EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 22. KÖIDE FÜÜSIKA * MATEMAATIKA. 1973, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 22 ФИЗИКА * МАТЕМАТИКА. 1973, № 2

https://doi.org/10.3176/phys.math.1973.2.11

УДК 532.55»

Х. НУРСТЕ

о сопротивлении закручивающих устройств

Введение

Закручивание потока является эффективным средством интенсификации и управления процессами тепло-массопередачи и горения в топках котельных агрегатов, в камерах сгорания газотурбинных установок, а также в химических реакторах некоторых типов. Для закручивания потока надо тратить определенное количество энергии, которое в зависимости от типа закручивателя и интенсивности крутки может достигать значительных величин. Поэтому определение требуемой степени закрутки потока, выбор конструкции закручивателя и его аэродинамическое сопротивление имеют важное значение как с технологаческой, так и с экономической точек зрения.

Основные применяемые конструкции закручивателей можно классифицировать [¹] на

простые тангенциальные сопла (Т); улитки (У); тангенциальные лонатки (ТЛ); аксиальные лопатки (АЛ).

Используются также комбинированные конструкции, например, улитка вместе с тангенциальными лопатками, аксиально-тангенциальные лопатки и т. д.

Начальный напор расходуется на закручивание потока, а также на преодоление сопротивления обтекаемых поверхностей и углов закручивателя и вихревой камеры. Так как в вихревых установках трудно отделить полезно расходуемую часть напора от потерь, то под сопротивлением обычно подразумевается разность между полным давлением потока перед закручивателем и давлением в объеме, куда вытекает закрученный поток. В качестве масштабной величины лучше всего использовать среднерасходный скоростной напор в сечении вихревой камеры [²], поскольку он характерен для разных типов вихревых устройств и дает возможность сравнивать их между собой. Безразмерное сопротивление вихревой установки

$$\overline{P}_{i} = \frac{2P_{i}}{\varrho v_{cp}^{2}} \tag{1}$$

зависит от ряда параметров закручивателей: для типа T — ог относительной площади сопел F_1/F , их числа *n* и отношения размеров h/R [³]; для типа TЛ — от угла установки лопаток β , числа лопаток *n*, толщины δ и длины лопаток *b* [⁴]; для типа АЛ — от значения величин *a*, *n*, δ и от втулочного отношения r_1/R [¹]; для типа У — от параметров hb/R^2 и h/R [¹]. На общее сопротивление вихревой установки влияют также втулочное отношение камеры r/R, шероховатость камеры Δ/R , диафрагмирование выхода из камеры r_2/R и длина камеры L/R [^{1,3}]. Интересно отметить, что увеличение шероховатости вихревой камеры приводит к снижению общего сопротивления установки [⁵], поскольку это связано с уменьшением уровня закрутки потока к камере. Большинство вихревых камер работает в автомодельной области, т. е. величина безразмерного сопротивления не зависит от критерия Re.

В данной работе представлены результаты проведенных в сопоставимых условиях экспериментов по определению сопротивлений разных типов закручивателей и сделана попытка обобщения этих результатов.

Постановка экспериментов

Эксперименты проводились при разных конструктивных параметрах закручивателей.

Вихревая камера представляла собой трубу с шероховатостью Δ/R порядка 0,15% и полностью открытым (недиафрагмированным) выходом. Воздух подавался при помощи вентилятора, причем перед закручивателем для выравнивания поля скоростей он пропускался через конфузорный участок трубы.

Влияние разных конструктивных параметров на гидравлическое сопротивление исследовалось у закручивателей всех основных типов (Т, У, ТЛ, АЛ). Причем конструктивные параметры разных закручивателей менялись следующим образом:

для Т-закручивателей: *F*/*F*₁ = 1,26; 2,60; 3,4; 5,4; 8; 10,4; 15,5; 30,2; *h*/*R* = 0,4; 0,8; *n* = 1 и 2;

для У-закручивателей: $\pi R^2/hb = 0.86$; 1,7; 2,55; 5,1; h/R = 0.8; 1,6; для ТЛ-закручивателей: $\beta = 45^\circ$; 60° ; 75°; b/R = 1.4; 1,0; 0,6;

для АЛ-закручивателей: а) $\alpha = 0^{\circ}$; 10° ; 20° ; 30° ; 40° ; 50° ; 60° ; $r_1/R = 0.25$; n = 16;

6) $\alpha = 30^{\circ}$; 45° ; 60° ; 75° ; $r_1/R = 0$; n = 24.

Лопаточные аппараты имели непрофилированные прямые лопатки; тангенциальный и улиточный — прямоугольное сечение подвода.

Сопротивление закручивателей определялось по формуле (1), где значение P_1 измерялось перед закручивателем трубкой полного напора, а значение v_{cp} — расходомером диафрагменного типа на подводящем трубопроводе.

Опыты показали, что длина недиафрагмированной трубы $(L/R = 0 \div 20)$ оказывает незначительное влияние на общее сопротивление вихревой установки, за исключением случая очень сильной закрутки $(F/F_1 = 30,2)$ при очень короткой трубе (L/R < 1 от кромки сопел), когда «стационарный» закрученный поток не успевает сформироваться. Для Т-закручивателей изменение числа сопел (n = 1 или 2) при постоянных F/F_1 и h/R оказалось незначительным.

В диапазоне измерений не наблюдалось также сколько-нибудь заметного влияния числа Re на безразмерное сопротивление вихревой установки.

Обсуждение результатов

Результаты измерения сопротивлений закручивателей разных типов в зависимости от основного конструктивного параметра — отношения клощадей *F*/*F*₁ — представлены на рис. 1. Причем поперечная площадь F₁ выхода потока из разных закручивателей, вычислялась по следующим формулам:

для Т:
$$F_1 = nhb$$
, (2)
для У: $F_1 = hb$, (3)
для ТЛ: $F_1 = \pi Db \cos \beta - nb\delta$, (4)

для АЛ:
$$F_1 = \frac{\pi}{4} (D^2 - d_1^2) \cos \alpha - \frac{1}{2} (D - d_1) n \delta,$$
 (5)

где α — угол установки аксиальных лопаток, считая от осевого направления, а β — угол установки тангенциальных лопаток, считая от радиального направления. Формула (4) является приближенной.

ления приведенных на рис. 1 данных можно сказать что, во-первых, при одном

В результате сопостав-

во-первых, при одном и том же значении *F*/*F*₁ сопрогивление закручивателя гем больше, чем больше средний радиус вводимого им в камеру потока и чем больше углы установки лопаток а и β (в АЛ- и ТЛ-закручивателях);

во-вторых, сопротивления двух испытанных конструкций АЛ-закручивателей при одном и том же значении F/F1 несколько различаются, что связано с тем, что углы установки лопаток различные, конструкция (a) имела худшую обтекаемость межлопаточных каналов из-за неудачного крепления лопаток, средний радиус ввода конструкций (а) больше, чем у (б).

Для получения расчетной зависимости сопротивления закручивателей от их конструктивных параметров воспользуемся уравнением баланса энергии потока в сечениях F₁ и F

$$P_1 = \varepsilon (P + \Delta P), \tag{6}$$

где
$$P_1 = p_{1cr} + \frac{\varrho v_1^2}{2}; \quad P = p_{cr} + \frac{\varrho v_r^2}{2} + \frac{\varrho v_x^2}{2}; \quad \Delta P$$
 — потеря давления

от расширения; є — коэффициент пропорциональности.

Здесь используются средние по сечениям значения P_1 и P. Измерения величины P, произведенные в трубе после закручивателя, показызают, что среднее значение полного давления закрученного потока в

202

сечении трубы близко к его максимальному значению в данном сечении. Это обстоятельство связано с тем, что основная масса потока движется в области максимума полного давления и та часть потока, которая имеет меньшее полное давление, компенсируется рециркуляционным течением вдоль трубы. Таким образом, закрученный поток в трубе характеризуется приблизительно постоянным значением полного давления в поперечном сечении трубы.

Используя методику, изложенную в работе [6], заменим действительный закрученный поток его моделью — полой вращающейся струей с внутренним радиусом r_c . Тогда коэффициент живого сечения закрученной струи в трубе

$$\varphi = \frac{F_c}{F} = 1 - \left(\frac{r_c}{R}\right)^2. \tag{7}$$

Принимая статическое давление на внутренней границе вращающейся струи равным давлению в объеме, куда вытекает закрученный поток, преобразуем уравнение (6) к виду

$$\overline{P}_{1} = \varepsilon \mu^{-2}, \tag{8}$$

где коэффициент истечения

$$\mu = \left[\left(\frac{F}{F_1} - 1 \right)^2 \cos^2 \alpha + \frac{1}{\varphi^2} + \left(\frac{F}{F_1} \frac{R_{\text{BX}}}{R} \sin \alpha \sin \beta \right)^2 \frac{1}{1 - \varphi} \right]^{-0.5}.$$
(9)

Связь между параметром закручивателя $(F/F_1)(R_{Bx}/R) \sin \alpha \sin \beta$ и коэффициентом φ устанавливается из условия максимального расхода

при данном давлении P_1 : $d\mu/d\phi = 0$. После соответствующих расчетов получим

$$\frac{F}{F_1} \frac{R_{\text{BX}}}{R} \sin \alpha \sin \beta = \frac{1 - \varphi}{\sqrt{\frac{\varphi^3}{2}}}.$$
(10)

Зависимость (10) показана на рис. 2.

Подставляя (10) в (9), получим окончательную формулу для расчета µ

$$\mu = \left[\left(\frac{F}{F_1} - 1 \right)^2 \cos^2 \alpha + \frac{2 - \varphi}{\varphi^3} \right]^{-0.5}.$$
 (11)

Согласно полученным формулам (8), (10) и (11) безразмерное сопротивление закручивателей зависит от относительной площади выхода закручивателя F/F_1 и от ориентации площади F_1 относительно F, т. е. от параметров R_{Bx}/R , α , β . Комилекс параметров (F/F_1) (R_{Bx}/R) sin α sin β определяет часть сопротивления, обусловленную круткой. Формула (8) содержит также коэффициент ε , учитывающий отклонение действительного течения в закручивателе от идеального. При $\alpha = \beta =$ $= \pi/2$ формула (11) совпадает с приведенной в [⁶] зависимостью.

Рис. 3. Сравнение экспериментальных данных и рассчитанных по формулам (8), (10) и (11). Обозначения см. на рис. 1.

На рис. 3 приведено сравнение расчета по формулам (8), (10) и (11) с экспериментальными данными. Значение $R_{\rm BX}/R$ вычислялось как расстояние от центра тяжести площади F_1 до оси трубы. Для закручивателей типа Т, У и ТЛ $\alpha = \pi/2$; для Т, У, АЛ $\beta = \pi/2$. Чтобы согласовать экспериментальные и расчетные данные коэффициенту є пришлось придать следующие значения: для Т $\varepsilon = 2,02$; для У $\varepsilon = 1,15$; для ТЛ $\varepsilon = 1,1$.

Таким образом, бо́льшие потери имеют Т-закручиватели ($\varepsilon = 2,02$), закручиватели остальных типов приблизительно равноценны. В остальном формулы (8), (10) и (11) хорошо учитывают влияние конструктивных параметров F/F_1 ; $R_{\rm BX}/R$; α ; β . Следует отметить, что по существу углы α и β характеризуют направление потока, выходящего из закручивателя. Поэтому перекрытия лопаток в лопаточных закручивателях должны быть достаточно большими, чтобы обеспечить расчетьое наиравление потока.

Таким образом, для расчета сопротивлений разного типа закручивателей формулы (8), (10) и (11) могут быть успешно применены. При этом практические значения коэффициента є, по-видимому, могут быть несколько более высокими вследствие неравномерного подвода потока к закручивателям.

Обозначения

- $D, R, F = \pi D^2/4$ диаметр, радиус и поперечная площадь вихревой трубы;
 - h, b, F₁ высота, ширина й поперечная площадь каналов закручивающего аппарата;
 - α, β углы установки лопаток закручивателей типов АЛ и ТЛ;
 - п число лопаток или сопел;
 - олщина
 лопа-TOK:
 - r1 радиус втулки;

- Δ шероховатость; $R_{\rm BX}$ радиус центра тяжести площади F_1 от оси вихревой трубы;
- *P*₁, *P* полное давление потока перед закручивателем и в закрученном потоке;

- PICT, PCT -- статическое давление перед закручивателем и в закрученном потоке:
 - U1 СКОРОСТЬ ПОТОКА в закручивающем аппарате;
 - Ucp -- средняя осевая скорость потока в вихревой трубе:
 - UT, Ux тангенциальная и аксиальная составляющие скорости закрученного потока;
 - φ -- коэффициент живого сечения потока;
 - r_c внутренний радиус условной полой закрученной струи;
 - и коэффициент истечения:
 - е экспериментальный коэффициент.

ЛИТЕРАТУРА

Ахмедов Р. Б., Дутьевые газогорелочные устройства, М., 1970.
 Вулис Л. А., Устименко Б. П., Теплоэнергетика, № 9 (1954).
 Троянкин Ю. В., Балуев Е. Д., Теплоэнергетика, № 6 (1969).
 Иванов А. Г., Громов Г. В., Теплоэнергетика, № 9 (1970).
 Калишевский Л. Л., Труды МВТУ, № 59 (1955).
 Абрамович Г. Н., Прикладная газовая динамика, М., 1953.

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию 1/XI 1972

H. NURSTE

PÖÖRISTAJATE TAKISTUSEST

Esitatakse eksperimentaalsed andmed erinevat tüüpi pööristajate (tangensiaalsed düü-sid, tigupööristaja, aksiaalsed ja tangensiaalsed labidad) hüdraulilise takistuse kohta. Hüdraulilise takistuse all on mõeldud vooluse täisrõhkude vahet enne pööristajat ja ruu-mis, kuhu pööristatud voolus siseneb. On selgitatud konstruktiivsete parameetrite $(F/F_1; R_{BX}/R; \alpha, \beta)$ mõju seadme kogutakistusele ja antud arvutusvalemid.

H. NURSTE

THE RESISTANCE OF SWIRLERS

Experimental data on the hydraulic resistance of various types of swirlers (tangential nozzles, snails, axial and tangential blades) are presented.

The hydraulic resistance is interpreted as a break between the total pressure before the swirler and in the space into which the vortex flow is issued.

The influence of constructive parameters $(F/F_1; R_{BX}/R; \alpha, \beta)$ of swirlers on the total resistance of the plant is investigated, and corresponding calculation formulae are obtained.