EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÕIDE FOOSIKA * MATEMAATIKA. 1969. NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVIII ФИЗИКА * МАТЕМАТИКА. 1969, № 2

https://doi.org/10.3176/phys.math.1969.2.12

В. ЗЛОБИН

О РАСЧЕТЕ ТРАЕКТОРИИ ОДНОРЯДНОЙ СИСТЕМЫ КРУГЛЫХ СТРУЙ В ОГРАНИЧЕННОМ СНОСЯЩЕМ ПОТОКЕ

Вопрос о траектории струй в ограниченном потоке представляет интерес для расчета газовых горелок, камер смешения и камер горения газотурбинных двигателей, острого дутья в топках паровых котлов и во многих других важных для инженерной практики приложениях. Экспериментальные работы поэтому вопросу [¹⁻³] пока малочисленны и касаются отдельных сторон явления, не давая о нем достаточно полного представления. Аналитический подход к решению задачи о развитии системы струй в иотоке, насколько нам известно, отсутствует.

Траектория системы круглых струй, вытекающих из сопла в ограниченный сносящий поток, определяется характером ограничения потока, видом раздачи и рядом комплексов и величин, среди которых основными являются следующие: гидродинамический параметр $q = \varrho_2 V_2^2 / \varrho_1 V_1^2$, относительный шаг между струями $\overline{s} = s/d$, коэффициент отношения весовых расходов $\eta = \frac{\varrho_1 Q_1 + \varrho_2 Q_2}{\varrho_1 Q_1}$, начальный угол атаки струй α_0 ; относительный диаметр канала $\overline{D} = D/d$, если периферийная система струй развивается в сносящем потоке в круглом канале. Здесь использованы следующие обозначения: ϱ_1, V_1 — плотность и скорость набегающего потока; ϱ_2, V_2 — плотность и среднерасходная скорость в устье струи, вытекающей из сопла; Q_1, Q_2 — объемные расходы в единицу времени набегающего потока и системы струй; d — начальный диаметр струи.

Если струи вытекают из отверстия в тонкой стенке, добавляется еще один параметр — коэффициент истечения µ, который является суммарным параметром и сложным образом зависит от различных режимных и конструктивных параметров [4]. Если коэффициент истечения известен, то система параметров сводится к указанной выше следующим образом: вводится эффективный начальный диаметр струи $d_3 = \sqrt{\mu} d$ и скорость истечения $V_{2\mu}$ вместо начального диаметра струи d и среднерасходной скорости V_2 в устье струи, вытекающей из сопла, соответственно [4.5]. Безразмерные комплексы, вычисленные по d_3 и $V_{2\mu}$, обозначаем в дальнейшем следующим образом:

$$q_{\mu} = \varrho_2 V_{2\mu}^2 / \varrho_1 V_1^2, \quad \overline{x}_{\mathfrak{s}} = x/d_{\mathfrak{s}}, \quad \overline{y}_{\mathfrak{s}} = y/d_{\mathfrak{s}},$$
$$\overline{s}_{\mathfrak{s}} = s/d_{\mathfrak{s}}, \quad \overline{D}_{\mathfrak{s}} = D/d_{\mathfrak{s}}.$$

Ниже дано приближенное аналитическое решение рассматриваемой задачи для трех видов подачи однорядной системы струй с постоянным шагом в поперечный ограниченный поток: для системы струй, расположенных в ряд, для центральной и периферийной подачи. Такие виды подачи газа или охлаждающего воздуха в сносящий поток применяются в газовых горелках и струйных камерах смешения. Изложенный в дальнейшем метод расчета наиболее пригоден, по-видимому, для условий, существующих в газовых горелках.

Рис. 1. Схема системы круглых струй в сносящем потоке (струи расположены в одной плоскости в ряд).

На рис. 1 приведена схема системы струй в сносящем потоке. Ради удобства принимаем, что струя вытекает из точечного источника полюса струи. Система координат x, y отсчитывается от полюса струи, координаты x_*, y_* — от центра выходного отверстия струи. В дальнейшем принимаем обычные для теории струи в поперечном потоке допущения: направление скорости в струе совпадает с направлением ее траектории, вводим некоторые средние по сечению струи значения плотности ϱ и скорости V и пренебрегаем кривизной струи в плоскости симметрии по сравнению с ее толщиной. Уравнение равновесия элемента струи толщиной dl под действием сил давления dP, эжектируемого струей количества движения из потока dK и центробежной силы dC в проекции на нормаль к поверхности струи записывается следующим образом:

$$-dC = dP + dK \sin \alpha. \tag{1}$$

В дальнейшем закон расширения струи принимается в виде [6]

$$\overline{b} = 1 + 2\overline{u}_*/q^{0.2} = 2\overline{u}/q^{0.2}, \tag{2}$$

где

$$\bar{y} = \bar{y}_{*} + 0.5q^{0.2}.$$
(3)

Пренебрегая затуханием проекции вертикальной составляющей начального количества движения в струе, можно получить следующее дифференциальное уравнение круглой струи в сносящем потоке [7]:

$$\frac{\bar{y}''}{\bar{y}'^3} = \frac{4\xi \,\bar{b} \,(\varrho_1 \,\, V_1^2)_{\,\rm xap}}{\pi \sin \alpha_0 \,\, \varrho_2 \,\, V_2^2} \,, \tag{4}$$

7 ENSV TA Toimetised F * M-2 69

которое должно интегрироваться при следующих условиях:

 $\overline{x} = 0, \quad \overline{y} = 0, \quad \overline{y}' = \operatorname{tg} a_0.$ (5)

Под $(\varrho_1 V_1^2)_{xap}/2$ в уравнении (4) подразумевается характерный скоростной напор набегающего потока. Если струи развиваются в потоке, протекающем по каналу, то из условий смесеобразования он должен быть равен $\varrho_c V_c^2/2$, где ϱ_c и V_c — скорость и плотность суммарногопотока после смешения. Гидродинамический параметр, вычисленный поплотности и скорости смеси, обозначаем в дальнейшем следующим образом:

$$q_{\rm c} = \varrho_2 V_2^2 / \varrho_{\rm c} V_{\rm c}^2 \quad \text{или} \quad q_{\mu \rm c} = \varrho_2 V_{2 \rm u}^2 / \varrho_{\rm c} V_{\rm c}^2. \tag{6}$$

Эти величины можно переписать при $\varrho_c/\varrho_1 \simeq 1$ (что характерно для газовых горелок) в следующем виде:

$$q_{\rm c} = \varrho_2 V_2^2 / \eta^2 \varrho_1 V_1^2 \quad \text{или} \quad q_{\mu \rm c} = \varrho_2 V_{2\mu}^2 / \eta^2 \varrho_1 V_1^2. \tag{7}$$

Учитывая изложенное и уравнение (2), первый интеграл уравнения (4) запишется следующим образом:

$$\frac{d\overline{x}}{d\overline{y}} = \operatorname{clg} \alpha_0 + \frac{8}{\pi q_c^{1,2} \sin \alpha_0} \int_0^y \xi \overline{y} \, d\overline{y}. \tag{8}$$

Для единичной струи, развивающейся в неограниченном сносящем потоке, коэффициент пропорциональности § (который в дальнейшем условно называется суммарным коэффициентом сопротивления, хотя это название не очень удачно, ибо не отражает физического смысла этого-коэффициента) можно считать величиной постоянной, и дальнейшее интегрирование уравнения (8) не представляет трудностей.

Уравнение (8) позволяет решить вопрос о траектории системы струй в ограниченном сносящем потоке. Для этого рассмотрим физическуюкартину течения однорядной системы круглых струй, расположенных горизонтально в ряд (рис. 1).

Если поставить тонкую перегородку по плоскостям симметрии пограничного слоя сносящего потока и струи в системе струй, то, как показывает эксперимент, это не нарушит условий развития струй. Таким образом, каждую струю в системе струй, развивающейся в сносящем потоке, ограниченном перегородками, можно рассматривать как единичную струю. Силы, действующие со стороны потока на струю, развивающуюся в таком контуре, увеличиваются вследствие ограничения потока. Поскольку степень загромождения канала струями определяется отношением \overline{b}/s_k , то для суммарного коэффициента сопротивления можно записать:

$$\xi = \xi_0 f(b/s_{\kappa}), \tag{9}$$

где s_к — безразмерная ширина контура при текущем у.

Найти с помощью экспериментальных данных вид функции $f(\overline{b}/s_{\kappa})$ затруднительно. При некоторых допущениях ее можно найти, исходя из следующего рассуждения. Предположим, что течение плоское, т. е. вектор скорости набегающего потока все время остается в одной и той же плоскости. Струя загромождает часть сечения, и поток, обтекая струю. ускоряется. Рассматривая некоторую элементарную площадку при текущем *у*, из уравнения неразрывности получаем

или

$$V_{1}s_{\kappa}dy = V'_{1}(s_{\kappa} - \beta b)dy$$

$$\frac{\varrho_{1}V_{1}^{2}}{2} = \frac{\varrho_{1}V_{1}^{2}}{2} \cdot \frac{1}{\left(1 - \frac{\beta \overline{b}}{\overline{s}}\right)^{2}}.$$
(10)

Здесь штрих над символом скорости показывает, что соответствующая величина относится к скорости потока в узком сечении, а β — некоторый коэффициент, величина которого должна быть порядка 0,5 ÷ 1,0. Если считать, что максимальный скоростной напор определяет силовое воздействие потока на струю, то

$$f(\overline{b}/\overline{s_{\kappa}}) = \frac{1}{\left(1 - \frac{\beta \overline{b}}{\overline{s_{\kappa}}}\right)^2} \simeq 1 + 12 \left(\frac{\beta \overline{b}}{\overline{s_{\kappa}}}\right)^2.$$
(11)

Несколько необычная аппроксимация вместо общепринятого разложения в ряд дает хорошее соответствие в области изменения $\beta \overline{b}/\overline{s_{\kappa}} = 0,1 \div 0,6$. При малых значениях этой величины эффект ее влияния, как показывает расчет, невелик: при значениях больше 0,6 основное предположение, использованное при выводе (11) и ранее, о струйном характере развития, не выполняется. С учетом (11) первый интеграл уравнения траектории системы струй (8) запишется следующим образом:

$$\frac{d\bar{x}}{d\bar{y}} = \operatorname{ctg} \alpha_0 + \frac{8\xi_0}{\pi q_c^{1,2} \sin \alpha_0} \int_0^{\bar{y}} \overline{y} \left[1 + 12 \left(\frac{\beta \overline{b}}{\overline{s}_R} \right)^2 \right] d\overline{y}.$$
(12)

При записи этого уравнения принят тот же закон расширения струи в системе струй, что и для единичной струи в сносящем потоке (2). Это предположение правдоподобно до точки слияния струй.

Дальнейшее решение не представляет каких-либо трудностей, но вид решения зависит от конкретного вида зависимости для текущей ширины контура.

Для однорядной системы круглых струй, размещенных с равными шагами вдоль некоторой плоскости, $\overline{s_{\kappa}} = \overline{s}$, решение уравнения (12) при граничном условии $\overline{x} = 0$, $\overline{y} = 0$ имеет вид

$$\overline{x} = \overline{y} \operatorname{ctg} \alpha_0 + \frac{4\xi_0 \, \bar{y}^3}{3\pi q_{\rm c}^{1/2} \sin \alpha_0} \left(1 + \frac{18\beta^2 \, \bar{y}^2}{5q_{\rm c}^{0,4} \, \bar{s}^2} \right). \tag{13}$$

При $s \to \infty$ уравнение (13) дает траекторию единичной струи в сносящем потоке. Сопоставление с экспериментальными данными [^{1, 4}] для величины ξ_0 дало следующие значения: $\xi_0 = 1,20$ при $q_c = 3 \div 25$ и $\xi_0 = 0,95$ при $q_c > 25$. Величину β^2 можно принять равной 2/3. Окончательное решение получаем в таком виде:

$$\overline{x} = \overline{y} \operatorname{ctg} a_0 + \frac{k \, \overline{y^3}}{q_{\rm c}^{1,2} \sin a_0} \left(1 + \frac{2.4 \, \overline{y^2}}{q_{\rm c}^{0,4} \, \overline{s^2}} \right). \tag{14}$$

Здесь и далее k = 0,5 при $q_c = 3 \div 25$ и k = 0,4 при $q_c > 25$, $\overline{y} = \overline{y}_* + 0.5q_c^{0,2}$, а разницей между \overline{x} и \overline{x}_* в практических расчетах можно пренебречь и считать $\overline{x} = \overline{x}_*$.

Рис. 2. Сопоставление расчета по уравнению (14) с опытными данными работы [⁴].

На рис. 2 приведено сопоставление расчета по формуле (14) с экспериментальными данными [4]. Единичная струя вытекала из сопла диаметром 0,028 *м* в поперечный поток в канале 0,105 \times 0,150 *м*. В соответствии с вышеизложенным такую струю можно рассматривать как бесконечную систему струй, размещенных в ряд с относительным шагом $\overline{s} = 3,75$ и вытекающих в поперечный поток с относительной высотой канала $\overline{H} = 5,35$.

На рис. З расчет по уравнению (14) сопоставляется с экспериментальными данными работы [¹] при значениях относительного шага $\overline{s} = 16$ и 8. Струи вытекали из конического сопла с цилиндрическим наконечником в малоограниченный сносящий поток при начальном угле атаки $\alpha_0 = 90^\circ$.

Для однорядной системы струй при периферийной подаче можно получить следующее выражение для относительной ширины контура:

$$\vec{s}_{\kappa} = \vec{s} \left(1 - \frac{2\vec{y}}{\vec{D}} \right) \simeq \frac{\vec{s}}{1 + 12 \left(\frac{2\vec{y}}{\vec{D}} \right)^2}, \ \vec{s} = \frac{\pi D}{nd}.$$
 (15)

Здесь использована та же аппроксимация, что и раньше. Подставляя (15) в уравнение (12), получаем окончательно следующее уравнение для траектории системы струй при периферийной подаче:

$$\overline{x} = \overline{y} \operatorname{ctg} a_0 + \frac{k \bar{y}^3}{q_c^{1,2} \sin a_0} \left(1 + \frac{2.4 \bar{y}^2}{q_c^{0,4} \, \bar{s}^2} + \frac{18.3 \bar{y}^4}{q_c^{0,4} \, \bar{s}^2 \, \overline{D}^2} \right).$$
(16)

Рис. 3. Траектории однорядной системы круглых струй, расположенных в одной плоскости в ряд при значениях относительного шага: s = 16 и s = 8.

235

Если струи вытекают из отверстия в тонкой стенке, то необходимо перейти к эффективному диаметру $d_{\mathfrak{s}} = \sqrt{\mu} d$, а гидродинамический параметр вычислять по скорости истечения:

$$q_{\mu c} = \varrho_2 V_{2\mu}^2 / \varrho_c V_c^2. \tag{17}$$

В этом случае формула (16) приобретает вид

На рис. 4 приведено сопоставление расчета по формуле (18) с нашими экспериментальными данными [⁸] при $q_{\mu c} = 3 \div 25$. Диаметр канала в этих опытах был равен 0,25 *м*, начальный угол истечения струй $a_0 = 90^\circ$, коэффициент истечения $\mu \simeq 0,65$. Небольшое различие между расчетной кривой по (18) и экспериментальными данными в начале траектории объясняется наличием пристеночного пограничного слоя у набегающего потока в канале. Расчетные кривые доведены до точки, где угол наклона оси струи к направлению набегающего потока составляет 9,5°. После этой точки, как показывает эксперимент, ось струи резко выполаживается в направлении потока, что связано со взаимодействием струй, идущих с периферии в центр.

Аналогично можно записать уравнение для траектории однорядной системы струй при центральной подаче, широко используемой в газовых горелках.

Ширина контура при текущем у запишется теперь следующим образом:

$$\overline{s}_{\kappa} = \frac{\pi}{n-1} \left(\overline{D}_0 + 2\overline{y} \right), \tag{19}$$

где n — число струй, размещенных равномерно по периферии центрального раздающего канала, а $\overline{D_0}$ — диаметр этого канала.

Здесь подставлено (n-1), ибо из соображений физического порядка следует, что случай n = 1 должен соответствовать случаю безграничного

потока. Если подставить (19) в уравнение (12), то конечное решение выразится в квадратурах и будет иметь громоздкий вид.

Если иметь в виду приложение решения к расчету газовых горелок, то можно получить приближенное простое решение, полагая в (19) $\overline{D}_0 = 0$. Это связано с тем, что относительный диаметр коллектора, как правило, невелик по сравнению с глубиной проникновения струй. В этом случае уравнение траектории можно получить в виде

$$\overline{x} = \overline{y} \operatorname{ctg} \alpha_0 + \frac{k \overline{y}^3}{q_{\rm c}^{1,2} \sin \alpha_0} \left[1 + \frac{0.20 \, (n-1)^2}{q_{\rm c}^{1,2}} \right]. \tag{20}$$

Рис. 5. Траектории однорядной системы круглых струй при центральной подаче: а) n = 4; 6) n = 8.

На рис. 5 сопоставляется расчет по формуле (20) с экспериментальными данными [²] при n = 4 и n = 8. Диаметр коллектора в этих опытах составлял $\overline{D}_0 = 14,4$. Струи вытекали из отверстия в тонкой стенке. Коэффициент истечения принят равным 0,65.

Формула (20) показывает, что система струй при центральной подаче развивается подобно единичной струе с как бы увеличенным суммарным коэффициентом сопротивления, который есть функция числа струй *n*, если относительный диаметр коллектора значительно меньше глубины проникновения.

Необходимо отметить, что если

$$n > 2\pi/\arctan(0.5/q_c^{0.2}),$$
 (21)

то струи сразу по выходе из устья сливаются, образуя одну сплошную веерную струю. В этом случае траекторию системы струй при центральной подаче нельзя рассчитывать по уравнению (21), ибо нарушается основное исходное предположение о струйном характере развития струй.

Траекторию такой слившейся системы струй можно приближенно рассчитать как траекторию эквивалентной веерной струи, вытекающей из щели.

237

Ширину этой щели можно рассчитать по формуле

$$\overline{a} = n/4\overline{D}_0. \tag{22}$$

Для ориентировочного расчета можно рекомендовать формулу, аналогичную предложенной в работе [³], но несколько модернизированную для нашего случая:

$$\bar{x}_* = \frac{0.02\bar{y}_*^{3,2}}{q_*^{1/2}\bar{a}^{2,2}},\tag{23}$$

где все величины, имеющие размерность длины, отнесены к первоначальному диаметру, величина а рассчитывается по (22).

В заключении отметим, что предложенный метод является приближенным и допускает дальнейшее развитие и уточнение. Как можно было видеть на многочисленных примерах, несмотря на нестрогость некоторых допущений, он всегда дает качественное и вполне удовлетворительное количественное совпадение с имеющимися экспериментальными панными.

ЛИТЕРАТУРА

- Иванов Ю. В., Эффективное сжигание надслойных горючих газов в топках паровых котлов, Эстгосиздат, Таллин, 1959.
 Суй Х. Н., Иванов Ю. В., Газ. пром-сть, 2, 26 (1968).
 Костерин В. А., Ржевский Е. В., Изв. высш. учеб. завед., Сер. «Авиационная техника», № 2, 68, 1964.
 Шандоров Г. С., Истечение в сносящий поток из отверстия в стенке канала и рас-иространием структ. В сихоним ратово М. Обсроичко. 1955.

- пространение струй в сносящем потоке, М., Оборонгиз, 1955. 5. Patric M. A., J. Inst. Fuel, **60**, No. 320, 46 (1967). 6. Палатник И. Б., Темирбаев Д. Ж., Сб. Проблемы теплоэнергетики и приклад-
- ной теплофизики, вып. 4, 196, Алма-Ата, 1967. 7. Эпштейн А., Злобин В., Изв. АН ЭССР, Физ. Матем., 18, № 2, 223 (1969). 8. Иванов Ю., Злобин В., Изв. АН ЭССР, Физ. Матем., 17, № 4, 433 (1968).

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию 12/V 1968

V. ZLOBIN

UHEREALISE JUGADE SÜSTEEMI TRAJEKTOOR PIIRATUD RISTVOOLUSES

Esitatakse ligikaudne analüütiline meetod kolme joa sisseandmise skeemi järgi piiratud ristvoolusesse suubuva üherealise ümarjugade süsteemi trajektoori arvutamiseks. Analüütiliste valemite (14, 18, 20) abil saadud tulemuste kvalitatiivne ja kvantitatiivne kokkulangevus eksperimentaalandmetega [^{1, 2, 8}] on hea.

V. ZLOBIN

THE PATH OF A ONE-ROW ROUND SYSTEM OF JETS IN A LIMITED CROSSWIND

An analytical solution of the problem of the calculation of the path of a one-row round jet system in a limited crosswind is set forth, with three kinds distribution of jets. The analytical formulae (14, 18, 20) are shown to be in a satisfactory qualitative and quantitative agreement with experimental data [1, 2, 8].