ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 25 ФИЗИКА * МАТЕМАТИКА. 1976, № 2

https://doi.org/10.3176/phys.math.1976.2.12

УДК 535.37:548.736

А. ХААВ, И. МЕРИЛОО

РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ЛЮМИНОФОРОВ Ва₂SiO₄-Eu²⁺

Химически стойкие и дешевые силикаты щелочноземельных металлов служат основой для получения ряда промышленных люминофоров. В этом отношении представляют интерес и активированные Eu²⁺ ортосиликаты стронция и бария. Некоторые результаты спектральных и рентгенографических исследований люминофоров Sr₂SiO₄-Eu²⁺ приведены в [¹].

Известно [^{2, 3}], что активированный Eu²⁺ ортосиликат бария является также эффективным фотолюминофором с зеленым ($\lambda_{\text{макс}} = 505 \text{ нм}$) излучением, возбуждаемым в широкой (от 200 до 400 нм) спектральной области. Этот люминофор может быть, в принципе, использован в люминесцентных лампах разного назначения.

По данным работ [^{4, 5}], в системе BaO—SiO₂ возможно образование как Ba₂SiO₄, так и BaSiO₃, Ba₃SiO₅, Ba₂Si₃O₈ и BaSi₂O₅. Известно, что Eu²⁺ активируются наряду с Ba₂SiO₄ и Ba₃SiO₅, BaSi₂O₅, Ba₂Si₃O₈ [²].

Возможность образования в системе BaO—SiO₂ нескольких соединений, активирующихся Eu²⁺, побудила нас большинство синтезированных образцов силиката бария подвергнуть тщательному рентгеноструктурному анализу. Данных о таких исследованиях, по нашим сведениям, до сих пор не опубликовано. Кроме того, рентгенографические исследования необходимы для определения структуры элементарной ячейки соединения. Зная структуру элементарной ячейки, можно строить разумные гипотезы о возможном расположении частиц активатора и его ближайшем окружении, что весьма важно для создания моделей центров свечения.

Цель настоящей работы заключалась в проведении рентгенографического исследования фосфоров 2BaO·SiO₂-Eu²⁺.

Впервые структура ортосиликата бария была рентгенографически исследована Х. О'Даниелем и Л. Чейшвили [6]. Препараты ими готовились методом, описанным в [4]. По данным [6], элементарная ячейка ортосиликата бария имеет ромбическую структуру (с параметрами $a = 5,76 \pm 0,02$ Å; $b = 10,17 \pm 0,05$ Å; $c = 7,56 \pm 0,03$ Å) и принадлежит к пространственной группе D_{2b}^{16} .

О результатах рентгенографического исследования системы ВаО—SiO₂ сообщается также в [^{7, 8}]: приводятся межплоскостные расстояния *d* и относительные интенсивности *I* дифракционных линий соответствующих соединений. Сравнить эти данные для Ba₂SiO₄ позА. Хаав, И. Мерилоо

Таблица 1

Межплоскостные расстояния и интенсивности линий Ва2SiO4 по литературным данным

* Интенсивность оценена в десятибалльной системе.

воляет табл. 1, в которой представлены значения d и I (для углов дифракции $\Theta < 28^{\circ}$) из $[^{7, 8}]$, значения I и индексы линий из $[^{6}]$, а также значения d, вычисленные нами по $[^{6}]$.

Как видно из табл. 1, результаты работ [⁷] и [⁸] довольно хорошо согласуются между собой, хотя в [⁷] число зарегистрированных линий несколько больше. Зато между данными [^{7, 8}], с одной стороны, и [⁶] — с другой, имеются определенные расхождения. Например, в [⁶] отсутствуют интенсивные линии с межплоскостными расстояниями 2,95; 2,44 и 2,12 Å, а также некоторые более слабые. Отметим, что все значения *d* в [⁶] меньше соответствующих в [⁸].

Препараты Ba₂SiO₄ получали (как и в других работах) из взятых в стехиометрическом соотношении BaCO₃ марки «осч 7-2» и SiO₂ марки «осч 12-4». SiO₂ тщательно измельчали в трижды дистиллированной воде, затем добавляли BaCO₃ и в качестве плавня BaCl₂ марки «хч» (3 вес. %). Все исходные компоненты перемешивали в трижды дистиллированной воде до образования гомогенной пастообразной массы. Полученную массу высушивали и прокаливали на воздухе при 1200° С в течение 4 ч, перемешивая через каждый час прокалки. Из полученных образцов плавень отмывали горячей водой.

Активирование ортосиликата бария Eu²⁺ осуществлялось при 1200°

188

Таблица 2

189

Межплоскостные	расстояния	И	интенсивности	линий	Ba ₂ SiC
----------------	------------	---	---------------	-------	---------------------

DO JUHR

Настоящая работа					[8]	
I, %	<i>d</i> (Å)	d _{выч} (Å)	$\Delta d \cdot 10^{3}$ (Å)	hkl	I, %	d (Å)
10	5.050	5.051	AMETENNE CONTRACTOR	110	TA BUTY	0.012.
20	4 191	4.187	4	012 111	20	4 23
10	3.520	3,513	7	012		
70	3,410	3,411		121	65	3.43
20	3,147	3,147	0	102	16	3,17
20	3,093	3,093	0	031	14	3,11
100	3,010	3,007	3	112	100	3.03
100	2,933	2,933	0	130	95	2,95
80	2,900	2,908	-8	200	80	2,91
10	2,680	2,678	2	122	10	2,69
<10	2,550	2,548	2	040	8	2,56
		2,525	5	220	and the Cont	rate in contrary
10	2,520	1	AND THE PARTY AND		14	2,53
In strike of	0.407	1 2,515	5	032	0.5	
30	2,420	2,423	2	013	35	2,44
30	2,392	2,393	Designation of	221	25	2,40
<10	2,290	2,293	-3	103	0	2,30
20	2,200	2,237	-2	021	20	2,24
30	2,110	2,119		201	20	2,12
10	2,032	2,055	-1	033	8	2,10
<10	1.931	1 980	IN SECTOR STORES	149	191	2,02
20	1,969	1,966	3	051	20	1 975
<10	1.926	1,923	3	150	_	
X Not OLION	R GL , PT	1,904	to stopporto	310		- 11
20	1,903	}	internettine of	Xarat polloves	18	1,909
	NO GRIMMAN STATE	1,902	2 - 9 - 1	232		1.1
30	1,863	1,863	0	151	20	1,867
		1,783	-1	043		Shankilly.
10	1,784	{	IL DOTOLOUGH	and the second second	10	1,788
	33 000 1810	i 1,781	-3	104		and the second
30	1,759	1,761	-2	321	35	1,762
30	1,707	1,706	винт 100хол	242	45	1,710
20	1,697	1,697	0	312		-
20	1,682	1,682	0	124	12	1,686

в атмосфере аргона с примесью 10% водорода. Полученные люминофоры обладали спектральными характеристиками, приписываемыми в литературе Ba₂SiO₄-Eu²⁺ [^{2, 3}].

Рентгенографическое исследование фосфоров Ba_2SiO_4 - Eu^{2+} проводилось нами на дифрактометре ДРОН-1. Использовалось K_{α} -излучение меди. Рефлексы регистрировались в угловом интервале $8^{\circ} \leq \Theta \leq 40^{\circ}$. По данным дифрактограмм вычислялись межплоскостные расстояния и относительные интенсивности рефлексов. Результаты исследований представлены в табл. 2 и сравнены с соответствующими величинами из [8]. Нужно отметить, что эти значения представляют собой среднее из пяти измерений, сделанных на различных препаратах. Для первых трех линий максимальное различие в значениях d составляло $2 \cdot 10^{-2}$ Å. С увеличением угла дифракции это различие уменьшалось и для остальных линий не превышало $2 \div 3 \cdot 10^{-3}$ Å. Сравнение данных табл. 1 и 2 показывает, что полученные нами значения d несколько меньше опубликованных в [⁷, ⁸]. Можно предполагать, что причина кроется в разной методике изготовления препаратов.

Интенсивности линий, измеренные нами и приведенные в [^{7, 8}], находятся в хорошем согласии. Из табл. 2 видно также, что в угловом интервале 8° ≤ Θ ≤ 28° нами зарегистрировано на пять рефлексов больше, чем в работе [⁸]. Но если учесть и данные [⁷], то у нас остается лишь один рефлекс (d = 1,697 Å), который не имеет аналогов среди данных ^{[7, 8}].

Итак, хорошее согласие полученных нами результатов с данными [7, 8] позволяет заключить, что исследованные нами фосфоры 2ВаО. SiO₂-Eu²⁺ являются ортосиликатами.

С другой стороны, мы считаем доказанным, что число рефлексов на рентгенограммах Ba₂SiO₄ должно быть больше, чем их получено в [6]. Отсюда возникает задача снова индицировать линии на дифрактограмме. Естественно предположить, что индексы новых линий должны быть дозволенными индексами пространственной группы D_{2h}^{46} , так как согласно [6] Ва2SiO4 принадлежит к этой пространственной группе. Исходя из предположения, что элементарная ячейка Ba₂SiO₄ является ромбической, линиям с межплоскостными расстояниями 3.410; 3,147 и 3,093 Å нами были приписаны индексы (121), (102) и (031) соответственно. Затем вычислялись параметры элементарной ячейки, которые оказались следующими: a = 5.82 Å; b = 10.19 Å; c = 7.49 Å. По этим данным на ЭВМ «Минск-32» для всех значений индексов (hkl) до (555) были определены значения d. Сравнение экспериментальных и вычисленных значений d позволило найти индексы соответствующих рефлексов. Значения $d_{\text{выч}}$, разности $\Delta d = d_{\text{выч}} - d$, а также найденные индексы приведены в табл. 2.

Согласно [9], в случае пространственной группы D2h из рефлексов с индексами типа (*hko*) разрешены только те, для которых h = 2 n(п — целое число), а из рефлексов типа (okl) — те, для которых k+l=2n.

Из приведенных в табл. 2 индексов видно, что индицирование не является однозначным. Некоторым линиям можно приписать разные индексы, из которых не все оказываются дозволенными. Кроме линий с дублированными индексами, имеются и такие, которым соответствуют лишь недозволенные индексы. Это в основном индексы типа (hko), для которых $h \neq 2n$, и тройка индексов типа (okl), для которых $k + l \neq 2n$.

Выводы

Проведено рентгенографическое исследование кристаллофосфоров Ba₂SiO₄-Eu²⁺.

На основе анализа рентгенографических данных настоящей работы и данных других авторов сделан вывод, что Х. О'Даниелем и Л. Чейшвили принадлежность Ba2SiO4 к пространственной группе D2h OKOHчательно не доказана.

При истолковании кристаллической структуры Ва2SiO4 нельзя в качестве модели элементарной ячейки брать элементарную ячейку β-K₂SO₄, которое является типовым веществом для пространственной группы D¹⁶_{2h}.

Для однозначного решения вопроса о пространственной группе Ва2SiO4 необходимы дальнейшие рентгенографические исследования монокристаллов.

ЛИТЕРАТУРА

Ильмас Э. Р., Мерилоо И. А., Хаав А. А., Изв. АН СССР, сер. физ., 38, 1172 (1974).
 Blasse G., Wanmaker W. L., ter Vrugt J. W., Bril A., Philips Res. Repts., 23, 189 (1968).

- 3. Barry T. L., J. Electrochem. Soc., 115, 1181 (1968).

- Ваггу Г. Е., J. Electrochem. Soc., 116, 1181 (1989).
 Eskola P., Am. J. Sci., 4, 331 (1922).
 Келер Э. К., Глушкова В. Б., Ж. неорг. химии, 1, 2283 (1956).
 O'Daniel H., Tscheiscwili L., Z. Kristallogr., 104, 348 (1942).
 Austin A., J. Am. Ceram. Soc., 30, 218 (1947).
 Levin E., Ugrinic G., J. Res. Nat. Bur. Stand., 51, 37 (1953).
 Internationale Tabellen zur Bestimmung von Kristallstrukturen, I. Band, Gebrüder Berningeren Revin 1025 S. 130 Borntraeger, Berlin, 1935, S. 139.

Институт физики Академии наук Эстонской ССР

Поступила в редакцию 16/VI 1975

A. HAAV, I. MERILOO

Ba₂SiO₄-Eu²⁺ LUMINOFOORIDE RÖNTGENOGRAAFILINE UURIMINE

Ba₂SiO₄-Eu²⁺ luminofoore röntgenograafiliselt uurides määrati reflekside intensiivsu-sed ja pindadevahelised kaugused. Nii käesolevas töös saadud kui ka teiste autorite esitatud röntgenograafiliste andmete analüüs näitab, et Ba₂SiO₄ kuuluvus ruumirühma D_{2h}^{16} pole lõplikult tõestatud. Ba₂SiO₄ ruumirühma lõplikuks kindlaksmääramiseks tuleb mono-kristalle röntgenograafiliselt uurida.

A. HAAV, I. MERILOO

X-RAY ANALYSIS OF Ba₂SiO₄-Eu²⁺

Interplane distances and relative intensities of X-ray reflexes are determined for Ba_2SiO_4 - Eu^{2+} powders. The obtained data as well as certain results of other authors arise some doubts about ascribing Ba_2SiO_4 lattice to the space group D_{2h}^{16} . Further X-ray study with single crystals could settle the question.