ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 25 ФИЗИКА * МАТЕМАТИКА. 1976, № 2

УДК 513.88:513.83

Эве ОЯ

ОБ ОДНОМ ПРИМЕРЕ Э. ДУБИНСКОГО И ДЖ. РЕЗЕРФОРДА

Если шаудерово разложение (P_n) локально выпуклого пространства является полным и простым, то справедлива импликация: (D) из натягиваемости сопряженного разложения (P_n') следует ограниченная полнота (P_n) [1]. В настоящем сообщении опровергается утверждение авторов [2] о том, что построенный ими пример представляет собой контрпример к (D). Приводится простой пример, показывающий, что (D) действительно не переносится на произвольные шаудеровы разложения.

1. Шаудеровым разложением (отделимого) локально выпуклого пространства X называется последовательность * (P_n) непрерывных ненулевых проекторов в пространстве X такая, что $P_n \circ P_m = 0$, если $n \neq m$, и любой элемент $x \in X$ представим в виде $x = \sum P_n x$, где ряд сходится в топологии пространства X. Шаудерово разложение (P_n) пространства X называется ограниченная последовательность (соответственно полным), если каждая ограниченная последовательность (соответственно последовательность Коши) ($\sum_{1\leqslant k\leqslant n} x_k$), где $x_k\in P_k X$, сходится. Если последовательность сопряженных отображений (P_n) образует шаудерово разложение для сильного сопряженного (X', $\beta(X',X)$) к X, то шаудерово разложение (P_n) пространства X называется натягивающим. Шаудерово разложение (P_n) пространства X называется простым (соответственно безусловно простым), если для любого функционала $f \in X'$ множество $\{\sum_{1\leqslant k\leqslant n} P_k' f : n = 1, 2, \ldots\}$ (соответственно $\{\sum_{k\in v} P_k' f : v \in \Sigma\}$ где \sum семейство всех конечных множеств натуральных чисел) сильно (т. е.

 $\beta(X',X)$ -) ограничено. Шаудеров базис $(e_n) \subset X$ с сопряженной последовательностью $(f_n) \subset X'$ представляет собой шаудерово разложение пространства X на одномерные подпространства P_nX , где проекторы P_n определены

равенствами $P_n x = f_n(x) e_n$, $x \in X$.

2. Если (P_n) — шаудерово разложение локально выпуклого пространства X, то, очевидно, последовательность (P_n') (точнее, последовательность сужений проекторов P_n') является шаудеровым разложением для пространства $H = \{f \in X' : f = \sum P_n' f$ в топологии $\beta(X', X)\}$, наделенного топологией, индуцированной $\beta(X', X)$. В [1] было доказано, что для полного простого шаудерова разложения (P_n) в локально выпуклом пространстве X (в частности, для любого шаудерова разложе-

^{*} Если пределы изменения индексов не указаны, значит, они пробегают все значения 1, 2,

138 Эве Оя

ния в секвенциально полном локально выпуклом пространстве) справедлива импликация: (D) если шаудерово разложение (P_n) для H на-

тягивающее, то (P_n) ограниченно полно.

В этом сообщении докажем ошибочность утверждения Э. Дубинского и Дж. Резерфорда [2] (с. 272) о том, что для шаудерова базиса ** $e_k = (\delta_{kn})$ в пространстве *** $X = (\Phi, \sigma(\Phi, \Phi))$, где Φ — линейное множество всех финитных числовых последовательностей, импликация (D) не справедлива. Кроме того, приведем пример такого шаудерова базиса, для которого (D) не верна.

3. Рассмотрим вышеприведенный пример Э. Дубинского и Дж. Резерфорда. Базис (e_h) , очевидно, не ограниченно полный, так как, например, последовательность $(\Sigma_{1\leqslant k\leqslant n}e_k)$ ограничена, но не сходится. Ясно, что $H=X'=\Phi$. Авторы $[^2]$ утверждают, что сопряженный базис $f_k=(\delta_{kn})$ для H натягивающий. Покажем, что их утверждение ошибочно.

Поскольку при всех $f \in X'$ множество $\{\Sigma_{h \in v} P_h' f : v \in \Sigma\}$ конечно и, значит, сильно ограничено, стало быть, базис (e_h) безусловно простой.

Для исследования сопряженного базиса необходимо знать описание ограниченных подмножеств в X. Так как (e_k) безусловно простой, в силу теоремы 1.5 из $[^3]$ семейство всех ограниченных подмножеств в X совпадает с семейством всех $\sigma \varepsilon$ -ограниченных множеств, где $\sigma \varepsilon$ ε - ε -топология, соответствующая слабой топологии $\sigma(X,X')$ (см. $[^3]$, \S 1). Поэтому для любого ограниченного в X множества X с помощью неравенства X из X при всех X получаем

$$\sup_{x=(x_n)\in A}\sup_n|x_n|\cdot\sup_{x=(x_n)\in A}\sup_n|f_k(\delta(x_n)e_n)|\leqslant \sup_{x\in A}q_{f_k}(x)<\infty,$$

где $\delta(0) = 0$ и $\delta(x_n) = 1$ при $x_n \neq 0$, а q_f — $\sigma \varepsilon$ -непрерывная полунорма, соответствующая согласно формуле (2) из [3] полунорме $f(\cdot)$, $f \in X'$. Отсюда видно, что

$$\sup_{x=(x_n)\in A} \sup_{n} |x_n| < \infty, \tag{1}$$

если множество A ограничено в X. Обратно, если выполнено условие (1), то в силу неравенства (3) из $[^3]$ и того, что последовательность ($\Sigma_{1\leqslant k\leqslant n}e_k$), будучи ограниченной, $\sigma\epsilon$ -ограничена, при всех $f \in X'$ имеем

$$\sup_{x\in A}|f(x)| \leq 2\sup_{x=(x_n)\in A}\sup_{n}|x_n|\cdot \sup_{n}q_f\left(\sum_{k=1}^n e_k\right) < \infty,$$

т. е. множество A ограничено в X. Таким образом, подмножество A в X ограничено тогда и только тогда, когда оно удовлетворяет условию (1). Рассмотрим $e = (1, 1, \ldots)$. Поскольку при всех $h = (h_k) \in H$

$$|e(h)| = |\Sigma h_h| \leq \Sigma |h_h| = (\Sigma h_h f_h) (\Sigma s_h e_h) \leq \sup_{x \in E} |h(x)|,$$

где $s_k = \operatorname{sgn} h_k$ и $E = \{ \Sigma_{k \in v} \varepsilon_k e_k : \varepsilon_k = \pm 1, v \in \Sigma \}$, а множество E ограничено в X, то $e \in H'$. Ясно, что $(e_k) \subset H'$ и последовательность

^{**} Пусть $\delta_{kh} = 1$ и $\delta_{kn} = 0$ при $k \neq n$.

^{***} Двойственность (Φ , Ψ) между линейными множествами числовых последовательностей Φ и Ψ определяется билинейной формой $(\varphi, \psi) \to \Sigma \varphi_n \psi_n$, где $\varphi = (\varphi_n) \subseteq \Phi$ и $\psi = (\psi_n) \subseteq \Psi$.

сходится к e в $\sigma(H', H)$. Но так как при всех n $(\Sigma_{1 \leq k \leq n} e_k)$

$$\sup_{m} |(e - \sum_{k=1}^{n} e_{k}) (f_{m})| = 1,$$

а множество $\{f_m: m=1, 2, \ldots\} \subset X'$ является сильно ограниченным (поскольку

 $\sup_{m} \sup_{x \in A} |f_m(x)| = \sup_{x = (x_n) \in A} \sup_{n} |x_n| < \infty$

для любого ограниченного множества A из X), то $(\Sigma_{1\leqslant h\leqslant n}e_h)$ не сходится к e в $\beta(H',H)$. Следовательно, базис (f_k) пространства H не является натягивающим и тем самым для базиса (e_k) пространства X

импликация (D) все же справедлива.

Э. Дубинский и Дж. Резерфорд допустили ошибку, полагая, что $H=(X',\ \beta(X',X))$ — подпространство в пространстве Фреше ω всех числовых последовательностей. (В действительности топология, которую ω индуцирует на X', строго слабее ****, чем $\beta(X',X)$: последовательность $(\Sigma_{1 \le k \le n} f_k)$ сходится в ω , но в $\beta(X',X)$ она даже не ограничена, так как она не ограничена, например, на множестве $\{\Sigma_{1\leqslant k\leqslant n}e_k:n=1,\ 2,\ \ldots\}.$) Поскольку $H=\Phi$ всюду плотно в ω , авторы [2] пришли к выводу, что $H'=\Phi$, т. е. (f_h) для H натягивающий. Следует отметить, что равенство $H'=\Phi$ приводит к противоречию, ибо из него вытекает полурефлексивность пространства Х. А шаудеров базис полурефлексивного пространства всегда ограниченно полный (см., напр., [4]). Однако, как мы видели, базис (e_k) для X не ограниченно полный.

4. Приведем пример безусловно простого шаудерова базиса, для которого утверждение (D) не верно. Пусть X — линейное множество всех финитных числовых последовательностей, наделенное l_1 -нормой. Последовательность $e_k=(\delta_{kn})$ является для X безусловным шаудеровым базисом. Поскольку, очевидно, $\|\Sigma_{k\in V}P_k'\|=\|\Sigma_{k\in V}P_k\|=1$ для всех

 $v \in \Sigma$, то базис (e_k) безусловно простой.

Нетрудно проверить, что $H=c_0$. Следовательно, сопряженный базис $f_k=(\delta_{kn})$ для H натягивающий. С другой стороны, ясно, что базис (e_k) не полный, а значит, и не ограниченно полный.

ЛИТЕРАТУРА

1. Оя Э., Уч. зап. Тартуск. гос. ун-та, **374**, 117 (1975). 2. Dubinsky E., Retherford J. R., Trans. Amer. Math. Soc., **130**, No. 2, 265 (1968). 3. Оя Э., Уч. зап. Тартуск. гос. ун-та, **374**, 90 (1975). 4. Cook T. A., Math. Ann., **182**, No. 3, 232 (1969).

Тартуский государственный университет

Поступила в редакцию 3/VII 1975

Eve OJA

ÜHEST E. DUBINSKY JA J. R. RETHERFORDI NÄITEST

Olgu (P_n) eralduva lokaalselt kumera ruumi X Schauderi lahutus. Kui $H = \{f \in X' : f = \sum P_n'f \text{ topoloogias } \beta(X',X)\}$ varustada topoloogia $\beta(X',X)$ poolt indutseeritud topoloogiaga, siis (P_n') on ruumi H Schauderi lahutus. Vaatleme järgmist väidet: (D) kui (P_n') on H jaoks pingul, siis (P_n) on tõkestatult täielik.

^{****} То, что топология, которую ω индуцирует на X', слабее, чем eta(X',X), ясно из сильной непрерывности отображения, сопряженного к тождественному отображению $I: (\Phi, \sigma(\Phi, \omega)) \rightarrow (\Phi, \sigma(\Phi, \Phi)).$

Эве Оя 140

Implikatsioon (D) on tõene, kui Schauderi lahutus (P_n) on täielik ja lihtne $[\cdot]$. Artiklis näidatakse, et $[\cdot]$, lk. 272, toodud näite korral on (D) tõene. Järelikult ei kujuta see näide endast kontranäidet väite (D) üldisele kehtivusele. Tuuakse ka näide, mille korral (D) tõepoolest ei kehti.

Eve OJA

ON AN EXAMPLE OF E. DUBINSKY AND J. R. RETHERFORD

Let (P_n) be a Schauder decomposition for a locally convex (Hausdorff) space X. Then (P_n') is a Schauder decomposition for $H = \{f \in X' : f = \Sigma P_n' \text{ where the series converges in the strong topology } \beta(X', X)\}$ where H is equipped with the topology induced by $\beta(X', X)$. We consider the following statement: (D) if (P_n') is shrinking for

H then (P_n) is boundedly complete.

In [1] we proved that for a complete simple Schauder decomposition (P_n) in a locally convex space X the implication (D) is true. In this paper we show that for the example given in [2], p. 272, (D) is true, and so the example actually is not a counterexample for the implication (D). We also give a counterexample for (D). Hence, in general transfer of the interval (D) is true, and the latest transfer of (D). ral, the implication (D) fails to hold.