного магнитного усилителя, показанная на рис. 4. Заменяя здесь $Z_0/4$ и $U_0/2$ источником тока I_0 вследствие большой линейной индуктивности Z_0 , а также пренебрегая динамическим сопротивлением Z_d , получим схему, изображенную на рис. 5. Эта схема, как видно, эквивалентна симметричному блоку дизъюнкции (конъюнкции) на магнитных ключах с выпрямленным выходом [^{2, 3}].

При этих упрощениях дифференциально-трансформаторный магнитный усилитель можно выразить аналитически в виде

$$u'_{H}(t) = 0 \bigvee \frac{d}{dt} (\Psi_{11} \bigvee \Psi_{12}),$$

194

$$\bigvee_{i=1}^{n} X_{i} = \max\{X_{i} \mid i = 1, \ldots, n\}.$$

Рис. 4.

Piic. 5.

Выводы

Предложенная схема замещения позволяет значительно упростить анализ и расчет усилителя, а также лучше понять процесс его работы, который заключается в следующем.

1. Ширина гистерезисной петли сердечников не влияет на режим работы усилителя.

2. Влияние динамического сопротивления на режим работы усилителя можно учесть с помощью соответствующего шунтирующего сопротивления.

 Дифференциально-трансформаторный магнитный усилитель на дросселях с прямоугольной кривой намагничивания представляет собой в принципе симметричный блок дизъюнкции (конъюнкции) на магнитных ключах с выпрямленным выходом.

ЛИТЕРАТУРА

- Сарв В., Оявээр М., Саккос Т., Хунт Ю., В сб.: Магнитные преобразова-тели электроэнергии с удвоением частоты, Таллин, 1972.
 Лаусмаа Т., Изв. АН ЭССР, Физ. Матем., 20, 188 (1971).
 Лаусмаа Т., В сб.: Синтез функциональных преобразователей на дросселях с
- прямоугольной кривой намагничивания. Цепи преобразования параметров электроэнергии, Таллин, 1975.

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию 12/IX 1975

T. LAUSMAA, J. HUNT

TÄISNURKSE MAGNEETIMISKÕVERAGA SÜDAMIKEGA DIFERENTSIAAL-TRANSFORMATOORSE MAGNETVÕIMENDI ASESKEEM

Esitatud aseskeem, mis võtab arvesse südamike hüstereesi ja dünaamilise takistuse, lihtsustab tunduvalt võimendi arvutamist ning analüüsi, võimaldades ühtlasi paremini mõista tema tööprotsessi olemust.

T. LAUSMAA, J. HUNT

EQUIVALENT CIRCUIT FOR DIFFERENTIAL-TRANSFORMATIONAL MAGNETIC AMPLIFIER BASED ON TRANSDUCTORS WITH RECTANGULAR HYSTERESIS LOOP

The derived equivalent circuit considerably simplifies the calculation and analysis of the amplifier and gives a better understanding of its operation processes.