EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVIII KÖIDE: FÜÜSIKA * MATEMAATIKA. 1969, NR. 2

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVIII ФИЗИКА * МАТЕМАТИКА. 1969, № 2

https://doi.org/10.3176/phys.math.1969.2.11

А. ЭПШТЕЙН, В. ЗЛОБИН

о расчетной модели струи в сносящем потоке

Предложенные в последние годы теоретические методы расчета формы оси струи всносящем потоке рассматривают искривление струи либо как результат действия наструю силового поля, возникающего при обтекании основным потоком струи, рассматриваемой в качестве квазитвердого тела [¹⁻⁵], либо как результат изменения общего количества движения струи вследствие присоединения вещества из находящейся в движении окружающей среды [⁶]. Фактически действуют оба этих фактора, однако вопрос об относительном влиянии каждого из них на искривление струи остается открытым.

Кроме того, в упомянутых выше работах принимается обычно допущение о неизменности количества движения струи в направлении, перпендикулярном основному потоку, или же об изобарности течения. На деле же, как показывают соответствующие измерения [^{7, 8}], уменьшение импульса струи в этом направлении может быть довольно существенным. Представляет поэтому интерес выяснить, в какой мере и при каких условиях это обстоятельство влияет на развитие струи в потоке.

Ниже рассматривается случай истечения в свободный равномерный поток струи с начальным сечением круглой формы в условиях, когда влиянием архимедовых сил на развитие струи можно пренебречь. Выберем прямоугольную систему координат *xy* (рис. 1), причем начало коор-

динат поместим в полюсе струи (в условной точке, где ширина струи считается равной нулю), отстоящем от центра выходного отверстия на расстояние x_0, y_0 . В дальнейшем рассматривается область развитого течения струи, не включающая ее начальный участок, протяженность которого относительно невелика.

Обозначения. *v*, *Q* — скорость и плотность струи в произвольном сечении; *v*₀, *Q*₀ — средние скорость и плотность струи при истечении; *w*, *Q*_n — скорость и плотность сносящего потока; *D*₀ — начальный диа-

Рис. 1. Схема струи в сносящем потоке.

метр струи; F, F₀ — текущая и начальная площади поперечного сечения струи соответственно; b — ширина струи в произвольном сечении (в

направлении, перпендикулярном плоскости чертежа); α, α₀ — текущий и начальный углы наклона оси струи к направлению *x* соответственно; *r* — текущий радиус кривизны оси струи.

Условие равновесия элемента струи толщиной *dl* (рис. 1) в радиальном направлении, согласно принципу Д'Аламбера, записывается следующим образом:

$$-dC = dP + dK \sin \alpha. \tag{1}$$

Центробежная сила, действующая на элемент, равна

$$dC = \frac{\langle \varrho v^2 \rangle}{r} F \, dl,\tag{2}$$

где

$$< \varrho v^2 > = rac{\int\limits_F \varrho v^2 dF}{F}.$$

Сила динамического напора сносящего потока, направленная по нормали к поверхности струи или, если пренебречь сравнительно малой величиной угла раскрытия струи, по нормали к оси струи, предполагается пропорциональной нормальной составляющей динамического напора потока, т. е.

$$dP = c_n \, \frac{\varrho_n \, w^2 \sin^2 \alpha}{2} \, b \, dl, \tag{3}$$

где коэффициент сопротивления c_n должен иметь величину порядка единицы. Следует иметь в виду, что, в отличие от обтекания твердого тела, этот коэффициент является величиной условной в той мере, в какой условным является понятие границы струи.

Изменение секундного количества движения элемента за счет присоединения вещества из окружающей среды

$$dK = dM \cdot w.$$

Как показывают экспериментальные данные [7], можно считать, что секундное приращение массы элемента $dM \sim \varrho_n w b dl \sin \alpha$, при этом соответствующий коэффициент пропорциональности примерно равен единице. Указанную закономерность следует рассматривать пока как эмпирическую, ибо процесс перемешивания струи в сносящем потоке ввиду его большой сложности до сих пор еще слабо изучен. Из опытов с так наз. цилиндрическими термиками [9] (идеализированная модель термика представляет собой массу воздуха, мгновенно выпущенную из бесконечного длинного щелевидного источника; процесс перемешивания его очень сходен с перемешиванием рассматриваемой струн [10]) известно, что основная масса присоединяемого вещества (~ 90%) вовлекается в струю с фронтальной поверхности. Оставляя открытым вопрос о механизме этого процесса, можно предположить, что увеличение расхода струи также происходит главным образом за счет проникновения потока в струю с фронтальной ее поверхности, чем отчасти и объясняется указанная выше зависимость для dM.

Таким образом.

$$dK = \times \rho_n w^2 \sin \alpha b \, dl$$

(4)

причем, поскольку проекция количества движения струи на ось x изменяется лишь за счет массы, вовлекаемой с фронтальной поверхности (скорость окружающей среды в зоне следа за струей в среднем можно считать близкой к нулю), ожидаемое значение коэффициента к также будет близким к единице.

$$\langle \varrho v^2 \rangle F = \xi \varrho_n w^2 b r \sin^2 \alpha,$$

где

 $\xi = c_n/2 + \varkappa.$

В дальнейшем ξ , а также c_n и \varkappa рассматриваются как независящие от координат величины и, кроме того, предполагается, что направление скорости течения в пределах границ струи совпадает с направлением ее траектории.

Уравнение импульсов в проекции на ось у имеет вид

$$< \varrho v^{2} > F \sin \alpha = \varrho_{0} v_{0}^{2} F_{0} \sin \alpha_{0} - \int_{0}^{t} c_{n} \frac{\varrho_{n} w^{2}}{2} \sin^{2} \alpha \cos \alpha b \, dl =$$
$$= \varrho_{0} v_{0}^{2} F_{0} \sin \alpha_{0} - c_{n} \frac{\varrho_{n} w^{2}}{2} \int_{0}^{y} \sin \alpha \cos \alpha b \, dy.$$
(6)

Ширина струи, как следует из опытных данных [7.11], может быть представлена линейной функцией у вида

$$b = cq^{-n}y,\tag{7}$$

где

$$q = \frac{\varrho_0 \, v_0^2}{\varrho_n \, w^2}.$$

с и n — коэффициенты, определяемые из опыта.

С учетом (6) и (7), а также имея в виду, что

$$\sin \alpha = (1 + x^2)^{-0.5}, \tag{8}$$

$$\cos \alpha = x' \left(1 + x'^2 \right)^{-0.5},\tag{9}$$

$$r = -(1 + x'^2)^{1,5} (x'')^{-1}, \qquad (10)$$

можно преобразовать (5) к следующему уравнению (в безразмерных ксординатах):

$$\frac{\bar{y}}{\bar{x}''} = \frac{\pi}{4\xi c} q^{1+n} \sin \alpha_0 - \frac{c_n}{2\xi} \int_0^y \frac{\bar{x}'}{1+\bar{x}'^2} \ \bar{y} \, d\bar{y}, \tag{11}$$

где $\overline{x} = x/D_0, \ \overline{y} = y/D_0.$

Начальные условия задаются следующим образом:

ири
$$\overline{y} = 0$$
, $\overline{x}(0) = 0$, $\overline{x}'(0) = \operatorname{ctg} a_0$. (12)

Дифференцируя (11) по \overline{y} и вводя новые переменные $\overline{x}' = z(\overline{y})$ н $\overline{y}/z' = t(z)$, приходим к следующему дифференциальному уравнению первого порядка:

(5)

$$\frac{t'}{t} = -\frac{c_n}{2\xi} \frac{z}{1+z^2},$$
(13)

в результате интегрирования которого имеем

$$C_1 t = (1+z^2)^{-m}, (14)$$

где

$$m = c_n/4\xi; \quad (0 < m < 1).$$

Константа интегрирования C_1 определяется с помощью дополнительного условия однозначности, получаемого из (11), если считать, что $\overline{x}'(0) \approx \overline{x}'(\overline{y}_0)$ при $\overline{y} = \overline{y}_0$:

$$\bar{x}''(\bar{y}_0) = \frac{8\xi \, c \, \bar{y}_0}{2\pi \, q^{1+n} \sin a_0 - c \, c_n \sin 2a_0 \, \bar{y}_0^2},\tag{15}$$

где $\overline{y}_0 = y_0/D_0$.

Таким образом,
$$C_1 = \frac{8\xi c \sin^{2m} a_0}{2\pi q^{1+n} \sin a_0 - c_n c \sin 2a_0 \bar{y}_0^2}$$

Интегрируя далее (14), получаем

$$\int (1+z^2)^{-m} dz = C_1 \overline{y}^2/2 + C_2.$$
(16)

Интеграл в левой части (16) в общем случае не может быть выражен в элементарных функциях.

Чтобы получить конечное выражение в аналитическом виде, будем искать отдельно решение для двух участков. Когда величина $z \leq 1$, то, как показывает расчет, можно пренебречь z^2 по сравнению с единицей (как будет показано ниже, $m \leq 1/6$); когда же $z^2 > 1$, то можно пренебречь с достаточно малой погрешностью единицей по сравнению с z^2 . Следовательно:

а) В области ctg
$$a_0 \leqslant z \leqslant 1$$
 ($a_0 \geqslant a \geqslant \pi/4$)

$$z = C_1 \bar{y}^2 / 2 + C_2 \tag{17}$$

И

$$\bar{x} = C_1 \bar{y}^3 / 6 + C_2 \bar{y} + C_3. \tag{18}$$

Определяя с помощью (12) константы интегрирования $C_2 = \operatorname{ctg} \alpha_0$ и $C_2 = 0$, получаем окончательно

$$\overline{x} = \frac{4\xi c \sin^{2m} \alpha_0}{3(2\pi q^{1+n} \sin \alpha_0 - c_n c \sin 2\alpha_0 \overline{y}_0^2)} \overline{y}^3 + \operatorname{ctg} \alpha_0 \overline{y}.$$
(19)

Заметим, что при $\alpha_0 = \pi/2$ формула (19) полностью совпадает с решением, получаемым в предположении о сохранении импульса в направлении *у*.

б) В области 1
$$\leq z < \infty$$
 ($\pi/4 \geq \alpha > 0$)

$$z = [(1 - 2m) (C_1 \overline{y}^2/2 + C_4)]^{1/1 - 2m}, \qquad (20)$$

$$\overline{x} = (1 - 2m)^{1/1 - 2m} \int (C_1 \overline{y}^2/2 + C_4)^{1/1 - 2m} d\overline{y} + C_5.$$
(21)

С целью стыковки решений для первого и второго участка начальные условия для (20) н (21) зададим в следующем виде:

226

при
$$\overline{y} = \overline{y}_1, \quad \overline{x}(\overline{y}_1) = \overline{x}_1, \quad \overline{x}'(\overline{y}_1) = 1,$$
 (22)

где \overline{x}_1 и \overline{y}_1 связаны уравнением (19), а \overline{y}_1 определяется из (17) при $z = \overline{x}' = 1$:

$$\overline{y}_{1} = \frac{1}{2} \left[\frac{3(2\pi, q^{1+n} \sin \alpha_{0} - c_{n} c \sin 2\alpha_{0} \bar{y}_{0}^{2})(1 - \operatorname{ctg} \alpha_{0})}{\xi c \sin^{2m} \alpha_{0}} \right]^{0.5}.$$
(23)

Подставляя (23) в (19), находим

$$\overline{x}_{1} = \frac{1}{6} \left[\frac{3(2\pi q^{1+n} \sin \alpha_{0} - c_{n} c \sin 2\alpha_{0} \bar{y}_{0}^{2})(1 - \operatorname{ctg} \alpha_{0})}{\xi c \sin^{2m} \alpha_{0}} \right]^{0.5} (1 + 2\operatorname{ctg} \alpha_{0}).$$
(24)

Константы интегрирования С₄ и С₅ определяются с помощью (22).

В практических расчетах удобнее рассчитывать форму оси струи в системе координат \bar{x}_* , \bar{y}_* , с началом в центре выходного сечения струи. Очевидно, что

$$\overline{x}_* = \overline{x} - \overline{x}_0 \quad H \quad \overline{y}_* = \overline{y} - \overline{y}_0, \tag{25}$$

причем

$$\overline{y}_0 = b \, q^n / c, \tag{26}$$

где $b_0 = b_0/D_0$ — относительная условная ширина струи на уровне выходного сечения. x_0 определяем, подставляя \overline{y}_0 в (19). При $\alpha_0 = \pi/2$ можно считать $\overline{x}_0 \approx 0$.

Определим теперь численные значения входящих в полученные формулы эмпирических коэффициентов.

Из непосредственных измерений расширения струи найдено [7], что в диапазоне $3 \leq q \leq 25$ при $\alpha_0 = \pi/2$ n = 0.2, $\overline{b}_0 = 1$ и c = 1,7 (для динамической границы слабо перегретых струй; для сильно перегретых струй c = 2,0).

При выходе за пределы указанных значений q и для углов $\alpha \neq \pi/2$ эти численные значения нуждаются в проверке и уточнении.

Величину ξ можно найти, сравнивая расчет по формуле (19) с опытными данными. Такого рода сравнение с данными работ [^{7, 12, 13} и др.] в указанном выше диапазоне значений *q* дает весьма удовлетворительное совпадение с экспериментом при $\xi = 1,15 \div 1,3$.

Для определения c_n поступим следующим образом. Как явствует из (6), сила, действующая на струю в направлении y, равна (при $\alpha_0 = \pi/2$)

$$\overline{F}_{y} = \frac{F_{y}}{\varrho_{0} v_{0}^{2} F_{0}} = -\frac{2c_{n}}{\pi q} \int_{0}^{\overline{y}} \sin \alpha \cos \alpha \,\overline{b} \, d\overline{y}.$$
(27)

Используя (7)—(9) и (19) при приведенных выше численных значениях *n* и *c*, окончательно получим в результате интегрирования (27) следующую зависимость:

$$\overline{F}_y = -0.21c_n \ln\left(1 + 1.66q^{-2.4} \,\overline{y}^4\right). \tag{28}$$

Сравнивая расчет по (28) с соответствующими опытными данными работы [7], полученными на основе измерений полей скорости струи, находим, что $c_n = 0,6 \div 0,8$ и в среднем $m = 1/6 \div 1/8$.

Отсюда видно, что преобладающую роль в процессе искривления струи в сносящем потоке играет все же присоединение к струе масс из окружающей среды, а не силовое взаимодействие струи с потоком.

227

Следует также отметить, что в работах [1, 3, 4] в качестве c_n выступает фактически величина 2ξ , чем и объясняются мнимо большие значения коэффициента сопротивления, отмеченные в этих работах.

Подставляя указанные численные значения n и c, а также $\xi = 1,2$ в (19), получим уравнение изогнутой оси струи для первого участка при $a_0 = \pi/2$ в окончательном виде:

$$\overline{x} = 0.43 q^{-1.2} \overline{y}^3$$
 (29a)

или

$$\overline{y} = 1,32q^{0,4}\overline{x}^{1/3}.$$
(296)

(30)

Для второго участка при $\xi = 1,2$ и $c_n = 0,8$ m = 1/6 и интеграл в (21) вычисляется в элементарных функциях. Определяя с помощью (22) константы интегрирования C_4 и C_5 , получаем окончательно следующее выражение, описывающее форму оси струи на втором участке (при $\alpha_0 = \pi/2$):

$$\begin{split} \overline{x} &= 0.2q^{-1.8} \left\{ \overline{y} \left(\overline{y}^2 - \overline{y}_1^2 + 1.15q^{1.2} \right)^{1.5} + \right. \\ &+ 1.5 \left(1.15q^{1.2} - \overline{y}_1^2 \right) \overline{y} \left(\overline{y}^2 - \overline{y}_1^2 + 1.15q^{1.2} \right)^{0.5} + \\ &+ 1.5 \left(1.15q^{1.2} - \overline{y}_1^2 \right) \operatorname{Arsh} \left[\overline{y} \left(1.15q^{1.2} - \overline{y}_1^2 \right)^{-0.5} \right] \right\} + \\ &+ \overline{x}_1 - 0.2q^{-1.8} \left\{ 1.25q^{1.8} \overline{y}_1^2 + 1.6q^{0.6} \left(1.15q^{1.2} - \overline{y}_1^2 \right) \overline{y}_1 + \\ &+ 1.5 \left(1.15q^{1.2} - \overline{y}_1^2 \right)^2 \operatorname{Arsh} \left[\overline{y}_1 \left(1.15q^{1.2} - \overline{y}_1^2 \right)^{-0.5} \right] \right\}, \end{split}$$

где, согласно (23) и (24),

$$\overline{y}_1 = 0.88q^{0.6}$$
 и $\overline{x}_1 = 0.29q^{0.6}$.

На рис. 2 приводится сравнение расчета по формулам (29) и (30) с расчетом только по формуле (29) для обоих участков в системе координат X* У*.

Отсюда видно, что затухание импульса струи в направлении у начинает сказываться заметным образом на расстояниях х порядка 20-25 калибров струи, т. е. уже там, где надежные опытные данные, как правило, отсутствуют. В близлежащей к источнику области струи, где обычно производились соответствующие измерения, влияние затухания импульса на траекторию струи практически обнаружить невозможно, так как оно здесь значительно меньше естественной погрешности опытных измерений.

ЛИТЕРАТУРА

- Абрамович Г. Н., Теория турбулентных струй, М., 1960.
 Визель Я. М., Мсстинский И. Л., Инж.-физ. ж., 8, № 2, 238 (1965).
 Эпштейн А. М., Инж.-физ. ж., 9, № 4, 451 (1965).
- 4. Шандоров Г. С., Изв. высш. учеб. зав., Сер. «Авиационная техника», № 2, 100 (1966).
- 5. Шепелев И. А., Сб. Строительная теплофизика, М., 1966, с. 167.
- 6. Вахламов С. В., Инж.-физ. ж., 7, № 10, 112 (1964).
- Балатник И. Б., Темирбаев Д. Ж., Сб. Проблемы теплоэнергетики и при-кладной теплофизики, вып. 4, 196, Алма-Ата, 1967.
 Бутаков С. Е., Столер В. З., Сб. Санитарная техника, вып. 1, 88—92, Киев,
- 1965.
- 9. Richards J. U., Int. J. Air Roll, 7, No. 1, 17 (1963).
- 10. Scorer R., Natural aerodynamics, London, 1958.
- 11. Иванов Ю., Эпштейн А., Изв. АН ЭССР, Сер. физ.-мат. и техн. наук, 14, № 4, 588 (1965).
- 12. Шандоров Г. С., Истечение в сносящий поток из отверстия в стенке канала нь распространение струй в сносящем потоке, М., Оборонгиз, 1955. 12. Keffer G. F., Baines W. B., J. Fluid Mech., 15, No. 4, 481 (1963).

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию. 12/V 1968

A. EPSTEIN, V. ZLOBIN

RISTVOOLUSES LEVIVA JOA ARVUTUSMUDELIST

Esitatavas arvutusmudelis tasakaalustab kvaasitahkena vaadeldava kõverdunud joalõpmatult väikese elemendi tsentrifugaaljõud vooluse dünaamilise rõhu ja ümbritsevast keskkonnast elemendile lisandunud sekundilise liikumishulga.

Joa trajektoori võrrandi tuletamisel arvestatakse ka liikumishulga vähenemist y-suunas. Takistustegurite c_n ja juurdeimetud liikumishulga \times väärtused, mis on leitud katseandmete põhjal, paistavad olevat reaalsed. Arvutused näitavad, et eeldus joa liikumishulga säilitamisest y-suunas põhjustab märgatava vea alates kaugustest 20–25 piki joa algdiameetrit allavoolu.

A. EPŠTEIN, V. ZLOBIN

ON THE CALCULATION MODEL OF A JET IN A TRANSVERSAL STREAM

In the proposed model, the centrifugal force of an infinitesimal element of a curved jet is considered as a quasi-solid body counterbalances the force of the dynamical pressure of the stream and the unit-of-time momentum of the ambient fluid attached to the element. The decay of the jet momentum in the y-direction is also taken into account during the deduction of the equation of the trajectory of the jet. The numerical value of the drag coefficient c_n as well as the momentum inflow coefficient \varkappa estimated on the basis of experimental data seems to be sufficiently real. As the calculations show, the assumption of the conservation of the momentum of the jet in the y-direction begins to yield a noticeable error at down-wind distances of about 20-25. initial diameters of the jet.