EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 22. KÕIDE FÜÜSIKA * MATEMAATIKA. 1973, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 22 ФИЗИКА * МАТЕМАТИКА. 1973, № 2

https://doi.org/10.3176/phys.math.1973.2.09

УДК 534.21

Ю. ЭНГЕЛЬБРЕХТ

МОДЫ РАСПРОСТРАНЕНИЯ ОДНОМЕРНЫХ ВОЛН В НЕОГРАНИЧЕННОЙ ТЕРМОУПРУГОЙ СРЕДЕ ПРИ КОНЕЧНОЙ СКОРОСТИ РАСПРОСТРАНЕНИЯ ТЕПЛА

Система уравнений линейной теории термоупругости при конечной скорости распространения тепла в декартовой системе координат допускает частные решения — моды, которые зависят от времени и одной из координат через экспоненциальную функцию и не зависят от остальных координат. В данной работе исследуются вопросы дисперсии и затухания в случае таких мод распространения волн. Анализируется влияние различных физических параметров на дисперсию и затухание. Аналогичный анализ для случая систем уравнений линейной теории термоупругости при бесконечной скорости распространения тепла проведен в [¹⁻³]. Однако оказывается, что при больших частотах и малых длинах волн поправки от учета конечности скорости распространения тепла

Взаимное влияние полей деформации и температуры в динамических задачах теории термоупругости обусловливает затухание упругих волн [⁴⁻⁶]. Теория плоских гармонических волн [¹⁻³], однако, содержит закон теплопроводности Фурье, включающий бесконечную скорость распространения тепла, что приводит к параболо-гиперболической системе уравпений. В последнее время в динамических задачах теории связанной термоупругости используется усовершенствованный закон теплопроводности, учитывающий конечную скорость распространения тепла [^{4. 6-12}]. Тогда в переходных процессах, обусловленных импульсным механическим возмущением [^{6, 9-12}], наибольшие изменения возникают в прифронтовом районе. Поэтому представляет определенный интерес выявить эффект влияния конечной скорости распространения тепла в процессах, описываемых теорией плоских гармонических волн.

Отметим, что имеющиеся в литературе числовые данные для времени релаксации теплового потока τ_0 [^{10, 13}] различаются на несколько порядков. Поэтому в данной работе численные расчеты проведены с несколькими числовыми значениями τ_0 , чтобы оценить вызванный этим эффект.

1. Постановка задачи. Примем за основу одномерную математическую модель связанной термоупругости из нашей ранней работы [⁶]

$$\begin{cases} c_0^2 u'' - \varkappa \varrho_0^{-1} \Theta' = u^{, 4} \\ \varrho_0 c_E \Theta' + \varkappa T_0 u' = Q', \\ \tau_0 Q' + Q = k_0 \Theta', \end{cases}$$
(1.1)

где $c_0^2 = (\lambda + 2\mu) \varrho_0^{-1}$; $\varkappa = (3\lambda + 2\mu) \alpha_T$; $\Theta = (T - T_0) T_0^{-1}$.

Здесь приняты следующие обозначения: u — перемещение; T — температура; T_0 — начальная температура; Q — поток тепла; λ , μ — постоянные Ляме; ϱ_0 — плотность среды; c_E — теплоемкость на единицу массы; τ_0 — время релаксации теплового потока; k_0 , a_T — коэффициенты теплопроводности и линейного расширения соответственно. Дифференцирование по пространственной координате x обозначено штрихом, дифференцирование по времени t — точкой.

Представим перемещение и и температуру О в следующей форме:

$$u = u^{0} \exp[i(\eta x - \omega t)], \quad \Theta = \Theta^{0} \exp[i(\eta x - \omega t)], \quad (1.2)$$

где η определяет длину волны $(2\pi (\text{Re }\eta)^{-1})$ и ω — период волны $(2\pi (\text{Re }\omega)^{-1})$. Подставим соотношения (1.2) в систему уравнений (1.1) и после преобразований получим частотное уравнение

$$(\omega^{2} - c_{0}^{2}\eta^{2}) (i\varrho_{0}c_{E}\omega + \varrho_{0}c_{E}\tau_{0}\omega^{2} - k_{0}\eta^{2}) - - i\varkappa^{2}T_{0}\varrho_{0}^{-1}\eta (\eta\omega - i\tau_{0}\omega^{2}\eta) = 0.$$
 (1.3)

Удобнее представить уравнение (1.3) в безразмерной форме введением безразмерных величин

$$\chi = \omega \omega_*^{-1}, \quad \xi = c_0 \eta \omega_*^{-1}, \quad (1.4)$$

где ω_* — характерная частота, определяемая в виде [³]

$$\omega_* = c_0^2 \varrho_0 c_E k_0^{-1}. \tag{1.5}$$

Математическая модель термоупругой среды с конечной скоростью распространения тепла требует определения еще безразмерного числа колебаний n в течение времени τ_0 по формуле

$$n = \tau_0 \omega,$$
 (1.6)

так что характерной частоте о соответствует характерное число колебаний *n*.

$$n_* = \tau_0 \omega_*. \tag{1.7}$$

Уравнение (1.3) с учетом (1.4) и (1.7) преобразуется теперь к виду

$$(\xi^2 - \chi^2) \left(\chi - in_*\chi^2 + i\xi^2\right) + e\xi^2\chi (1 - in_*\chi) = 0, \tag{1.8}$$

тде коэффициент связанности $e = \kappa^2 T_0 c_0^2 q_0^{-2} c_E^{-1}$.

Легко установить связь *n*^{*} с другими используемыми физическими параметрами

$$n_* = n\chi^{-1}, \quad n_* = c_0^2 c_T^{-2},$$
 (1.9)

где скорость распространения тепловых воздействий с_т определяется формулой [¹³]

$$c_T^2 = k_0 (\tau_0 \varrho_0 c_E)^{-1}. \tag{1.10}$$

Отметим здесь следующие очевидные следствия из (1.7) и (1.9):

а) при $n_* > 1$ быстрее распространяется волна деформации и $\tau_0 > \omega_*^{-1}$;

б) при $n_* < 1$ быстрее распространяется тепловая волна и $\tau_0 < \omega_*^{-1}$;

в) при $n_* = 1$ обе волны распространяются с одинаковой скоростью и $\pi_0 = \omega_*^{-1}$.

2. Волны с фиксированной частотой. Рассмотрим частоту ω в качестве заданного вещественного параметра. Тогда решение получается в виде суммы отдельных мод

$$u = \exp\left(-i\chi\omega \cdot t\right) \sum_{h=1}^{4} a_h \exp\left(i\xi_h\omega \cdot c_0^{-1}x\right), \qquad (2.1)$$

$$\Theta = \exp\left(-i\chi\omega_*t\right)\sum_{k=1}^{4} b_k \exp\left(i\xi_k\omega_*c_0 \ x\right), \qquad (2.2)$$

где a_k , b_k — амплитуды, а ξ_k определяется решением биквадратного уравнения

$$\xi^{4} - \xi^{2}[(n_{*}+1)\chi^{2} + i(1+e)\chi] + n_{*}\chi^{4} + i\chi^{3} = 0.$$
(2.3)

Корни уравнения (2.3) удобно представить в форме

$$\xi_{h} = c_{0}(\chi c_{h}^{-1} - iq_{h}\omega^{-1}), \qquad (2.4)$$

где c_k — фазовая скорость и q_k — коэффициент затухания.

Опуская выкладки, отметим, что решения (2.1) и (2.2), выписанные с учетом (2.4), совпадают по форме с решением из [³] с точностью до коэффициента связанности, который в данном случае зависит от n_* . Естественно, зависят от n_* также фазовая скорость и коэффициент затухания. Далее рассмотрим более подробно эти зависимости на основе численного решения уравнения (2.3) в случае стали при ε равном 1,14·10⁻² [⁴]. Это тем более целесообразно, что в ряде основных исследований [², ³, ⁵] использовано неправильное значение коэффициента связанности ε .

Функции $q_1 q_*^{-1}$ в зависимости от χ при разных n_* представлены на рис. І. Коэффициент затухания q_1 соответствует волне деформации, распространяющейся в сторону роста пространственной координаты, $q_* = \frac{1}{2}e\omega * c_0^{-1}$ [3]. Параметр n_* оказывает существенное влияние при значениях $\chi \sim 1,0$ только начиная с $n_* > 0,01$. В общем случае модифицированная упругая волна подвергается большему затуханию. На рис. 2 представлена зависимость $q_1 q_*^{-1}$ от n_* .

Из поведения функций фазовой скорости c_1 , представленных на рис. 3 и 4, следует, что влияние конечной скорости распространения тепла существенно также при $\chi \sim 1,0$. Отметим, что при $\chi < 1$ всегда выполняется $c_1 > c_0$, но при $\chi > 1$ может оказаться справедливым и неравенство $c_1 < c_0$ (см. рис. 3).

Асимптотические формулы для фазовой скорости c_1 и коэффициента затухания q_1 можно в случае $\chi < 1$, $e \ll 1$ представить в виде

$$c_{1} = c_{0} \left[1 + \frac{1}{2} e^{(1 + \chi^{2} n_{*}^{2}) (1 + \chi^{2})^{-1} + O(e^{2})} \right], \qquad (2.5)$$

$$q_{1} = \omega_{*} c_{0}^{-1} \left[\frac{1}{2} e \chi^{2} (1 + \chi^{2} n_{*}^{2}) (1 + \chi^{2})^{-1} + O(e^{2}) \right].$$
(2.6)

Из (2.5) следует, что при $\chi \ll 1$ выполняется $c_1 \sim c_0(1 + 1/2e)$, как и при бесконечной скорости распространения тепла [³], а также в случае нестационарной задачи с учетом конечной скорости распространения тепла [⁹⁻¹¹]. Асимптотические формулы при $\chi \ll 1$ можно представить в виде [³]

$$c_{1} = c_{0}(1+e)^{1/2} \left[1 - \frac{1}{8} \chi^{2} e (4-3e) (1+e)^{-4} + O(\chi^{4}) \right], \qquad (2.7)$$

$$q_{1} = \omega_{*}c_{0}^{-1}(1+e)^{-1/2} \left[\frac{1}{2} \chi^{2} e (1+e)^{-2} + O(\chi^{4}) \right].$$
(2.8)

Эти зависимости не содержат n. (см. рис. 1 и 3).

3. Волны с фиксированной длиной. Рассмотрим длину волн η в качестве заданного вещественного параметра. Тогда решение в виде суммы отдельных мод имеет форму

$$u = \exp(i\xi\omega_{*}c_{0}^{-1}x)\sum_{k=1}^{*}p_{k}\exp(-i\omega_{*}\chi_{k}t), \qquad (3.1)$$

$$\Theta = \exp\left(i\xi\omega_*c_0^{-1}x\right)\sum_{k=1}^{4} r_k \exp\left(-i\omega_*\chi_k t\right), \qquad (3.2)$$

где p_k, r_k — амплитуды волн, а χ_k определяется решением уравнения.

$$\chi^{4} - in_{*}^{-1}\chi^{3} - n_{*}^{-1}\xi^{2}(n_{*}+1)\chi^{2} - in_{*}^{-1}\xi^{2}(1+e)\chi + n_{*}^{-1}\xi^{4} = 0, \qquad (3.3)$$

причем корни уравнения (3.3) представим в форме

$$\chi_k = \pm f - ig, \quad \chi_{k+2} = \pm l - ih, \quad k = 1, 2.$$
 (3.4)

В отличие от случая бесконечной скорости распространения тепла $[^{2,3}]$ квазитепловые члены в модифицированных упругой и тепловой волнах (3.1) и (3.2) уже не имеют стоячий характер. Для определения связанности и сдвига фаз рассмотрим модифицированные волны без квазитепловых членов ($\Theta^0 = 0$), распространяющиеся в сторону роста пространственной координаты. На основе (3.1) и (3.2) с учетом (1.3) имеем

$$u = u^{0} \exp\left(-\omega_{*}gt\right) \cos\left[\omega_{*}\xi c_{0}^{-1}(x - f\xi^{-1}c_{0}t)\right], \qquad (3.5)$$

$$\Theta = u^{0} \varkappa T_{0} c_{0} k_{0}^{-1} A \exp\left(-\omega_{*} g t\right) \cos\left[\omega_{*} \xi c_{0}^{-1} (x - f \xi^{-1} c_{0} t) + \gamma + \pi\right].$$
(3.6)

Здесь связанность между волной деформации и обусловленной ею тепловой волной характеризуется коэффициентом A, определяемым по формуле

$$A = \xi \left(m_1^2 + f^2 m_2^2 \right) \left[f^2 m_2^2 + \left(m_1 - \xi^2 \right)^2 \right]^{-1/2}, \tag{3.7}$$

где

$$m_1 = g + n_* (f^2 - g^2), \quad m_2 = 1 - 2n_*g$$

Тепловая волна и волна деформации сдвинуты в фазе на угол $\pi + \gamma$, где γ определяется из соотношения

$$\operatorname{tg} \gamma = \left[\left(f^2 + g^2 \right) m_2^2 - \xi^2 m_1^2 + n_*^2 \left(f^2 + g^2 \right)^2 \right] \left(f \xi^2 m_2^2 \right)^{-1}.$$
(3.8)

При $n_* = 0$ из (3.7) и (3.8) легко вывести соответствующие величины в [³].

Функции изменения коэффициента A и угла сдвига γ в зависимости от ξ и n_* представлены на рис. 5—7. Коэффициент A не зависит существенно от n_* при $\xi \ll 1$, при $\xi \sim 1$, т. е. при длинах волн порядка 10^{-6} см, эта зависимость существенна. Сдвиг в фазе γ при $\xi \ll 1$ составляет 1/2 π . При $\xi \sim 1$ влияние параметра n_* становится существенным. При $n_* = 0$ с ростом ξ выполняется $\gamma > 0$, но при $n_* \neq 0$ возможны и случаи $\gamma < 0$. Отметим, что наибольшие отрицательные сдвиги в фазе наблюдаются при $n_* \sim 0,5$ (см. рис. 7).

4. Несвязанные волны. Рассмотрим вещество, для которого $\alpha_T = 0$. В этом случае из системы уравнений (1.1) имеем

$$\varrho_0 c_E \Theta' + \varrho_0 c_E \tau_0 \Theta'' = k_0 \Theta''. \tag{4.1}$$

(4.2)

Представим решение уравнения (4.1) в форме (1.2) $\Theta = \Theta^{4} \exp[i(\eta x - \omega t)].$

Частотное уравнение с учетом (4.2) имеет тогда вид

$$\rho_0 c_E \tau_0 \omega^2 + i \rho_0 c_E \omega - k_0 \eta^2 = 0. \tag{4.3}$$

4.1. Волны с фиксированной частотой. После введения безразмерных величин (1.4) и (1.7) в уравнение (4.1) получим

Рис. 5.

Рис. 6.

Рис. 7.

(4.4)

Рассмотрим о в качестве вещественного параметра. Решение уравнения (4.1) получает тогда вид

 $\xi^2 = n \cdot \chi^2 + i \chi$

$$\Theta = \exp\left(-i\chi_{\omega*t}\right) \sum_{k=1}^{2} b_k \exp\left(i\xi_{1k\omega*}c_0^{-1}x\right), \tag{4.5}$$

где

$$\xi_{1k} = c_0 (\chi c_{1k}^{-1} + i q_{1k} \omega_*^{-1}), \quad k = 1, 2,$$
(4.6)

— решения уравнения (4.4).

Фазовая скорость c_{1k} и коэффициент затухания q_{1k} определяются из соотношений

$$c_{4k} = \pm a^{-1} c_0 \chi^{-1/2} (\chi^2 n_*^2 + 1)^{-1/4}, \qquad k = 1, 2,$$
(4.7)

$$q_{1k} = \pm b \omega_* c_0^{-1} \chi^{1/2} (\chi^2 n_*^2 + 1)^{1/2}, \quad k = 1, 2,$$
(4.8)

The
$$a = \cos \frac{\varphi}{2}$$
, $b = \sin \frac{\varphi}{2}$, $\varphi = \operatorname{arctg}(\chi n_*)^{-1}$.

6 ENSV TA Toimetised F*M-2 1973

Безразмерная длина $\xi_k, k = 1, 2,$ вычисляется аналогично (2.4). Решение уравнения (4.1) в виде суммы отдельных мод по форме совпадает с решением при бесконечной скорости распространения тепла [³]. Легко видеть, что при n. = 0 получим $\phi = 1/2\pi$, $a^2 = b^2 = 1/2$ и $c_{1k} =$ $=(2k_0\omega)^{1/2}(\varrho_0c_E)^{-1/2}$. На рис. 8 приведена зависимость величины $\zeta =$ $= \operatorname{Re} \Theta^2/\operatorname{Re} \Theta^1$ от $n = \chi n_*$, где Θ^2 представляет амплитуду диффузионного уравнения. Влияние n* ≠ 0 заметно начиная с n > 0,1, т. е. при частотах $\omega \sim 10^{12} ce\kappa^{-1}$.

4.2. Волны с фиксированной длиной. Рассмотрим длину болны в качестве вещественного параметра. Тогда решение уравнения (4.1) в виде суммы отдельных мод получит форму бегущей волны

$$\Theta = \exp\left(i\xi\omega_*c_0^{-1}\right)\sum_{k=1}^2 r_k \exp\left(-i\chi_k\omega_*t\right), \tag{4.9}$$

$$\chi_k = \pm l_1 - ih_1; \quad h_1 = \frac{1}{2}n_{-1}^{-1}; \quad l_1 = \mp\left(\xi^2 n_{-1}^{-1} - \frac{1}{4}n_{-2}^{-2}\right)^{1/2},$$

В случае диффузионного уравнения соответствующее решение имеет форму стоячей волны [3].

5. Выводы. При высоких частотах (порядка характеристической) и при малых длинах волн (порядка $c_0 \omega_*^{-1} \eta \sim 1$) учет конечной скорости распространения тепла — релаксации теплового потока — является необходимым. В этом случае фазовые скорости, коэффициенты затухания и коэффициент связанности больше, а угол сдвига в фазе волны деформации и тепловой волны меньше, чем соответствующие величины, вычисленные в предположении бесконечной скорости распространения тепла,

ЛИТЕРАТУРА .

- Deresiewicz H., J. Acoust. Soc. Am., 29, 204 (1957).
 Chadwick P., Sneddon I. N., J. Mech. Phys. Solids, 6, 223 (1958).
 Chadwick P. In: Progress in Solid Mechanics, ed. by Sneddon I. N., Hill R., Атветат, 1960, р. 263. 4. Коваленко А. Д., Основы термоупругости, Киев, 1970. 5. Новацкий В., Динамические задачи термоупругости, М., 1970. 6. Нигул У. К., Энгельбрехт Ю. К., Нелинейные и линейные переходные

- нигул У. К., Энгельорехт Ю. К., пелинейные и линейные лереходные волновые процессы деформации термоупругих и упругих тел, Таллин, 1972,
 Андреев В. Г., Уляков П. И., ИФЖ, 21, 176 (1971).
 Коляно Ю. М., Гирняк О. Ф., Пробл. прочности, № 6, 82 (1971).
 Попов Е. Б., ПММ, 31, 328 (1967).
 Lord A. W., Shulman Y., J. Mech. Phys. Solids, 15, 299 (1967).
 Achenbach J. D., J. Mech. Phys. Solids, 16, 273 (1968).
 Norwood F. R., Warren W. E., Quart, J. Mech. Appl. Math., 22, 283 (1969).
 Лыкск А. В., ИФЖ, 9, 287 (1965).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 15/XI 1972

где

J. ENGELBRECHT

ÜHEMÕÕTMELISTE LAINETE MOODID TERMOELASTSES KESKKONNAS, ARVESTADES TERMILISE LAINE LÕPLIKKU KIIRUST

Ühemõõtmelise laine leviku uurimiseks kasutati moodide tehnikat, kusjuures termoelastse keskkonna modelleerimise aluseks oli üldistatud termoelastsusteooria, mis arvestat termilise laine lõplikku kiirust. Uuriti üksikute moodide sumbuvust ja dispersiooni ning näidati, et kõrgele sageduste (karakteristiku sageduse suurusjärgu) ja lühikeste lainepikkuste (suurusjärguga $c_0 \omega_*^{-1} \eta \sim 1$) puhul on olulise tähtsusega termilise laine lõplik kiirus, s. o. soojusvoo relaksatsioon.

J. ENGELBRECHT

MODES ON ONE-DIMENSIONAL WAVES IN UNBOUNDED THERMOELASTIC MEDIA USING THE CONCEPT OF FINITE THERMAL WAVE PROPAGATION VELOCITY

The technique of modes is used for an analysis of one-dimensional wave-propagation problem in thermoelastic media. A mathematical model of thermoelasticity is used, taking into account the finite velocity of thermal waves. The problems of attenuation and dispersion are considered. It is shown that for high frequency (of a characteristic order) and for short waves (of the order $c_0 \omega_*^{-1} \eta \sim 1$) the effect of finite velocity of thermal waves — the second sound effect — is considerable.